CN111172743A - 一种低温快速制备复合金属氧化物纳米薄膜材料的方法 - Google Patents

一种低温快速制备复合金属氧化物纳米薄膜材料的方法 Download PDF

Info

Publication number
CN111172743A
CN111172743A CN202010047010.6A CN202010047010A CN111172743A CN 111172743 A CN111172743 A CN 111172743A CN 202010047010 A CN202010047010 A CN 202010047010A CN 111172743 A CN111172743 A CN 111172743A
Authority
CN
China
Prior art keywords
film material
metal oxide
composite metal
low
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010047010.6A
Other languages
English (en)
Other versions
CN111172743B (zh
Inventor
顾伊杰
吴进明
张怡玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010047010.6A priority Critical patent/CN111172743B/zh
Publication of CN111172743A publication Critical patent/CN111172743A/zh
Application granted granted Critical
Publication of CN111172743B publication Critical patent/CN111172743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • D06M11/42Oxides or hydroxides of copper, silver or gold
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种低温快速制备复合金属氧化物纳米薄膜材料的方法,主要步骤包括:使低熔点盐呈熔融状态,熔融后添加衬底于容器中,反应特定时间;再添加两种金属源,反应预定时间;取出衬底冷却至室温,清洗、干燥后获得复合金属氧化物纳米薄膜材料;其中,低熔点盐和金属源的总质量比为200~1:1。本发明方法制备的多种纳米形貌的复合金属氧化物纳米薄膜材料,其形貌可通过低熔点盐与金属源的种类和比例调控。制得的纳米薄膜材料可直接作为电极使用,在储能、催化、磁性材料、脱硫或空气净化材料等能源与环境领域获得应用,且生产过程无需大型专用设备,易于实现工业化生产。

Description

一种低温快速制备复合金属氧化物纳米薄膜材料的方法
技术领域
本发明属于薄膜材料的制备技术领域,具体涉及一种低温快速制备多种复合金属氧化物纳米薄膜材料的方法。
背景技术
能源危机和环境污染是目前全球最为关注的两大主题。复合金属氧化物因其具有多变的价态、较好的稳定性、较强的氧化还原活性和元素组成多样可选等优点,在能量存储、环境催化降解、水质分离、气体/液体传感器等领域有着巨大的应用前景。纳米材料因其具有纳米尺寸效应,即当其尺寸处于纳米级别时,展现出与大尺寸材料不同且更加优异的性能,被广泛研究。因此,纳米级尺寸的复合金属氧化物材料,兼具优异功能性和纳米尺寸效应,具有深远的研究潜力。另一方面,在具体应用于能源领域或环境领域时,纳米材料通常需要被制作成器件使用。而纳米薄膜材料相比于纳米粉末材料,具有无需分离及收集步骤、可以多种方式原位生长、无需粘结剂、无需导电剂、无需添加剂等优点,制备得到的薄膜即可实现自支撑,有效减小了产品生产成本及工序,大大提升了生产效率,从而促进产业发展。
目前,复合金属氧化物纳米粉末的制备方法主要有多步湿化学结合煅烧法、球磨法、高温烧结法、多步静电纺丝结合煅烧法等,已报道的上述方法均需要分多步进行;同时,操作过程通常需要700-1100℃的高温,不仅增加了生产成本、时间,而且存在着巨大的安全隐患,不利于产业化。而极具优势的复合金属氧化物纳米薄膜材料的制备,因一直存在技术难题,鲜有报道。
例如专利CN 109437341 A公开了一种金属氧化物或其复合材料的制备方法,该制备过程需要首先将基底溶于有机盐介质中,得到固溶物,再将固溶物分离出不溶产物,进行500-800℃煅烧,得到的是金属氧化物或其复合材料的粉末。该合成过程需分多步进行,温度较高,通常如此类的湿化学法结合高温煅烧的工艺,如专利CN 105576235 A、CN109888243 A、CN 109950486 A等,都需至少三步及以上的过程,且必须经过相对于本发明来说的高温,产物为粉末,生产周期长、可控性差、成本高,难以实现产业化。又例如专利CN103877989 A公布了一种改性钴锰二元金属氧化物催化剂粉末,由第一步进行高温煅烧,第二步进行湿化学合成,第三步再进行高温煅烧制备得到。过程中使用多种原料,成本昂贵,过程复杂,同样不利于实现产业化。特别地,该过程只适用于钴锰二元金属氧化物粉末。再如专利CN 108242539 A公布了一种锰铬二元金属氧化物储能材料的制备方法,产物为粉末。该方法采用共沉淀法混合原料,经过0.5-2天的老化,再在特定气氛下高温煅烧,最后还需经过碾磨过筛,才能最终得到产物。类似的化学沉淀法是目前工业生产金属氧化物最常用的方法之一,但不难看出,这样的生产过程步骤繁琐,且产生大量废液、需要高温,共沉淀条件难以控制,对环境污染严重且成本不菲。相比上述制备技术,熔盐法中介质的高极性、高粘度使得反应物在其中具有较短的扩散距离,从而可以通过引入高浓度的前驱体大规模合成纳米尺度粉末。例如专利CN 106629613 A公布了一种熔盐法制备离子插层型二维材料粉末的方法,通过熔盐法制备得到的离子插层型二维材料是以阳离子或阴离子、水分子插在片层中间,从而形成的纳米粉末。但通过该方法难以制备二元金属氧化物、复合金属氧化物,也无法直接得到薄膜材料,需要额外进行涂敷步骤,才能使得到的粉末作为功能材料使用。又如专利CN 107697888 A公布了一种金属氧化物或复合金属氧化物的制备方法。该方法采用熔盐法制备得到的是纳米粉末材料,在制备过程中需要添加分散体载体和模板剂才能制备得到金属氧化物或复合金属氧化物,制备过程步骤多,温度高、时间长,亦无法产生复合金属氧化物或纳米薄膜材料。
发明内容
本发明的目的是提供一种低温快速制备复合金属氧化物纳米薄膜材料的方法,同时实现多衬底多种复合金属氧化物的快速高效制备。本发明方法制备的纳米薄膜的形貌及尺寸可控,通用性强,成本低廉,能耗低,性能优良。
本发明的低温快速制备复合金属氧化物纳米薄膜材料的方法,如下:使低熔点盐呈熔融状态,熔融后添加衬底到熔盐中,反应特定时间;再添加两种金属源,反应预定时间;取出衬底冷却至室温,清洗、干燥后获得复合金属氧化物纳米薄膜材料;其中,所述的低熔点盐和所述的金属源的质量比为200~1:1,该质量比是经过多次反复试验确定的,超过这个质量比的上限或下限,都无法制备得到所述的复合金属氧化物,即该参数是该方法下的极限实验参数。
进一步的,所述的衬底为碳布、碳毡、碳纸、泡沫镍、钛丝网。
进一步的,所述的低熔点盐指的是熔点低于400℃的盐,种类包括硝酸盐、氯化盐、硫酸盐。
进一步的,所述的金属源包括金属元素铜、锰、镍、钴、锌、铁中的两种的硝酸盐、硫酸盐或氯化盐。
进一步的,所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,包括如下主要步骤:
(1)清洗衬底,得到清洁的衬底并烘干;
(2)加热至预定温度,使低熔点盐呈熔融状态;
(3)在步骤(2)低熔点盐成为熔融状态后加入衬底,反应特定时间;
(4)将两种金属源加入到含有熔盐和衬底反应体系中,继续升高温度或保持温度不变,反应预定时间;
(5)将步骤(4)获得的薄膜取出后冷却至室温,并用去离子水超声清洗;
(6)将清洗后的薄膜完全干燥,得到复合金属氧化物纳米薄膜材料。
更进一步的,所述步骤(2)中,预定温度为低熔点盐的熔点,小于400℃。
更进一步的,所述步骤(3)中,特定时间为3秒~1800秒。
更进一步的,所述步骤(4)中,升高温度的范围为低熔点盐的熔点至分解温度之间,预定时间为3秒~60秒。
在本发明方案中,步骤(3)及步骤(4)中的反应时间均非常关键,时间更短时,一是反应不充分不完全,虽可以产生复合金属氧化物,但没有将原料完全转化,因此时间下限至少3秒,可以完全反应;时间上限均以衬底不被破坏且完全浸润为标准,时间再长,会对衬底有不同程度的损坏。
其中,步骤(4)中升高温度目的是确保熔盐不分解,同时金属盐又具有足够的能量(此处为热能)与衬底匹配,从而确保后期在衬底上形核长大。具体的温度可根据熔盐和衬底的种类不同进行调整。
本发明的主要优点如下:
(1)本发明实现了在多种衬底上一步低温、快速高效制备复合金属氧化物纳米薄膜材料,易于大规模生产;
(2)通过对低熔点盐和金属源的种类、用量比例调节,实现纳米阵列薄膜的种类、形貌、尺寸的调控;
(3)本发明利用熔融低熔点盐的介质高极性、高粘度特性,使得金属源反应单体在熔盐中具有短扩散距离,从而可以引入高浓度反应前驱体,大量合成纳米尺寸材料;
(4)本发明的合成方法相较于高温煅烧合成,具有低温特点;相较于湿化学合成,熔盐介质中的络离子比水合离子具有更小的斯托克斯半径,反应势垒更低,反应速率更快。
(5)本发明中的低熔点熔盐具有增强流动性,衬底与熔盐形成良好的浸润性和匹配度的特点,进而使得反应制备所得的纳米阵列薄膜附着力强,不需要使用粘结剂,可直接作为电极、催化剂、分离膜等功能材料使用;
(6)本发明制备方法简便,制备过程高效快速且环境友好、不产生水污染,制备成本低廉,合成得到的纳米薄膜无需分离、再收集,纳米薄膜的形貌、尺寸可控,纳米薄膜可直接作为功能材料使用,制备所得的纳米薄膜材料有望在能源存储领域、环境催化降解领域、分离净化领域等获得广泛应用。
附图说明
图1为实施例1制备的FeMnO3/泡沫镍薄膜的场发射扫描电子显微镜照片。
图2为实施例2制备的CuMn2O/钛丝网薄膜的场发射扫描电子显微镜照片。
图3为实施例3制备的MnCo2O/碳纸薄膜的场发射扫描电子显微镜照片。
图4为实施例4制备的Ni6MnO8/碳毡薄膜的场发射扫描电子显微镜照片。
图5为实施例5制备的FeMnO3/碳布薄膜的循环伏安曲线图。
图6为实施例6~14制备的金属氧化物纳米薄膜的X射线衍射图谱,具体分别为:a为实施例6制备的FeMnO3/碳布薄膜,b为实施例7制备的CuMn2O/碳布薄膜,c为实施例8制备的MnCo2O/碳毡薄膜,d为实施例9制备的Cu0.95Co2.05O4/碳纸薄膜,e为实施例10制备的NiCo2O4/碳布薄膜,f为实施例11制备的Ni6MnO8/碳布薄膜,g为实施例12制备的Ni0.8Zn0.2O/碳布薄膜,h为实施例13制备的Ni0.75Cu0.25O/碳毡薄膜。
具体实施方式
以下结合实施例进一步阐述本发明,但本发明不仅仅局限于下述实施例。
实施例1
(1)选取尺寸4×2cm2的泡沫镍为衬底,衬底用15%的盐酸去除氧化层,并用去离子水超声振洗,真空完全干燥备用;(2)将20g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入泡沫镍反应3秒;(4)将0.05g氯化锰和0.05g氯化铁加入到泡沫镍和硝酸钠的反应体系中,维持体系温度不变,继续反应60秒;(5)将步骤(4)获得的FeMnO3/泡沫镍纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到FeMnO3/泡沫镍纳米薄膜材料。所得纳米薄膜材料的场发射扫描电子显微镜照片如图1所示,表面形貌观察结果表明,薄膜表面为FeMnO3纳米晶体相互串联形成的多孔网络结构,纳米晶体的直径约为200–400nm。
实施例2
(1)选取尺寸4×2cm2的钛丝网为衬底,衬底用无水乙醇超声振洗,烘干备用;(2)将1g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入钛丝网反应5分钟;(4)将0.4g氯化铜和0.6克氯化锰加入到钛丝网和硝酸钾的反应体系中,升高温度10℃,反应60秒;(5)将步骤(4)获得的CuMn2O/钛丝网纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到CuMn2O/钛丝网纳米薄膜材料。所得纳米薄膜材料的场发射扫描电子显微镜照片如图2所示,表面形貌观察结果表明,薄膜表面为纳米片堆叠而成形成纳米颗粒,各纳米颗粒互相搭肩形成空间网络结构,纳米片均匀致密,厚度约为1-5nm,堆叠形成的纳米颗粒的直径约为500nm。
实施例3
(1)选取尺寸4×2cm2的碳纸为衬底,衬底用去离子水超声振洗,烘干备用;(2)将2.6g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳纸反应5分钟;(4)将0.12g硫酸锰和0.08g硝酸钴加入到碳纸和硝酸钾的反应体系中,维持体系温度不变,继续反应10秒;(5)将步骤(4)获得的MnCo2O/碳纸纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到MnCo2O/碳纸纳米布薄膜材料。所得纳米薄膜材料的场发射扫描电子显微镜照片如图3所示,表面形貌观察结果表明,薄膜表面为均匀分布的纳米八面体晶粒,八面体的棱边长度约为400nm,宽度约为100nm。
实施例4
(1)选取尺寸4×2cm2的碳毡为衬底,衬底用去离子水超声振洗,烘干备用;(2)将5g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入碳毡反应30分钟;(4)将0.13g硝酸镍和0.2g硝酸锰加入到碳毡和硝酸钠的反应体系中,升高温度5℃,反应60秒;(5)将步骤(4)获得的Ni6MnO8/碳毡纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到Ni6MnO8/碳毡纳米薄膜材料。所得纳米薄膜材料的场发射扫描电子显微镜照片如图4所示,表面形貌观察结果表明,薄膜表面均匀生长的纳米小颗粒,小颗粒的直径约为2nm。
实施例5
(1)选取尺寸4×2cm2的碳布为衬底,衬底用去离子水超声振洗,烘干备用;(2)将5g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳布反应60秒;(4)将0.16g硝酸铁和0.08g氯化锰加入到碳布和硝酸钾的反应体系中,升高温度5℃,反应20秒;(5)将步骤(4)获得的FeMnO3/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到FeMnO3/碳布纳米薄膜材料。所得纳米薄膜材料可直接作为电极,其循环伏安曲线图如图5所示,电化学性能结果表明,在6M氢氧化钾电解液中,以2mV s-1的速度进行电压扫描,根据形成的循环伏安曲线计算得到面积比电容为11.02F cm-2,说明该方法制得的FeMnO3/碳布纳米薄膜阵列具有优异的电化学性能和较好的电化学储能应用前景。
实施例6
(1)选取尺寸4×2cm2的碳布为衬底,衬底用去离子水超声振洗,烘干备用;(2)将4g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳布反应60秒;(4)将0.162g氯化铁和0.08g氯化锰加入到碳布和硝酸钾的反应体系中,升高温度2℃,反应10秒;(5)将步骤(4)获得的FeMnO3/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到FeMnO3/碳布纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线a所示,结果表明,碳布纤维上负载的复合金属氧化物为FeMnO3
实施例7
(1)选取尺寸4×2cm2的碳布为衬底,用去离子水超声振洗,烘干备用;(2)将5g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳布反应1200秒;(4)将0.25g硫酸锰和0.2g硫酸铜加入到碳布和硝酸钾的反应体系中,升高温度10℃,反应10秒;(5)将步骤(4)获得的CuMn2O/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到CuMn2O/碳布纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线b所示,结果表明,复合金属氧化物为CuMn2O。
实施例8
(1)选取尺寸4×2cm2的碳毡为衬底,用去离子水超声振洗,烘干备用;(2)将2.5g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳毡反应10秒;(4)将0.25g硫酸锰和0.122g硝酸钴加入到碳毡和硝酸钾的反应体系中,升高温度10℃,反应10秒;(5)将步骤(4)获得的MnCo2O/碳毡纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到MnCo2O/碳毡纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线c所示,结果表明,复合金属氧化物为MnCo2O。
实施例9
(1)选取尺寸4×2cm2的碳纸为衬底,用去离子水超声振洗,烘干备用;(2)将3g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入碳纸反应10秒;(4)将0.2g氯化铜和0.18g氯化钴加入到碳纸和硝酸钠的反应体系中,升高温度10℃,反应10秒;(5)将步骤(4)获得的Cu0.95Co2.05O4/碳纸纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到Cu0.95Co2.05O4/碳纸纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线d所示,结果表明,复合金属氧化物为Cu0.95Co2.05O4
实施例10
(1)选取尺寸4×2cm2的碳布为衬底,用去离子水超声振洗,烘干备用;(2)将2.5g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入碳布反应900秒;(4)将0.122g硝酸镍和0.124g硝酸钴加入到碳布和硝酸钠的反应体系中,升高温度10℃,反应30秒;(5)将步骤(4)获得的NiCo2O4/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到NiCo2O4/碳布纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线e所示,结果表明,复合金属氧化物为NiCo2O4
实施例11
(1)选取尺寸4×2cm2的碳布为衬底,用去离子水超声振洗,烘干备用;(2)将10g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入碳布反应60秒;(4)将0.12g氯化镍和0.12g氯化锰加入到碳布和硝酸钠的反应体系中,升高温度10℃,反应60秒;(5)将步骤(4)获得的Ni6MnO8/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到Ni6MnO8/碳布纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线f所示,结果表明,复合金属氧化物为Ni6MnO8
实施例12
(1)选取尺寸4×2cm2的碳布为衬底,用去离子水超声振洗,烘干备用;(2)将2.5g硝酸钠在350℃熔融;(3)硝酸钠完全熔融后加入碳布反应60秒;(4)将0.122g硝酸镍和0.1g硫酸锌加入到碳布和硝酸钠的反应体系中,维持350℃不变,反应10秒;(5)将步骤(4)获得的Ni0.8Zn0.2O/碳布纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到Ni0.8Zn0.2O/碳布纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线g所示,结果表明,复合金属氧化物为Ni0.8Zn0.2O。
实施例13
(1)选取尺寸4×2cm2的碳毡为衬底,用去离子水超声振洗,烘干备用;(2)将5g硝酸钾在380℃熔融;(3)硝酸钾完全熔融后加入碳布反应0.5小时;(4)将0.143g氯化铜和0.15g氯化镍加入到碳毡和硝酸钾的反应体系中,升高温度10℃,反应3秒;(5)将步骤(4)获得的Ni0.75Cu0.25O/碳毡纳米薄膜取出后冷却至室温,并用去离子水超声清洗;(6)将清洗后的产物完全干燥,得到Ni0.75Cu0.25O/碳毡纳米薄膜材料。所得纳米薄膜材料的X射线衍射图谱如图6曲线h所示,结果表明,复合金属氧化物为Ni0.75Cu0.25O。
本发明实施例6~13制备的金属氧化物纳米薄膜材料的X射线衍射图谱分别为:a为实施例6制备的FeMnO3/碳布薄膜,b为实施例7制备的CuMn2O/碳布薄膜,c为实施例8制备的MnCo2O/碳毡薄膜,d为实施例9制备的Cu0.95Co2.05O4/碳纸薄膜,e为实施例10制备的NiCo2O4/碳布薄膜,f为实施例11制备的Ni6MnO8/碳布薄膜,g为实施例12制备的Ni0.8Zn0.2O/碳布薄膜,h为实施例13制备的Ni0.75Cu0.25O/碳毡薄膜。对比图6曲线可以看出,调节不同的制备参数和原料,该技术可以在不同衬底上生长多种复合金属氧化物;对比图6a、b、f、g曲线的衍射峰相对峰强可以看出,在相同衬底上,通过制备参数的调节可以控制纳米阵列薄膜的质量。
本发明制备得到材料为复合金属氧化物纳米薄膜材料,原料易得、组成简单、成本低廉、产物用途广泛,且无需粘结剂及涂敷步骤即可直接作为功能材料使用,在诸多领域具有巨大潜力;与传统方法中通常需要多步制备结合高温烧结(往往高于700℃)不同,本发明的合成方法具有快速高效的特点,整个生产过程至多1小时即可完成,且制备过程相较常用方法能耗更低,生产过程无需水介质,不会产生水污染,环境友好等优点。反应熔浆介质可通过适当技术加以回收再利用。因此,本发明不仅提供一种低温快速制备复合金属氧化物纳米薄膜的方法,而且对于多种衬底、多种复合金属氧化物均适用。通过原料的种类及用量调节,还可易于控制复合金属氧化物的种类、形貌、尺寸、质量。所制得的薄膜可直接作为功能材料使用,利于产业化。
以上所述实施例及应用均为本发明技术方案的具体实施方式,是对本发明的技术方案的进一步详细说明,但是本发明的设计构思并不局限于此,依据本发明的技术实质而对其所作的任何形式的简单修改、等同变化或改进,应该仍然属于本发明技术方案的保护范围之内。

Claims (8)

1.一种低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,使低熔点盐呈熔融状态,熔融后向其中加入衬底,反应特定时间;再添加两种金属源,反应预定时间;取出衬底冷却至室温,清洗、干燥后获得复合金属氧化物纳米薄膜材料;其中,所述的低熔点盐和所述的金属源的质量比为200~1:1。
2.根据权利要求1所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述的衬底为碳布、碳毡、碳纸、泡沫镍、或钛丝网。
3.根据权利要求1所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述的低熔点盐指的是熔点低于400℃的盐,种类包括硝酸盐、氯化盐、硫酸盐。
4.根据权利要求1所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述的两种金属源为选自金属元素铜、锰、镍、钴、锌、铁中任意两种的硝酸盐、硫酸盐或氯化盐。
5.根据权利要求1-4任一项所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,包括如下主要步骤:
(1)清洗衬底,得到清洁的衬底并烘干;
(2)加热至预定温度,使低熔点盐呈熔融状态;
(3)在步骤(2)低熔点盐成为熔融状态后加入衬底,反应特定时间;
(4)将两种金属源加入到含有熔盐和衬底反应体系中,继续升高温度或保持温度不变,反应预定时间;
(5)将步骤(4)获得的薄膜取出后冷却至室温,并用去离子水超声清洗;
(6)将清洗后的薄膜完全干燥,得到复合金属氧化物纳米薄膜材料。
6.根据权利要求5所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述步骤(2)中,预定温度为低熔点盐的熔点,小于400℃。
7.根据权利要求5所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述步骤(3)中,特定时间为3秒~1800秒。
8.根据权利要求5所述的低温快速制备复合金属氧化物纳米薄膜材料的方法,其特征在于,所述步骤(4)中,升高温度的范围为低熔点盐的熔点至分解温度之间,预定时间为3秒~60秒。
CN202010047010.6A 2020-01-16 2020-01-16 一种低温快速制备复合金属氧化物纳米薄膜材料的方法 Active CN111172743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010047010.6A CN111172743B (zh) 2020-01-16 2020-01-16 一种低温快速制备复合金属氧化物纳米薄膜材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010047010.6A CN111172743B (zh) 2020-01-16 2020-01-16 一种低温快速制备复合金属氧化物纳米薄膜材料的方法

Publications (2)

Publication Number Publication Date
CN111172743A true CN111172743A (zh) 2020-05-19
CN111172743B CN111172743B (zh) 2021-10-19

Family

ID=70651119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010047010.6A Active CN111172743B (zh) 2020-01-16 2020-01-16 一种低温快速制备复合金属氧化物纳米薄膜材料的方法

Country Status (1)

Country Link
CN (1) CN111172743B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192193A (zh) * 1995-08-02 1998-09-02 米尼艾尔联合股份有限公司 锂化的过渡金属氧化物的合成方法
CN1468804A (zh) * 2003-07-02 2004-01-21 清华大学 利用高温熔盐反应制备一维纳米线、纳米管的有序阵列新工艺
CN1493522A (zh) * 2003-09-26 2004-05-05 清华大学 一种锂过渡金属氧化物的制备方法
CN102639443A (zh) * 2009-12-07 2012-08-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
CN103157461A (zh) * 2013-04-03 2013-06-19 南京理工大学 一种纳米光催化剂钨酸铋及其制备方法
CN103682317A (zh) * 2013-12-25 2014-03-26 福州大学 一种Li2MnO3纳米线及其制备方法和应用
CN104098146A (zh) * 2014-07-14 2014-10-15 北京工业大学 一种八面体状Co3O4纳米材料的熔融盐制备法及应用
CN106629613A (zh) * 2016-12-20 2017-05-10 华中科技大学 一种离子插层型二维材料的制备方法
CN107601568A (zh) * 2017-10-16 2018-01-19 河北天博建设科技有限公司 一种钨青铜粉体的低温熔盐合成法
CN108383171A (zh) * 2018-05-15 2018-08-10 宝鸡文理学院 一种过渡金属氢氧化物纳米颗粒的快速制备方法
CN109205680A (zh) * 2018-09-06 2019-01-15 北京工业大学 一种熔融盐体系合成单相LaFeO3的方法
CN109437341A (zh) * 2018-12-17 2019-03-08 深圳先进技术研究院 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池
CN110092407A (zh) * 2019-04-11 2019-08-06 浙江大学 一种熔盐法制备金属氧化物或金属氢氧化物纳米薄膜材料的方法
CN110526273A (zh) * 2019-09-02 2019-12-03 北京邮电大学 一种电化学脱锂制备高价过渡金属氧化物纳米材料的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192193A (zh) * 1995-08-02 1998-09-02 米尼艾尔联合股份有限公司 锂化的过渡金属氧化物的合成方法
CN1468804A (zh) * 2003-07-02 2004-01-21 清华大学 利用高温熔盐反应制备一维纳米线、纳米管的有序阵列新工艺
CN1493522A (zh) * 2003-09-26 2004-05-05 清华大学 一种锂过渡金属氧化物的制备方法
CN102639443A (zh) * 2009-12-07 2012-08-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
CN103157461A (zh) * 2013-04-03 2013-06-19 南京理工大学 一种纳米光催化剂钨酸铋及其制备方法
CN103682317A (zh) * 2013-12-25 2014-03-26 福州大学 一种Li2MnO3纳米线及其制备方法和应用
CN104098146A (zh) * 2014-07-14 2014-10-15 北京工业大学 一种八面体状Co3O4纳米材料的熔融盐制备法及应用
CN106629613A (zh) * 2016-12-20 2017-05-10 华中科技大学 一种离子插层型二维材料的制备方法
CN107601568A (zh) * 2017-10-16 2018-01-19 河北天博建设科技有限公司 一种钨青铜粉体的低温熔盐合成法
CN108383171A (zh) * 2018-05-15 2018-08-10 宝鸡文理学院 一种过渡金属氢氧化物纳米颗粒的快速制备方法
CN109205680A (zh) * 2018-09-06 2019-01-15 北京工业大学 一种熔融盐体系合成单相LaFeO3的方法
CN109437341A (zh) * 2018-12-17 2019-03-08 深圳先进技术研究院 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池
CN110092407A (zh) * 2019-04-11 2019-08-06 浙江大学 一种熔盐法制备金属氧化物或金属氢氧化物纳米薄膜材料的方法
CN110526273A (zh) * 2019-09-02 2019-12-03 北京邮电大学 一种电化学脱锂制备高价过渡金属氧化物纳米材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
宋祖伟等: "低温熔盐法制备纳米钨酸钴 ", 《无机盐工业》 *
梁媛: "熔盐合成MnCo2O4及其复合电极材料超级电容性能的研究", 《中国优秀硕士学位论文全文数据库》 *
高琳珊等: "熔盐法快速合成BiFeO_3粉体 ", 《硅酸盐通报》 *

Also Published As

Publication number Publication date
CN111172743B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
Majumdar et al. Recent advancements of copper oxide based nanomaterials for supercapacitor applications
CN110092407B (zh) 一种熔盐法制备金属氧化物或金属氢氧化物纳米薄膜材料的方法
Paulose et al. Nanostructured nickel oxide and its electrochemical behaviour—A brief review
CN107946560B (zh) 碳限域金属或金属氧化物复合纳米结构材料及其制备方法和应用
Kathalingam et al. Nanosheet-like ZnCo2O4@ nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: effect of polyaniline incorporation
Lv et al. Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions
CN109847778B (zh) 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
He et al. Rapid synthesis of hollow structured MnO2 microspheres and their capacitance
JP5424537B2 (ja) 多孔性金属酸化物及びその製造方法
Zhou et al. Synthesis of 3D printing materials and their electrochemical applications
Hussain et al. Factors affecting the growth formation of nanostructures and their impact on electrode materials: A systematic review
Ramachandran et al. Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications
Juibari et al. Metal–organic framework-derived nanocomposite metal-oxides with enhanced catalytic performance in thermal decomposition of ammonium perchlorate
Cao et al. Oriented assembly of anisotropic nanosheets into ultrathin flowerlike superstructures for energy storage
CN110745784B (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
Bhanvase et al. Nanomaterials for green energy
CN108996557B (zh) 一种空心球结构氧化镍/氧化铜复合纳米材料及其制备方法
Sun et al. Controlled self-assembly synthesis of CuCo2O4/rGO for improving the morphology-dependent electrochemical oxygen evolution performance
Zhao et al. Synthesis and characterization of different morphologies of Ni (OH) 2 nanocrystals by a gas–liquid diffusion method at room temperature and supercapacitive properties
Ma et al. Doping-induced morphology modulation for boosting the capacity and stability of nanocrystals assembled Ni1-xCoxSe2
Zhang et al. Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation
Yao et al. Amorphous FeOOH nanoparticles decorated on defect-rich porous Ni MOF nanosheet based hierarchical architectures toward superior OER performance
Naik et al. Binderless synthesis of hierarchical, marigold flower-like NiCo2O4 films for high-performance symmetric supercapacitor
CN113753963A (zh) 一种二硫化锡钴纳米颗粒及其制备方法和应用
Singha et al. Modulation of the Proportion of Mixed Metals in Spinel-Type Oxide Ni x Co3–x O4 (x= 0–1) Derived from a Metal–Organic Framework for Enhanced Oxygen Evolution Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant