CN111167517A - Au-GSH@TiO2@PDMS复合材料及其制备方法和应用 - Google Patents

Au-GSH@TiO2@PDMS复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN111167517A
CN111167517A CN201911420265.6A CN201911420265A CN111167517A CN 111167517 A CN111167517 A CN 111167517A CN 201911420265 A CN201911420265 A CN 201911420265A CN 111167517 A CN111167517 A CN 111167517A
Authority
CN
China
Prior art keywords
gsh
tio
pdms
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911420265.6A
Other languages
English (en)
Other versions
CN111167517B (zh
Inventor
朱海光
刘勇
袁勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201911420265.6A priority Critical patent/CN111167517B/zh
Publication of CN111167517A publication Critical patent/CN111167517A/zh
Application granted granted Critical
Publication of CN111167517B publication Critical patent/CN111167517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于Au‑GSH@TiO2@PDMS复合材料技术领域,公开了Au‑GSH@TiO2@PDMS复合材料及其制备方法和应用。Au‑GSH@TiO2@PDMS复合材料的制备方法包括,合成谷甘光肽(GSH)保护的金纳米团簇Au‑GSH、结晶态TiO2的制备、Au‑GSH@TiO2复合材料的制备以及采用紫外光固化法将PDMS将接枝在Au‑GSH@TiO2表面,最终得到Au‑GSH@TiO2@PDMS复合材料。该Au‑GSH@TiO2@PDMS复合材料有效的提高了Au‑GSH光稳定性,有效地解决了传统金属纳米团簇光致团聚的问题。

Description

Au-GSH@TiO2@PDMS复合材料及其制备方法和应用
技术领域
本发明涉及Au-GSH@TiO2@PDMS复合材料,特别涉及Au-GSH@TiO2@PDMS复合材料及其制备方法和应用。
背景技术
金属纳米团簇是近年来发现的一种由特定数量的金属原子和配体组成,尺寸在1-3nm超小粒子,由于其独特的物理和化学发挥,如超小尺寸、比表面积大、电子结构离散、活性位点多等,因此金属纳米团簇常用于与半导体复合,提高半导体的光催化活性。众所周知,金属纳米团簇的尺寸是决定催化剂活性的一个重要因素,通常来讲,尺寸越小,比表面积大,催化活性越高,然而,由于纳米尺寸的金属纳米团簇表面能大,处于热力学不稳定状态,在光照条件下,不同金属纳米团簇之间倾向于相互团聚,形成大的颗粒,以此降低表面能,达到一种热力学稳定的状态,金属纳米团簇这种光稳定性导致半导体光催化活性的下降,且使半导体光催化机理变得复杂。
早期文献报道,在光照一定时间后,金纳米团簇在二氧化钛半导体材料表面发生团聚,逐渐形成大的颗粒(Scientific Reports,2016,6,22742),因此,贵金属纳米团簇的光学稳定性已经成为其在光催化方面的应用的一个瓶颈,如何突破这一难题,对拓展贵金属纳米团簇在光催化方面的应用具有的重要的意义和研究价值。
发明内容
为了解决现有技术中贵金属纳米团簇的光学稳定性从差的技术问题,本发明提供了一种Au-GSH@TiO2@PDMS复合材料的制备方法。
为了解决上述技术问题,本发明采用以下技术方案:
一种Au-GSH@TiO2@PDMS复合材料的制备方法,主要包括以下步骤:
S1、以谷胱甘肽(GSH)为还原剂和保护剂,以氯金酸(HAuCl4)前驱体,合成谷甘光肽(GSH)保护的金纳米团簇Au-GSH;
S2、在有机溶剂作用下,以钛酸正四丁酯为前驱体,采用水热法合成光催化剂TiO2,得到非晶态TiO2,对所述非晶型TiO2高温处理,制备结晶态TiO2;所述有机溶剂没有具体限制,采用常用的有机溶剂即可,优选地,所述可选用异丙醇。
S3、所述结晶态TiO2和与所述Au-GSH反应,制备Au-GSH@TiO2复合材料;
S4、采用紫外光固化法将PDMS将接枝在Au-GSH@TiO2表面,得到Au-GSH@TiO2@PDMS复合材料。
在光照下,贵金属团簇受到激发容易迁移、团聚,导致金属纳米团簇在半导体表面光稳定性差,为了现有技术中存在的上述技术问题,本发明选用一种高分子材料聚二甲基硅氧烷(PDMS)作为贵金属纳米团簇固定剂,将金纳米团簇牢牢的包裹在半导体TiO2表面,从能够将金属纳米团簇牢牢的固定在半导体表面,防止金属纳米团簇在半导体表面迁移,从而有效的解决光致团聚的问题。
本发明提供的谷甘光肽(GSH)保护的金纳米团簇(Au-GSH)的合成方法具体为:将GSH,HAuCl4按照摩尔比2:1混合,常温下反应1.5h,生成Au-GSH配合物,利用GSH巯基(SH)的还原性,将正三价的金离子(Au3+)还原成正一价金(Au+),生成中间产物Au-GSH配合物,然后将反应转移到油浴中,加热到70℃,继续反应24h,合成棕黄色Au-GSH溶液。
本发明提供的结晶态TiO2的制备方法具体为:取有机溶剂异丙醇与钛酸正四丁酯,加入到高压反应釜中,并转换到180℃烘箱,反应时间12h,生成非晶化TiO2颗粒,此水热反应过程中,钛酸正四丁酯会发生一系列的水解、缩合反应,得到一种非晶态TiO2,用异丙醇离心洗涤,在60℃的条件烘干,最后在管式炉中进行高温晶化,温度为450℃,升温速率为5℃/min,时间是2h,得到结晶化的TiO2颗粒。
本发明提供的Au-GSH@TiO2复合材料的制备为,取所述结晶化的TiO2颗粒、Au-GSH与烧杯中分散到水中,然后用硫酸和氢氧化钠将pH调节到4,在常温搅拌24h,得到Au-GSH@TiO2复合材料,优选地,所述结晶化TiO2和Au-GSH最佳质量比100:1,在pH为4的条件下,TiO2表面带正电荷,而Au-GSH表面带负电荷,两者可以通过静电作用结合在一起,反应24h是确保反应充分进行。
本发明提供的所述紫外光固化法具体为,取PDMS和Au-GSH@TiO2,放在0.5W紫外光下照射2h,将PDMS接枝在Au-GSH@TiO2表面,然后用乙酸乙酯洗去未反应的PDMS,并在60℃条件下真空干燥,得到Au-GSH@TiO2@PDMS复合材料。优选地,所述PDMS与Au-GSH@TiO2的体积为2:0.05。
本发明还提供了利用上述制备方法制备得到的Au-GSH@TiO2@PDMS复合材料。
本发明的另外一个发明目的,是提供上述Au-GSH@TiO2@PDMS复合材料在光催化方面的应用。
本发明提供了Au-GSH@TiO2@PDMS复合材料及其制备方法和应用。本发明所提供的制备方法得到的Au-GSH@TiO2@PDMS复合材料通过控制贵金属纳米团簇在半导体表面的迁移性,可以有效地提高贵金属纳米团簇光稳定性。本发明首先采用封装法将固定Au-GSH半导体TiO2的表面,以此来提高Au-GSH光稳定性,Au-GSH通过静电作用均匀的分布在TiO2表面;其次,利用光固化法将高分子PDMS包裹Au-GSH@TiO2,形成一层2-3nm左右厚的膜,将Au-GSH牢牢的固定在TiO2表面,在Au-GSH@TiO2表面涂覆一层高分子聚合物PDMS,利用PDMS与载体TiO2稳定的化学键,从而将Au-GSH固定在TiO2表面,限制了Au-GSH的迁移,有效的提高的Au-GSH光稳定性,从而有效地解决了传统金属纳米团簇光致团聚的问题。
附图说明
图1为实施例1所提供的Au-GSH的TEM图;
图2为实施例2所提供的TiO2纳米颗粒的TEM图;
图3为实施例3所提供的Au-GSH@TiO2的TEM图;
图4为实施例4所提供的Au-GSH@TiO2@PDMS复合材料的TEM图;
图5:图5(a)为实施例5提供的Au-GSH@TiO2复合材料光照后的TEM图,图5(b)为Au-GSH@TiO2@PDMS复合材料光照后的TEM图。
具体实施方式
本发明公开了Au-GSH@TiO2@PDMS复合材料及其制备方法和应用,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明当中。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
为了使本领域技术人员能够更好的理解本发明,下面结合具体实施方式对本发明作进一步的详细说明。
实施例1Au-GSH的制备
取20份GSH,10份HAuCl4于250mL圆底烧瓶里,在常温下搅拌2h后,生成Au-GSH配合物,溶液此时变成澄清,然后将反应转移到油浴中,加热到70℃,继续反应24h,合成棕黄色Au-GSH溶液;所述Au-GSH进行透射电镜扫描,其TEM图见图1,图1显示,本发明成功合成了超小的Au-GSH团簇,其尺寸大小为1-3nm。
实施例2TiO2的制备
取40份异丙醇40份,5份钛酸正四丁酯,加入到50mL高压反应釜中,并转换到180℃烘箱,反应时间12h,生成白色的、非晶化TiO2颗粒,用异丙醇50份离心洗涤,在60℃的条件烘干。最后,将白色的TiO2颗粒放入管式炉里进行高温晶化,温度为450℃,升温速率为5℃/min,时间是2h,制备结晶化的光催化剂TiO2颗粒;所述TiO2颗粒进行进行透射电镜扫描,其TEM图见图2,图2显示,本发明成功制备TiO2纳米颗粒,其颗粒大小均匀。
实施例3Au-GSH@TiO2复合材料的制备
取100份实施例2制备的结晶化TiO2颗粒,1份实施例1制备的Au-GSH,250份水于500mL的烧杯中,然后用硫酸和氢氧化钠将pH调节到4,在常温搅拌24h,制备Au-GSH@TiO2复合材料。对所述Au-GSH@TiO2复合材料进行透射电镜扫描,其TEM图见图3,图3显示,本发明成功的制备了Au-GSH@TiO2复合材料,超小的Au-GSH团簇均匀的负载在TiO2纳米颗粒。
实施例4Au-GSH@TiO2@PDMS复合材料的制备
取2份PDMS,0.05份实施例3制备的Au-GSH@TiO2,在玻璃皿混合均匀,放在0.5W紫外光下照射2h,将PDMS接枝在Au-GSH@TiO2表面,然后,用100份乙酸乙酯洗去未反应的PDMS,并在60℃条件下真空干燥,得到最终产物Au-GSH@TiO2@PDMS复合材料。将所述Au-GSH@TiO2@PDMS复合材料进行透射电镜扫描,其TEM图见图4,图4显示,一层透明的膜均匀的负载在Au-GSH@TiO2表面,说明通过紫外固化法成功的将PDMS高分子聚合物接枝到Au-GSH@TiO2表面,同时从Au-GSH@TiO2与PDMS界面可以看到PDMS层包裹着Au-GSH团簇,从而能够有效地将Au-GSH固定TiO2表面。
实施例5Au-GSH@TiO2@PDMS复合材料光稳定性能测试
将实施例3制备的Au-GSH@TiO2复合材料和实施例4制备的Au-GSH@TiO2@PDMS复合材料在光照72h小时后,对光照后的材料进行透射电镜扫描,其TEM图见图5,图5(a)为Au-GSH@TiO2复合材料光照后的TEM图,图5(b)Au-GSH@TiO2@PDMS复合材料光照后的TEM图。
图5(b)显示,Au-GSH@TiO2@PDMS在光照72h小时后,Au-GSH仍均匀的分布在TiO2表面,且尺寸大小没有变化;图5(a)显示,而没有涂覆PDMS的Au-GSH@TiO2在相同的条件下发生团聚,生成大的金纳米颗粒。由此可见,本发明通过接枝PDMS将Au-GSH团簇固定在TiO2表面,限制Au-GSH团簇在TiO2表面移动,从而提高Au-GSH团簇光稳定性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,包括以下步骤:
S1、以谷胱甘肽(GSH)为还原剂和保护剂,以氯金酸(HAuCl4)前驱体,合成谷甘光肽(GSH)保护的金纳米团簇Au-GSH;
S2、在有机溶剂作用下,以钛酸正四丁酯为前驱体,采用水热法合成光催化剂TiO2,得到非晶态TiO2,对所述非晶型TiO2高温处理,制备结晶态TiO2
S3、所述结晶态TiO2和与所述Au-GSH反应,制备Au-GSH@TiO2复合材料;
S4、采用紫外光固化法将PDMS将接枝在Au-GSH@TiO2表面,得到Au-GSH@TiO2@PDMS复合材料。
2.如权利要求1所述的Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,谷甘光肽(GSH)保护的金纳米团簇(Au-GSH)的合成为:将GSH,HAuCl4按照摩尔比2:1混合,常温下反应1.5h,生成Au-GSH配合物,然后将反应转移到油浴中,加热到70℃,继续反应24h,合成棕黄色Au-GSH溶液。
3.如权利要求1所述的Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,结晶态TiO2的制备:取有机溶剂异丙醇与钛酸正四丁酯,加入到高压反应釜中,并转换到180℃烘箱,反应时间12h,生成非晶化TiO2颗粒,用异丙醇离心洗涤,在60℃的条件烘干,最后高温晶化,温度为450℃,升温速率为5℃/min,时间是2h,得到结晶化的TiO2颗粒。
4.如权利要求1所述的Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,所述Au-GSH@TiO2复合材料的制备,取所述结晶化的TiO2颗粒、Au-GSH及水于烧杯中,然后用硫酸和氢氧化钠将pH调节到4,在常温搅拌24h,得到Au-GSH@TiO2复合材料。
5.如权利要求1所述的Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,所述紫外光固化法为,取PDMS和Au-GSH@TiO2,放在0.5W紫外光下照射2h,将PDMS接枝在Au-GSH@TiO2表面,然后用乙酸乙酯洗去未反应的PDMS,并在60℃条件下干燥,得到Au-GSH@TiO2@PDMS复合材料。
6.如权利要求1或5所述的Au-GSH@TiO2@PDMS复合材料的制备方法,其特征在于,所述PDMS与Au-GSH@TiO2的体积为2:0.05。
7.如权利要求1-6任一所述制备方法制备得到的Au-GSH@TiO2@PDMS复合材料。
8.如权利要求7所述的Au-GSH@TiO2@PDMS复合材料在光催化方面的应用。
CN201911420265.6A 2019-12-31 2019-12-31 Au-GSH@TiO2@PDMS复合材料及其制备方法和应用 Active CN111167517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911420265.6A CN111167517B (zh) 2019-12-31 2019-12-31 Au-GSH@TiO2@PDMS复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911420265.6A CN111167517B (zh) 2019-12-31 2019-12-31 Au-GSH@TiO2@PDMS复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111167517A true CN111167517A (zh) 2020-05-19
CN111167517B CN111167517B (zh) 2021-09-10

Family

ID=70646534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911420265.6A Active CN111167517B (zh) 2019-12-31 2019-12-31 Au-GSH@TiO2@PDMS复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111167517B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041123A (zh) * 2007-03-16 2007-09-26 清华大学 一种高负载量的亚铁氰化物/二氧化硅杂化材料的制备方法
CN105214656A (zh) * 2015-11-03 2016-01-06 福州大学 金纳米团簇-金纳米粒子-二氧化钛复合光催化剂及应用
CN108404987A (zh) * 2018-03-07 2018-08-17 南京工业大学 一种提高纳米颗粒@MOFs材料催化效率的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041123A (zh) * 2007-03-16 2007-09-26 清华大学 一种高负载量的亚铁氰化物/二氧化硅杂化材料的制备方法
CN105214656A (zh) * 2015-11-03 2016-01-06 福州大学 金纳米团簇-金纳米粒子-二氧化钛复合光催化剂及应用
CN108404987A (zh) * 2018-03-07 2018-08-17 南京工业大学 一种提高纳米颗粒@MOFs材料催化效率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTOHIRO TAGAYA1,ET AL: ""Incorporation of Decanethiol-Passivated Gold Nanoparticles into Cross-Linked Poly(Dimethylsiloxane) Films"", 《SMART MATERIALS RESEARCH》 *
SIQI LIU: ""Photo-induced transformation process at gold clusters semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis"", 《SCIENTIFIC REPORTS》 *

Also Published As

Publication number Publication date
CN111167517B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis of titanium dioxide (TiO2) nanomaterials
JP2001104797A (ja) ナノサイズのアナターゼ型の二酸化チタン光触媒の製造方法並びに前記方法で製造された光触媒
US20060104894A1 (en) Method for making single-phase anatase titanium oxide
JP2009521392A5 (zh)
Akgun et al. Effect of silver incorporation on crystallization and microstructural properties of sol–gel derived titania thin films on glass
CN113731408B (zh) MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
JP2022539320A (ja) 抗菌性コーティング組成物
CN108751252B (zh) 一种粒径可控的二氧化钛制备方法
Yang et al. Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols
Atta et al. Enhancing hot electron generation and injection in the near infrared via rational design and controlled synthesis of TiO 2–gold nanostructures
JP2006096651A (ja) 無機酸化物材料の製造方法、無機酸化物材料、および炭素−金属複合酸化物材料
CN111167517B (zh) Au-GSH@TiO2@PDMS复合材料及其制备方法和应用
Razak et al. Effect of annealing temperature on silver doped titanium dioxide (Ag/tio2) thin film via sol-gel method
US8309167B2 (en) Method for preparing an article with single-phase anatase titanium oxide
CN114950484B (zh) 一种可见光下光催化的Janus硫化镉异质结的制备方法与应用
WO2006030780A1 (ja) 可視光を吸収する薄片状酸化チタンの製造方法
CN113070057B (zh) 一种光电-压电复合材料及其制备方法
CN102294253B (zh) 一种TiOF2光催化薄膜的低温制备方法及其应用
CN1530327A (zh) 一种晶型和大小可控的纳米二氧化钛材料的制备方法
Li The preparation and photocatalytic activity of CdS/(Cal-Ta2O5-SiO2) composite photocatalyst under visible light
JP3916799B2 (ja) 金属担持二酸化チタン光触媒及びその量産方法
JP3136339B2 (ja) 酸化チタン光触媒及びその製造方法
CN113600184A (zh) 一种二氧化钛包覆金属纳米材料的合成方法及其应用
Liboon et al. Physico-Chemical Properties of TiO2 Coatings Derived From Acid Catalyst-Free Precursorvia Spin Coating
CN107626332A (zh) 一步法实现铁、氟共掺杂二氧化钛纳米片的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant