CN111175747A - 一种基于多通道复图像空间的相位误差估计方法 - Google Patents

一种基于多通道复图像空间的相位误差估计方法 Download PDF

Info

Publication number
CN111175747A
CN111175747A CN201911192838.4A CN201911192838A CN111175747A CN 111175747 A CN111175747 A CN 111175747A CN 201911192838 A CN201911192838 A CN 201911192838A CN 111175747 A CN111175747 A CN 111175747A
Authority
CN
China
Prior art keywords
phase error
channel
signal
image
image space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911192838.4A
Other languages
English (en)
Other versions
CN111175747B (zh
Inventor
孙光才
王敬旺
向吉祥
邢孟道
郭亮
保铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201911192838.4A priority Critical patent/CN111175747B/zh
Publication of CN111175747A publication Critical patent/CN111175747A/zh
Application granted granted Critical
Publication of CN111175747B publication Critical patent/CN111175747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于通信技术领域,具体涉及一种基于多通道复图像空间的相位误差估计方法,包括:获取回波数据;对回波数据进行置零操作,得到置零回波数据;对置零回波数据进行方位频谱重构得到信号频谱;通过线频调变标算法对信号频谱进行成像得到第一图像集;对第一图像集进行低通滤波得到第二图像集;对第二图像集进行相位误差估计得到相位误差;根据相位误差对第一图像集进行误差补偿得到目标图像。本发明对多通道相位误差的估计是在图像空间中进行,避免多次迭代处理造成的繁重的计算量,提高了多通道相位误差估计的速度和效率;先进行重构和成像,再进行多通道相位误差的估计,由于成像后信号的能量相对于成像前更能集中,能得到更好的误差估计效果。

Description

一种基于多通道复图像空间的相位误差估计方法
技术领域
本发明属于通信技术领域,具体涉及一种基于多通道复图像空间的相位误差估计方 法。
背景技术
由于星载SAR具有免受国界区域和自然条件等方面限制,以及SAR全天时、全天候工作的特点,星载SAR成为近年来世界各地学者的热点研究对象。针对星载SAR先后发 展出多种成像算法,并取得了较好的成像结果。随着对SAR成像需求的提高,高方位分 辨率和宽测绘带成为近年来发展的重点目标。然而,由于低PRF和高分辨率之间是一组 基本矛盾,高方位分辨率和宽测绘带在传统的SAR系统中不能同时实现。
能够获得高方位分辨率和宽测绘带成像的方位多通道SAR系统吸引了越来越多的关 注,而方位多通道SAR系统的提出,有效地解决了低PRF和高分辨率之间的这一基本矛盾。该系统运行时PRF选用低于单通道奈奎斯特采样率的频率,通过方位信号重构消除 多通道回波在方位上存在多普勒模糊,因而常规的单通道的成像算法得以应用于多通道 数据的成像。
实际操作中,由于非理想因素存在于方位多通道SAR系统中,通道间存在相位增益误差,位置不确定和时间不确定,所以通道间不可避免地存在通道不匹配。这些通道间 的不匹配将会严重影响重构的性能,造成成像结果中存在方位模糊,严重降低成像质量。 因此,针对多通道SAR系统中通道间不匹配的估计和校正成为在实际操作中的关键问题。 针对方位多通道SAR系统通道间的相位误差,现有方法大多是在频域上进行估计补偿, 也有部分方法是在时域上采用最小熵的方法,通过迭代对通道间的相位误差进行迭代估 计。
针对方位多通道SAR系统通道间的不匹配,不少学者对这一问题进行了深入地研究, 其中西安电子科技大学李真芳教授针对分布式小卫星系统,提出的基于杂波的通道不匹 配的估计和校正的正交子空间法,这一方法已经成功应用于方位多通道SAR系统。其他研究者也提出了基于相邻通道相关特性的时域通道误差校正方法。上述研究所提出的方法是在图像成像前对通道误差进行估计,可将其归为一类信号空间方法。有部分研究者 提出在图像空间上采用最小熵的方法,对通道间的相位误差进行估计的方法,先后发展 出最小熵自聚焦方法、加权最小熵方法和基于最大似然估计的加权最小熵方法。由于无 法获得最小熵方法的自闭解,上述方法需要通过多次迭代来实现。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种基于多通道复图像空间的 相位误差估计方法。本发明要解决的技术问题通过以下技术方案实现:
一种基于多通道复图像空间的相位误差估计方法,包括:
获取回波数据;
对所述回波数据进行置零操作,得到置零回波数据;
对所述置零回波数据进行方位频谱重构得到信号频谱;
通过线频调变标算法对所述信号频谱进行成像得到第一图像集;
对所述第一图像集进行低通滤波得到第二图像集;
对所述第二图像集进行相位误差估计得到相位误差;
根据所述相位误差对所述第一图像集进行误差补偿得到目标图像。
在本发明的一个实施例中,所述置零操作为:
取含有M个通道的所述回波数据中的第m通道数据,再将其余通道数据置零,每个通道数据只进行一次置零,经过M次置零后得到M组置零数据,其中m≤M。
在本发明的一个实施例中,对所述置零回波数据进行方位频谱重构得到信号频谱, 包括:
对所述M组置零数据进行逆滤波得到M组逆滤波信号;
对所述M组逆滤波信号进行重新排列得到信号频谱。
在本发明的一个实施例中,对所述第二图像集进行相位误差估计得到相位误差,包 括:
对所述第二图像集中的基频分量成像结果的协方差矩阵进行分析得到图像空间;
通过最小化代价函数对所述图像空间进行误差估计得到相位误差。
在本发明的一个实施例中,所述最小代价函数的表达式为:
Figure BDA0002294005280000021
其中,ψ为代价函数,Γ为相位误差,η=[Γ1122,…ΓMM]T,ΓMM为矩阵Γ的 第m行m列元素,Vi=diag PThi,diag PThi为一个对角元素为向量PThi的对角 矩阵,L为正整数,hi为H的第i列,H为导向矢量矩阵,pt为矩阵P的第t行,i>0。
在本发明的一个实施例中,所述代价函数为:
Figure BDA0002294005280000031
其中,
Figure BDA0002294005280000032
为B的估计量。
本发明的有益效果:
本发明对多通道相位误差的估计是在图像空间中进行,且避免了多次迭代处理造成 的繁重的计算量,提高了多通道相位误差估计的速度和效率;还采用基于基频滤波的方式,将重构后的信号通过低通滤波器,降低了多通道信号在图像空间中的自由度,增加 了本发明的相位误差估计方法所适用的场景;先进行重构和成像,再进行多通道相位误 差的估计,由于成像后信号的能量相对于成像前更能集中,所以当选取信噪比高的子图 像进行通道相位误差估计时,能得到更好的误差估计效果。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法的流程 示意图;
图2是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法的流程 框图;
图3是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法未通过 低通滤波器进行自由度压缩的成像结果;
图4是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法通过低 通滤波器进行自由度压缩后的成像结果;
图5是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法估计得 到的通道相位误差补偿给图像后的成像结果;
图6是本发明实施例提供的使用传统的信号空间方法成像且未经过通道相位误差补 偿的成像结果。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
请参见图1,图1是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法的流程示意图,包括:
获取回波数据;
对所述回波数据进行置零操作,得到置零回波数据;
对所述置零回波数据进行方位频谱重构得到信号频谱;
通过线频调变标算法对所述信号频谱进行成像得到第一图像集;
对所述第一图像集进行低通滤波得到第二图像集;
对所述第二图像集进行相位误差估计得到相位误差;
根据所述相位误差对所述第一图像集进行误差补偿得到目标图像。
具体的,取原始多通道信号的第一个通道的数据,将余下的通道置零,对其余的M-1 通道进行相同的重复的操作,共得到M组置零的数据,由此得到置零回波数据;将方位 多通道SAR系统对原始多通道信号的采样过程看成是一个滤波过程,所以对多通道数据 进行逆滤波,然后将逆滤波后得到的频谱分量进行重新排列,即可得到完整的信号频谱; 对M组置零后的数据进行信号重构,得到M组重构完的数据,由于每个通道的数据都不 是完整的数据,所以M组重构完的数据仍存在方位模糊;对M组重构后的数据通过线频 调变标算法进行成像,可得到M组存在方位模糊或重影的图像Ie,Ie=[I1,I2,…,IM]T, IM表示第m组的图像,[·]T为转置操作;成像结果分为两部分,一部分用于最终的成 像,另一部分用于通道相位误差估计;将匹配滤波得到的M幅有方位模糊或重影的图像 Ie通过低通滤波器,将高频分量滤除后即可降低图像空间相位误差估计时的自由度,通 过低通滤波器滤波得到的Ie,subT可用于通道相位误差的估计,Ie,subT为每个通道的基频 分量的成像结果,Ie, subTFlowpassIe
Figure BDA0002294005280000041
Flowpass表示低通滤波器;对基频 分量的成像结果Ie,subT的协方差矩阵进行特征分解,得到特征值,并根据特征值的大小 得到图像的信号空间和图像的噪声空间,最后定义代价函数ψ,在线性约束条件下,通 过最小化代价函数ψ来估计通道相位误差Γ,并将误差补偿给最终的成像。
本发明对多通道相位误差的估计是在图像空间中进行,且避免了多次迭代处理造成 的繁重的计算量,提高了多通道相位误差估计的速度和效率;还采用基于基频滤波的方式,将重构后的信号通过低通滤波器,降低了多通道信号在图像空间中的自由度,增加 了本发明的相位误差估计方法所适用的场景;先进行重构和成像,再进行多通道相位误 差的估计,由于成像后信号的能量相对于成像前更能集中,所以当选取信噪比高的子图 像进行通道相位误差估计时,能得到更好的误差估计效果。
在本发明的一个实施例中,所述置零操作为:
取含有M个通道的所述回波数据中的第m通道数据,再将其余通道数据置零,每个通道数据只进行一次置零,经过M次置零后得到M组置零数据,其中m≤M。
在本发明的一个实施例中,对所述置零回波数据进行方位频谱重构得到信号频谱, 包括:
对所述M组置零数据进行逆滤波得到M组逆滤波信号;
对所述M组逆滤波信号进行重新排列得到信号频谱。
在本发明的一个实施例中,对所述第二图像集进行相位误差估计得到相位误差,包 括:
对所述第二图像集中的基频分量成像结果的协方差矩阵进行分析得到图像空间;
通过最小化代价函数对所述图像空间进行误差估计得到相位误差。
在本发明的一个实施例中,所述最小代价函数的表达式为:
Figure BDA0002294005280000051
其中,ψ为代价函数,Γ为相位误差,η=[Γ1122,…ΓMM]T,ΓMM为矩阵Γ的 第m行m列元素,Vi=diag PThi,diag PThi为一个对角元素为向量PThi的对角 矩阵,L为正整数,hi为H的第i列,H为导向矢量矩阵,pt为矩阵P的第t行,i>0。
在本发明的一个实施例中,所述代价函数为:
Figure BDA0002294005280000052
其中,
Figure BDA0002294005280000053
为B的估计量。
对于通道数为M,方位模糊数为N的SAR系统,对完整信号重构的原理如下:
有方位模糊的信号可表示为:Samb faHS fa
H为导向矢量矩阵,H的表达式为:
H=[κ-L-L+1,…,0,…,κL-1,κL]
其中,L为正整数,2L+1=N,N为SAR系统的方位模糊数。
κi的表达式为:
Figure BDA0002294005280000061
其中,exp·为指数函数,j为虚数单位,fa为方位频率,-fp/2fa≤fp/2, i=[-L,-L+1,…,0,…,L-1,L],L为正整数,2L+1=N,N为SAR系统的方位模 糊数,fp为脉冲重复频率,fp的取值范围为B/Nfp≤B,B为信号带宽,v为雷 达平台运动的速度,XM为第m个通道的相位中心的位置,
Figure BDA0002294005280000062
m=1,2,…,M-1,M,M为SAR系统的通道数,d为天线两个相邻通道之间的距离, [·]T为转置操作。
S fa为无方位模糊的信号,S fa的表达式为:
S fa=[S(fa-L·fp) … S fp+L·fp]T
其中,fa为方位频率,-fp/2fa≤fp/2,L为正整数,2L1=N,N为SAR 系统的方位模糊数,fp为脉冲重复频率,[·]T为转置操作。
Samb fa的表达式为:
Figure BDA0002294005280000071
令P=H-1,H-1为H的逆矩阵,H为导向矢量矩阵,P左乘以Samb fa可得到 S fa=PSambfa,所以将有方位模糊的信号Samb fa通过逆滤波器P后,可得到无方 位模糊的信号S fa
进一步地说明本发明的方法步骤,请参见图2,图2是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法的流程框图:
1.取数据和置零
1a)取原始多通道信号的第一个通道的数据,将余下的通道置零,对于第m个通道的数据,置零后的结果为Scm fa=[0,…,Scm(fa),…,0]T,[·]T为装置操作;
1b)对其余的M-1个通道进行相同的重复的操作,共得到M组置零的数据,置零后每组数据的大小与原始的M个通道相同;
1c)得到的数据可用于通道相位误差的估计和最终的成像。
2.方位信号重构
本步骤是针对M组置零后的数据进行信号重构,可得到M组重构完的数据,由于每个通道的数据都不是完整的数据,所以M组重构完的数据仍存在方位模糊。
2a)分别对M个通道的数据进行逆滤波,对第m个通道的数据进行逆滤波的表达式为:
Srm fa=PScm fa
其中,P=H-1,H-1为H的逆矩阵,H为导向矢量矩阵, Srm fa=[Srm(fa-L·fp) … Srmfa+L·fp]T,fa为 方位频率,-fp/2≤fa≤fp/2, L为正整数,2L1=N,N为SAR系统的方位模糊数,fp为脉冲重复频率,[·]T为 转置操作;
2b)对第m个通道滤波得到的信号频谱Srm fa进行重新排列,可得到完整的信号 频谱
Figure BDA0002294005280000081
fp/2≤fa≤fp/2,
Figure BDA0002294005280000082
3.多通道数据成像
将得到完整信号频谱的多通道数据通过线频调变标(CS,Chirp Scaling)算法进行成像,在图像空间中可得到M幅图像。
对方位信号成像可等效于对方位信号进行匹配滤波,对步骤2中重构得到的完整的 信号频谱
Figure BDA0002294005280000083
进行匹配滤波,将第m个通道信号匹配滤波后的结果表示为IMxn, 上述过程的表达式为:
Figure BDA0002294005280000084
其中,xn为零时刻SAR平台在X轴的初始位置,
Figure BDA0002294005280000085
为完整的信号频谱, exp·为指数函数,j为虚数单位,v为雷达平台运动的速度,RB为场景中心到雷达运 动轨迹的最近距离,fam为最大多普勒频率,
Figure BDA0002294005280000086
λ为信号波长,
Figure BDA0002294005280000087
将匹配滤波函数
Figure BDA0002294005280000088
和傅里叶变换因子合成的新函数表示为
Figure BDA0002294005280000089
Figure BDA00022940052800000810
的表达式为:
Figure BDA00022940052800000811
其中,匹配滤波函数表达式为:
Figure BDA00022940052800000812
所有通道信号匹配滤波后的表达式为:
Figure BDA00022940052800000813
其中,IM xn为第m个通道信号匹配滤波后的结果,xn为零时刻SAR平台在X轴 的初始位置;
Figure BDA00022940052800000814
为对第m个通道滤波得到的信号频谱进行重新排列后得到的完整 的离散化信号频谱,
Figure BDA0002294005280000091
为[-L·fp/2,L·fp/2]频率范围内均匀采样nan个点组成的列 向量,nan为方位向的采样点数,L为正整数,2L+1=N,N为SAR系统的方位模糊 数,fp为脉冲重复频率;
Figure BDA0002294005280000092
为函数
Figure BDA0002294005280000093
的一种离散化形式;
进一步可将所有通道信号匹配滤波后的结果表示为I,I的表达式为:
Figure BDA0002294005280000094
其中,L为正整数,2L+1=N,N为SAR系统的方位模糊数,diag{pi+L+1}表 示为一个对角元素为向量pi+L+1的对角矩阵,pi+L+1是矩阵P的第i+L+1行, P=H-1,H-1为H的逆矩阵,H为导向矢量矩阵,i=[-L,-L+1,…L-1,L];S为无 方位模糊信号S(fa)的离散化形式,S=[S(fa-L·fp) … S(fa+L·fp)]T,fa为 [-fp/2,fp/2]频率范围内均匀采样nan个点组成的列向量,nan为方位向的采样点数, fp为脉冲重复频率;M(fa+i·fp)为函数
Figure RE-GDA0002441547790000095
的另一种离散化形式。
所以各通道的信号匹配滤波后,可将M幅有方位模糊或重影的图像表示为:
Ie=ΓI
=ΓIsub1+ΓIsub2+…+ΓIsubN
其中,
Figure RE-GDA0002441547790000096
Figure RE-GDA0002441547790000097
为第一个通道与其他通道之间的相位误差,
Figure RE-GDA0002441547790000098
ΓIsub N表示图像Ie的第n个分量,Isub N=PNHSMN, PN=diag{pn},diag{pn}表示为一个对角元素为向量pn的对角矩阵,pn为矩阵P的 第n行,pn=[Pn1,…PnM],PnM为矩阵P第n行第m列的元素,P=H-1,H-1为H的 逆矩阵,H为导向矢量矩阵;S为无方位模糊信号S(fa)的离散化形式,S=[S(fa-L·fp) … S(fa+L·fp)]T,fa为[-fp/2,fp/2]频率范围内均匀采样nan 个点组成的列向量,nan为方位向的采样点数,fp为脉冲重复频率,L为正整数, 2L+1=N,N为SAR系统的方位模糊数,fp为脉冲重复频率;MN
Figure RE-GDA0002441547790000099
的第n 个分量,n=1,2,…,N-1,N,
Figure RE-GDA00024415477900000910
为函数
Figure RE-GDA00024415477900000911
的一种离散化形式。
将成像结果分为两部分,一部分用于最终的成像,另一部分用于通道相位误差估计。 其目的在于使最终的成像结果既能得到通道相位误差补偿,又能保留高频分量,能得到 更清晰的图像。
4.自由度压缩
由于重构时需要将多个频谱进行重排,而各个频谱分量之间不能完全对齐,对方位 信号成像等效于一次匹配滤波,所以在通道数为M,方位模糊数为N的SAR系统中,成 像后图像空间中各个通道信号的自由度增加为2N-1。将图像Ie通过低通滤波器,将高 频分量滤除后即可降低图像空间相位误差估计时的自由度,通过低通滤波器滤波得到的 Ie,subT可用于通道相位误差的估计,这一过程的表达式为:
Ie,subT=FlowpassIe
=ΓPTHSMT
其中,Ie,subT为每个通道的基频分量的成像结果,
Figure BDA0002294005280000101
N为SAR系统的方 位模糊数;Flowpass表示低通滤波器;
Figure BDA0002294005280000102
为第一个通道与其他通道之间的相 位误差,
Figure BDA0002294005280000103
PT=diag pt,diag pt表示为一个对角元素为向量pt的对角矩阵,pt为矩阵P的第t行,pt=[Pt1,…PtM],PtM为矩阵P第t行第m列的元 素,P=H-1,H-1为H的逆矩阵,H为导向矢量矩阵;S为无方位模糊信号S fa的离 散化形式,S=[S(fa-L·fp) … S(fa+L·fp)]T,fa为[-fp/2,fp/2]频率范围内均 匀采样nan个点组成的列向量,nan为方位向的采样点数,L为正整数,2L+1=N,N 为SAR系统的方位模糊数,fp为脉冲重复频率;MT
Figure BDA0002294005280000104
的第t个分量,
Figure BDA0002294005280000105
为函 数
Figure BDA0002294005280000106
的一种离散化形式。
5.通道相位误差估计
5a)对步骤4中得到的基频分量的成像结果Ie,subT的协方差矩阵R Ie,subT进行分析,分析过程的表达式为:
Figure BDA0002294005280000111
其中,E·为求均值操作;
Figure BDA0002294005280000112
为第一个通道与其他通道之间的相位误差,
Figure BDA0002294005280000113
IsubT=PTHSMT,PT=diag pt,diag pt表示为一个对 角元素为向量pt的对角矩阵,pt为矩阵P的第t行,pt=[Pt1,…PtM],PtM为矩阵P第 t行第m列的元素,P=H-1,H-1为H的逆矩阵,H为导向矢量矩阵;Q=SMT,S为 无方位模糊信号S fa的离散化形式,S=[S(fa-L·fp) … S(fa+Lfp)T,fa
[-fp/2,fp/2]频率范围内均匀采样nan个点组成的列向量,nan为方位向的采样点数, L为正整数,2L+1=N,N为SAR系统的方位模糊数,fp为脉冲重复频率;MT
Figure BDA0002294005280000114
的第t个分量,
Figure BDA0002294005280000115
为函数
Figure BDA0002294005280000116
的一种离散化形式。将RQ的估计量表示
Figure BDA0002294005280000117
τ为时间,K为用于估计协 方差矩阵的服从独立同分布采样点的个数,2K+1≥2M+1,k0,1,2…2K,·H为 对矩阵进行共轭转置操作。
5b)通过分解
Figure BDA0002294005280000118
的特征值可得到图像空间。
根据特征值的大小,可将得到的图像空间分为图像的信号空间和图像的噪声空间, 其中大的特征值对应的特征向量组成图像的信号空间,小的特征值对应的特征向量组成 图像的噪声空间,理论上信号空间与噪声空间正交。
特征值的分解满足如下两个条件:
1.特征值λm满足λ1>λ2>…>λ2L+1>>λ2L+2=…λM,特征值λm对应的特征向 量为bm,其中m=1,2,…,M;
2.矩阵ΓPTH的每列正交于矩阵B的每列,B=[b2L+2,b2L+3,…,bM],B为特 征值λ2L+22L+3,…,λM对应的特征向量b2L+2,b2L+3,...,bM组成的矩阵。
可将代价函数定义为:
Figure BDA0002294005280000121
其中,
Figure BDA0002294005280000122
为B的估计量,hi为H的第i列,H为导向矢量矩阵。
5c)通过最小化代价函数ψ来估计通道相位误差Γ,当
Figure BDA0002294005280000123
等于B,Γ和PT以及hi取得真实值时,代价函数ψ达到最小值,这一过程的表达式为:
Figure BDA0002294005280000124
其中η=[Γ1122,…ΓMM]T,ΓMM表示矩阵Γ的第m行第m列的元素,
Figure BDA0002294005280000125
为第一个通道与其他通道之间的相位误差,
Figure BDA0002294005280000126
Vi=diag PThi,diag PThi表示为一个对角元素为向量PThi的对角矩阵, PT=diag pt,diag pt表示为一个对角元素为向量pt的对角矩阵,pt为矩阵P的第 t行,pt=Pt1,…PtM],PtM为矩阵P第t行第m列的元素,P=H-1,H-1为H的逆矩 阵,H为导向矢量矩阵,hi为H的第i列。
在线性约束条件ηHD=1,D=[1,0,0,…,0]T下,求解代价函数ψ的最小值问题的 最优解为
Figure BDA0002294005280000127
其中,
Figure BDA0002294005280000128
可得到通道间的相位 误差估计值为
Figure BDA0002294005280000129
6.误差补偿
将估计得到的通道相位误差
Figure BDA00022940052800001210
补偿给步骤3中得到的M幅图像,再将补偿后的M幅图像进行叠加,最终可得到无方位模糊或重影的成像结果。
本发明的效果可以通过下述仿真实验加以说明:
将接收的实测数据在频域补零和时域采样处理后,进行仿真实验处理。多通道天线 阵列沿航迹方向均匀分布,发射通道位于天线阵列中心,天线阵列的任一通道都可作为接收回波信号的通道。相关参数如表1所示:
表1仿真参数表
参数 参数值 单位
斜距 850 Km
载频 5.6 GHz
斜视角 28.34 °
飞行平台速度 7024 m/s
发射信号带宽 100 MHz
脉冲重复频率 2930 Hz
为了评估本发明提出的基于多通道复图像空间的相位误差估计方法的估计性能,在 存在相同通道相位误差的条件下,对比本发明提出的通道相位误差估计方法和在信号空 间的通道相位误差估计方法,仿真结果如表2所示:
表2两种通道相位误差估计方法的仿真结果
Figure BDA0002294005280000131
对比分析上述表格中的两种通道相位误差估计方法可知,使用本发明提出的基于多 通道复图像空间的相位误差估计方法,估计得到的通道相位误差更接近实际通道相位误 差。统计两种通道相位误差估计方法的方差,得到基于多通道复图像空间的相位误差估计方法的方差为0.0002,信号空间的通道相位误差估计方法的方差为0.9361,对比可 知本发明中提出的通道相位误差估计方法的方差更小。
经过上述分析,基于多通道复图像空间的相位误差估计方法的误差估计性能优于传 统的信号空间的通道相位误差估计方法。
为了验证多通道信号在信号重构后通过低通滤波器进行自由度压缩的有效性,请参 见图3和图4,图3是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法未通过低通滤波器进行自由度压缩的成像结果,图4是本发明实施例提供的一种基 于多通道复图像空间的相位误差估计方法通过低通滤波器进行自由度压缩后的成像结 果,对比分析图3和图4。在通道数为5,方位模糊数为3的SAR系统中,由于多通道 信号的信号重构需要将多个频谱进行重排,而不同的频谱分量之间不能完全对齐,所以 对于方位模糊数为N的信号,重构后每个通道信号的自由度为2N-1。当重构后的多通 道信号未通过低通滤波器进行自由度压缩时,成像结果如图3所示,对于方位模糊数为 3的方位信号,成像后图像中会存在5个模糊点;当重构后的多通道信号通过低通滤波 器进行自由度压缩时,成像结果如图4所示,成像后图像中模糊点数从5减少为3。对 比可知,将信号重构后的多通道信号,通过低通滤波器即可有效降低自由度。
请参见图5和图6,图5是本发明实施例提供的一种基于多通道复图像空间的相位误差估计方法估计得到的通道相位误差补偿给图像后的成像结果,图6是本发明实施例 提供的使用传统的信号空间方法成像且未经过通道相位误差补偿的成像结果,将本发明 提出的基于多通道复图像空间的相位误差估计方法估计得到的通道相位误差,补偿给图 像后的成像结果如图5所示,使用信号空间方法成像且未经通道相位误差补偿的成像结 果如图6所示,对比观察图5和图6发现,经过通道相位误差补偿的成像结果更加清晰。 进一步说明通过本发明提出的通道相位误差估计方法估计得到的相位误差,将其补偿给 图像后,能够提高成像质量,获得清晰度更高的成像结果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本 发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明 的保护范围。

Claims (6)

1.基于多通道复图像空间的相位误差估计方法,其特征在于,包括:
获取回波数据;
对所述回波数据进行置零操作,得到置零回波数据;
对所述置零回波数据进行方位频谱重构得到信号频谱;
通过线频调变标算法对所述信号频谱进行成像得到第一图像集;
对所述第一图像集进行低通滤波得到第二图像集;
对所述第二图像集进行相位误差估计得到相位误差;
根据所述相位误差对所述第一图像集进行误差补偿得到目标图像。
2.根据权利要求1所述的基于多通道复图像空间的相位误差估计方法,其特征在于,所述置零操作为:
取含有M个通道的所述回波数据中的第m通道数据,再将其余通道数据置零,每个通道数据只进行一次置零,经过M次置零后得到M组置零数据,其中m≤M。
3.根据权利要求2所述的基于多通道复图像空间的相位误差估计方法,其特征在于,对所述置零回波数据进行方位频谱重构得到信号频谱,包括:
对所述M组置零数据进行逆滤波得到M组逆滤波信号;
对所述M组逆滤波信号进行重新排列得到信号频谱。
4.根据权利要求1所述的基于多通道复图像空间的相位误差估计方法,其特征在于,对所述第二图像集进行相位误差估计得到相位误差,包括:
对所述第二图像集中的基频分量成像结果的协方差矩阵进行分析得到图像空间;
通过最小化代价函数对所述图像空间进行误差估计得到相位误差。
5.根据权利要求4所述的基于多通道复图像空间的相位误差估计方法,其特征在于,所述最小代价函数的表达式为:
Figure FDA0002294005270000011
其中,Ψ为代价函数,Γ为相位误差,η=[Γ1122,…ΓMM]T,ΓMM为矩阵Γ的第m行m列元素,Vi=diag PThi,diag PThi为一个对角元素为向量PThi的对角矩阵,L为正整数,hi为H的第i列,H为导向矢量矩阵,pt为矩阵P的第t行,i>0。
6.根据权利要求5所述的基于多通道复图像空间的相位误差估计方法,其特征在于,所述代价函数为:
Figure FDA0002294005270000021
其中,
Figure FDA0002294005270000022
为B的估计量。
CN201911192838.4A 2019-11-28 2019-11-28 一种基于多通道复图像空间的相位误差估计方法 Active CN111175747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911192838.4A CN111175747B (zh) 2019-11-28 2019-11-28 一种基于多通道复图像空间的相位误差估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911192838.4A CN111175747B (zh) 2019-11-28 2019-11-28 一种基于多通道复图像空间的相位误差估计方法

Publications (2)

Publication Number Publication Date
CN111175747A true CN111175747A (zh) 2020-05-19
CN111175747B CN111175747B (zh) 2023-05-05

Family

ID=70653739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911192838.4A Active CN111175747B (zh) 2019-11-28 2019-11-28 一种基于多通道复图像空间的相位误差估计方法

Country Status (1)

Country Link
CN (1) CN111175747B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731389A (zh) * 2020-12-01 2021-04-30 西安电子科技大学 基于多通道复图像空间特性的通道方位基线误差估计方法
CN113759371A (zh) * 2021-07-20 2021-12-07 西安电子科技大学 一种多通道sar复图像域相位和基线误差联合估计方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167315A1 (en) * 2001-04-03 2002-11-14 The Government Of The United States Of America Ghost artifact cancellation using phased array processing
CN101266293A (zh) * 2008-04-30 2008-09-17 西安电子科技大学 激光合成孔径雷达成像距离向相位补偿方法
CN102147469A (zh) * 2010-12-29 2011-08-10 电子科技大学 一种双基地前视合成孔径雷达成像方法
CN102565769A (zh) * 2011-12-30 2012-07-11 陕西延长石油(集团)有限责任公司研究院 探地雷达系统误差补偿方法
CN102788972A (zh) * 2011-05-18 2012-11-21 南京航空航天大学 一种适用于超高分辨率sar成像的自聚焦方法
CN103399307A (zh) * 2013-08-05 2013-11-20 中国科学院电子学研究所 一种校正通道误差的方法及装置
DE102013214676A1 (de) * 2013-07-26 2015-01-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Korrektur der Zeit- und Phasenreferenzen von nicht-synchronen SAR-Daten
CN108279404A (zh) * 2018-01-22 2018-07-13 西安电子科技大学 一种基于空间谱估计的双通道sar相位误差校正方法
EP3373036A1 (en) * 2017-03-07 2018-09-12 Institute of Electronics, Chinese Academy of Sciences Azimuth signal reconstruction method and device for synthetic aperture radar
US20180313951A1 (en) * 2017-04-27 2018-11-01 Institute Of Electronics, Chinese Academy Of Sciences Phase synchronization method and equipment
CN110488285A (zh) * 2019-07-29 2019-11-22 中国科学院电子学研究所 一种基于编码信号的非中断的双基sar相位同步信号处理方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167315A1 (en) * 2001-04-03 2002-11-14 The Government Of The United States Of America Ghost artifact cancellation using phased array processing
CN101266293A (zh) * 2008-04-30 2008-09-17 西安电子科技大学 激光合成孔径雷达成像距离向相位补偿方法
CN102147469A (zh) * 2010-12-29 2011-08-10 电子科技大学 一种双基地前视合成孔径雷达成像方法
CN102788972A (zh) * 2011-05-18 2012-11-21 南京航空航天大学 一种适用于超高分辨率sar成像的自聚焦方法
CN102565769A (zh) * 2011-12-30 2012-07-11 陕西延长石油(集团)有限责任公司研究院 探地雷达系统误差补偿方法
DE102013214676A1 (de) * 2013-07-26 2015-01-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Korrektur der Zeit- und Phasenreferenzen von nicht-synchronen SAR-Daten
CN103399307A (zh) * 2013-08-05 2013-11-20 中国科学院电子学研究所 一种校正通道误差的方法及装置
EP3373036A1 (en) * 2017-03-07 2018-09-12 Institute of Electronics, Chinese Academy of Sciences Azimuth signal reconstruction method and device for synthetic aperture radar
US20180313951A1 (en) * 2017-04-27 2018-11-01 Institute Of Electronics, Chinese Academy Of Sciences Phase synchronization method and equipment
CN108279404A (zh) * 2018-01-22 2018-07-13 西安电子科技大学 一种基于空间谱估计的双通道sar相位误差校正方法
CN110488285A (zh) * 2019-07-29 2019-11-22 中国科学院电子学研究所 一种基于编码信号的非中断的双基sar相位同步信号处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGCAI SUN ET AL.: "A Channel Phase Error Correction Method Based on Joint Quality Function of GF-3 SAR Dual-Channel Images", 《SENSORS》 *
周峰等: "一种无人机机载SAR运动补偿的方法", 《电子学报》 *
胡建民等: "基于最小熵的多通道SAR系统相位误差估计与补偿", 《航空学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731389A (zh) * 2020-12-01 2021-04-30 西安电子科技大学 基于多通道复图像空间特性的通道方位基线误差估计方法
CN112731389B (zh) * 2020-12-01 2024-02-06 西安电子科技大学 基于多通道复图像空间特性的通道方位基线误差估计方法
CN113759371A (zh) * 2021-07-20 2021-12-07 西安电子科技大学 一种多通道sar复图像域相位和基线误差联合估计方法
CN113759371B (zh) * 2021-07-20 2024-03-01 西安电子科技大学 一种多通道sar复图像域相位和基线误差联合估计方法

Also Published As

Publication number Publication date
CN111175747B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN110275166B (zh) 基于admm的快速稀疏孔径isar自聚焦与成像方法
CN110113085B (zh) 一种基于协方差矩阵重构的波束形成方法及系统
CN108279404B (zh) 一种基于空间谱估计的双通道sar相位误差校正方法
CN109507666B (zh) 基于离网变分贝叶斯算法的isar稀疏频带成像方法
CN106772253B (zh) 一种非均匀杂波环境下的雷达杂波抑制方法
CN111337873B (zh) 一种基于稀疏阵的doa估计方法
CN112099008A (zh) 基于cv-admmn的sa-isar成像与自聚焦方法
CN109765526B (zh) 一种基于空间谱的目标搜索方法及装置
CN105785326B (zh) 一种非正侧视阵雷达杂波谱配准的优化方法
CN107037409B (zh) 基于压缩感知的mimo雷达波形分离方法
CN111175747A (zh) 一种基于多通道复图像空间的相位误差估计方法
CN112147608A (zh) 一种快速高斯网格化非均匀fft穿墙成像雷达bp方法
CN109946663B (zh) 一种线性复杂度的Massive MIMO目标空间方位估计方法和装置
Sun et al. A postmatched-filtering image-domain subspace method for channel mismatch estimation of multiple azimuth channels SAR
CN111812644B (zh) 基于稀疏估计的mimo雷达成像方法
CN113900099A (zh) 稀疏孔径isar机动目标成像与定标方法
CN113608217A (zh) 基于增强矩阵补全的isar稀疏成像方法
Xiong et al. Sub‐band mutual‐coherence compensation in multiband fusion ISAR imaging
Eamaz et al. Automotive radar sensing with sparse linear arrays using one-bit Hankel matrix completion
Zhang et al. A sparse sampling strategy for angular superresolution of real beam scanning radar
CN113484862B (zh) 一种自适应的高分宽幅sar清晰重构成像方法
CN115469286A (zh) 基于毫米波汽车雷达最小冗余mimo阵列的超分辨测角方法
CN112946644B (zh) 基于最小化卷积加权l1范数的稀疏孔径ISAR成像方法
CN115453531A (zh) 一种基于加权矩阵填充的二维稀疏isar成像方法
CN114910905A (zh) 相似性约束下geo星机双基sar动目标智能成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant