CN111167008A - 利用射频电学膜击穿(rf-emb)的癌症免疫疗法 - Google Patents

利用射频电学膜击穿(rf-emb)的癌症免疫疗法 Download PDF

Info

Publication number
CN111167008A
CN111167008A CN201910948280.1A CN201910948280A CN111167008A CN 111167008 A CN111167008 A CN 111167008A CN 201910948280 A CN201910948280 A CN 201910948280A CN 111167008 A CN111167008 A CN 111167008A
Authority
CN
China
Prior art keywords
cell
pulse
treatment
therapeutic probe
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910948280.1A
Other languages
English (en)
Inventor
盖瑞·M·奥尼克
詹姆斯·A·米埃绍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immune System Co
Original Assignee
Immune System Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/451,333 external-priority patent/US10154869B2/en
Application filed by Immune System Co filed Critical Immune System Co
Publication of CN111167008A publication Critical patent/CN111167008A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/327Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00061Light spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00159Pulse shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00732Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/09Body tissue
    • A61M2202/097Body tissue endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/054General characteristics of the apparatus combined with other kinds of therapy with electrotherapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Electrotherapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Neurology (AREA)
  • Surgical Instruments (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及一种利用射频电学膜击穿(RF‑EMB)的癌症免疫疗法。特别涉及一种在活体对象中治疗靶软组织的系统,包括:能量源;与所述能量源连接的治疗性探头,所述治疗性探头的远端被配置成插入到所述靶软组织中;控制器,其被配置成控制所述能量源以向所述治疗性探头发送能量脉冲,其中所述能量脉冲被配置成向所述靶软组织施加足以引起所述靶软组织的细胞的细胞膜的电学膜击穿的场,其中细胞的细胞膜的电学膜击穿引起细胞的胞内组分泄露到细胞外空间中,以便能够进行免疫应答以破坏和除去所述靶组织和对象中其他地方的类似标记的组织。

Description

利用射频电学膜击穿(RF-EMB)的癌症免疫疗法
本申请为国际申请PCT/US2014/068774于2016年6月6日进入中国国家阶段、申请号为201480066688.1、发明名称为“利用射频电学膜击穿(RF-EMB)的癌症免疫疗法”的分案申请。
与相关申请的交叉引用
本专利申请要求2013年12月5日提交的题为“利用射频电学膜击穿(RF-EMB)作为免疫疗法的辅助机制的癌抗原向抗原呈递细胞的增强呈递”(Cancer Antigen EnhancedPresentation to Antigen Presenting Cells by Radiofrequency ElectricalMembrane Breakdown(RF-EMB)as an Adjuvant Mechanism for Immunotherapy)的美国临时专利申请No.61/912,172的优先权,所述临时申请以其全部内容通过参考并入本文。本专利申请还要求2014年8月4日提交的题为“产生用于组织消融的射频能量电学膜击穿的系统和方法”(System And Method For Creating Radio-Frequency Energy ElectricalMembrane Breakdown For Tissue Ablation)的美国专利申请No.14/451,333的优先权,所述申请以其全部内容通过参考并入本文。
技术领域
本发明总的来说涉及用于疾病治疗的生物组织的医学消融领域,更具体来说涉及在人类和哺乳动物中向软组织和癌组织受控施加射频能量,以利用电学膜击穿通过细胞破坏来消融这些组织。
背景技术
癌症不是一种单一疾病,而是具有共同特征的一组疾病,它们通常引起持续的细胞增殖、细胞死亡减少或延迟、身体的血管生成和代谢过程的征用以及避开身体免疫应答,引起被称为赘生物或更通常被称为肿瘤的不想要的软组织生长。这种异常组织的去除或破坏是许多癌症治疗方法和方式的目标。肿瘤手术切除是实现这一目标的一种方法。组织消融是另一种侵入性极低的破坏身体内不想要的组织的方法,并且一般被分为热消融和非热消融技术。热消融涵盖增添和去除热量以破坏不想要的细胞两者。冷冻消融是一种已确立的技术,其通过始于-15℃的细胞外区室的冷冻引起细胞脱水,并通过细胞内冰的形成造成在更低温度下发生膜破裂,从而杀死细胞。由于在某些条件下冷冻消融技术可以破裂细胞膜而不使细胞蛋白质变性,因此这些技术具有在患者中刺激抗肿瘤免疫应答的附加能力。
用于消融癌和非癌组织两者的基于热的技术也是已确立的,并包括射频(RF)热微波和高强度聚焦超声消融,其升高局部组织温度至明显高于身体正常的37℃。这些方法使用各种不同技术向靶细胞施加能量以升高间质温度。例如,RF热消融利用高频电场在细胞膜中引起振动,所述振动通过摩擦被转变成热。细胞死亡在细胞温度达到50℃后少至30秒内发生,并且随着温度升高而减少。在60℃下,细胞死亡是即时的。如果细胞内温度升高到约60至95℃之间,参与细胞死亡的机制包括细胞干燥和蛋白质凝固。当细胞内温度达到100℃时,随着细胞内的水沸腾成蒸汽,发生细胞汽化。在组织消融的情形中,不超过50℃的细胞温度不被认为是临床上显著的。由于细胞蛋白质被热消融技术的热量变性,因此它们不像在冷冻消融的情况下可能的那样可用于刺激特异性免疫应答。基于热的消融和冷冻消融这两种技术都具有下述缺点,即它们具有很少或没有能力避开治疗区中的正常结构,因此基于肿瘤位置可能被忌用,或者因附属损伤引起并发症。
非热消融技术包括电化学疗法和不可逆电穿孔,它们尽管彼此相当不同,但各自都依赖于电穿孔现象。参考图1,电穿孔是指暴露于某些参数下的高压脉冲电场的细胞的细胞质膜由于脂质双层的去稳定化和孔眼P的形成而变得暂时可透过。细胞质膜由厚度t约为5nm的脂质双层构成。参考图2A,所述膜在本质上起到不导电的形成介电阻挡层的电容器的作用。即使在不存在外加电场的情况下,生理条件由于跨膜电荷分离而在细胞的内部与外部之间产生天然电势差。这种静息跨膜电势V’m的范围对脂肪细胞来说为40mv,对于骨骼肌细胞来说为85mv,对于心肌细胞来说为90mv,并且可以根据细胞尺寸和离子浓度等而发生改变。
继续参考图2B-2D,细胞暴露于外加电场E,只要外部电场存在,就诱导跨膜的附加电压V。该诱导的跨膜电压与外加电场的强度和细胞的半径成比例。如果累加的静息和外加跨膜电势超过通常可能在200mV至1V之间的阈值电压,则在所述膜中发生跨膜孔眼P的形成。如果所述跨膜电势不超过临界值,使得孔眼面积相对于膜的总面积来说是小的,则膜的穿孔是可逆的。在这种可逆电穿孔中,在外加电场撤除后细胞膜恢复,并且细胞仍然活着。在高于临界跨膜电势并使用较长的暴露时间的情况下,穿孔变得不可逆,由于细胞外离子的流入引起内稳态的丧失和随后的凋亡,最终导致细胞死亡。除了在某些非常有限的组织类型中之外,在电场暴露后24小时以前,细胞的不可逆电穿孔后的病理不显示出结构或细胞变化。然而,在所有情况下,由IRE引起的细胞破坏和死亡的机制是凋亡性的,其需要相当多的时间才能通过,并且在临床上可用于确定IRB治疗的功效的时间框中在病理上不可见,这是所述方法的重要临床缺点。
在1990年代早期开发的电化学疗法将可逆细胞膜穿孔的物理效应与化疗药物例如顺铂和博来霉素的给药相组合。通过暂时提高细胞膜通透性,极大地提高了不可透过或透过性不良的化疗药物的摄入。在中断电场后,孔眼关闭并且药物分子被保留在靶细胞内部,而对暴露的细胞没有显著损伤。这种化疗方法从开发电穿孔作为用于具有治疗效应的基因和DNA分子的转染技术的较早研究产生。在这种背景中,引起细胞死亡的不可逆电穿孔被视为失败,因为被处理的细胞不能存活以实现所打算的改良。
作为消融方法的不可逆电穿孔(IRE)从下述现实产生,即可以利用实现可逆电穿孔的“失败”来选择性杀死不想要的组织。IRE有效地杀死可预测的治疗区域,而没有热消融方法的破坏邻近血管和胶原结构的缺点。在典型的IRE治疗期间,将1至3对电极置于肿瘤中或其周围。以10个一组发送电脉冲,通常进行9个循环,所述电脉冲被仔细选择以诱导高于临界跨膜电势的电场强度。每个10脉冲的循环花费约1秒时间,并且在开始下一个循环之前简短地暂停电极。如通过参考并入本文的Rubinsky等的美国专利8,048,067和Arena等的申请号13/332,133中所述,电场强度和脉冲特征被选择成为IRE提供必需的电场强度,但是不像使用RF热消融那样诱导热效应。然而,由于通过IRE方法消融的细胞经历没有膜破裂的凋亡性死亡,因此,它们的如使用冷冻消融时所观察到的诱导补充免疫应答的能力受损。当在治疗方案中用作唯一消融工具时,IRE不能诱导补充免疫应答是对它的患者治疗益处的显著限制。另一方面,冷冻消融具有由极端寒冷和它破坏附近重要健康结构的能力造成的显著临床缺点。需要的是侵入性极低的组织消融技术,所述技术可以避免损伤健康组织,同时暴露出细胞内含物并且不使这些细胞内含物变性,以便它们可以引发临床上有用的免疫应答。
发明内容
因此,本发明的目的是提供一种使用电脉冲的组织消融方法,所述方法通过完全击穿细胞膜的机制造成立即细胞死亡。
本发明的另一个目的是提供一种组织消融的方法,所述方法通过电击穿细胞膜造成立即细胞死亡,使得它可以通过所述组织的立即病理学、化学或光谱学检查来监测,以评估治疗功效并根据需要调整治疗。
本发明的另一个目的是提供一种使用电脉冲的组织消融方法,所述方法以非热的方式造成立即细胞膜击穿,以便避开敏感的组织结构并使细胞内蛋白和膜蛋白不变性地泄漏到细胞外空间中,从而暴露于身体的免疫系统,以便引发特异性肿瘤免疫应答。
本发明的另一个目的是提供一种组织消融方法,所述方法将未变性的细胞内蛋白和膜蛋白暴露于免疫系统,以引发可以通过各种不同的附加免疫调节物调节和增强的特异性肿瘤免疫应答。
根据本发明,通过向身体中不想要的组织施加被特异性配置以直接并完全崩解细胞膜的外部电场,实现了上述和其他目的。被称为电学膜击穿(EMB),外部振荡电场的施加造成细胞膜的振动和挠曲,这引起动态和立即的机械撕裂或破裂所述细胞膜。与现有技术方法相比,EMB施加显著更高的能量水平以破裂所述细胞膜而不是对所述细胞膜电穿孔。与现有技术方法不同,EMB将细胞的整个内含物排出到细胞外流体中并暴露细胞膜的内部组分,这诱导对象的免疫应答。
用于产生诱导EMB所必需的电场的系统包括双极脉冲发生器,其可操作地偶联到控制器,所述控制器用于控制产生适合的电场所必需的电脉冲的产生和发送。所述电场由置于所述对象身体内软组织或癌细胞附近的治疗性探头产生,并且所述双极脉冲被造型、设计和施加以便以最佳方式实现该结果。可以提供温度探头用于将温度反馈到控制器,所述控制器被配制成控制所述信号发生器的信号输出特征。EMB方案需要一系列短且强的双极电力以在所述电极之间产生振荡电场,所述振荡电场引起跨过细胞膜的同样快速且振荡的跨膜电势的积聚。积聚的电荷向细胞膜施加振荡和挠曲力,其在达到临界值后造成所述膜的广泛破裂和细胞内含物的泄漏。除了是双极的之外,所述电脉冲优选地描记方波形,并以在所述双极脉冲的正和负极性之间基本上没有弛豫时间的即时电荷反转为特征。在介电的细胞膜的破坏方面,即时电荷反转脉冲明显更加有效。
外加电场的重要特征包括电场强度(伏特/cm)、频率、极性、形状、持续时间、数目和间隔。电场强度(伏特/cm)是施加的电压和电极间隔两者的函数,并且在不考虑热的情况下优选地在1,500V/cm至10,000V/cm的范围内。RF-EMB消融优选地通过在脉冲列中施加一串不少于100个的电脉冲来进行,以便在靶组织上提供必需的能量并且不以任何临床上显著的方式发生热问题。脉冲持续时间优选为100至1000μs。每个脉冲的持续时间与频率之间的关系决定了每个脉冲期间细胞膜所经历的即时电荷反转的数目。每个脉冲爆发间隔期的持续时间由控制器14在热考量的基础上确定。可以向控制器提供治疗位点的实时温度反馈,由此所述控制器可以根据需要调节治疗参数以消除热效应。为此目的也可以监测治疗位点处的电流流量。
EMB消融方法如下进行:首先通过医学成像技术例如CT或MRI或其他手段鉴定所述对象中待消融的软组织的位置。确定所述电极相对于所述靶组织的优选位置和间隔,并将1至6个连接到所述控制器和信号发生器的针式电极插入到治疗位点中和治疗位点附近的位置中。通过医学成像证实所述电极的放置和定位,并激活所述脉冲发生器以向所述电极施加电脉冲来产生治疗电场,由此造成所述软组织中细胞的电学膜击穿。
电学膜击穿造成被破裂细胞的所有细胞内组分立即泄漏到细胞外空间中并暴露出所述细胞和细胞膜的内部组成部分(包括抗原),其诱导免疫应答以破坏并除去所述对象身体中的这种物质和类似物质。所述免疫应答可以通过给药提高所述免疫应答过程的药剂(包括药物)来增强。电学膜击穿造成立即的可目测观察的组织变化、细胞膜破坏和细胞死亡,因此所述方法可以包括一部分被治疗的靶组织的活组织检查,以在治疗完成后当所述患者仍处于可进行附加治疗的情况下立即验证治疗功效。在其他实施方式中,放置在关键治疗位置中的针式探头可以利用化学或光谱学手段来监测与所述立即破坏和细胞内含物的泄漏相关的各种不同参数,也用于验证治疗功效。在某些情况下,可以通过重新配置由脉冲发生器产生的信号以按照已知的RF热学技术提高电极处的组织温度,将治疗模式从EMB切换到热消融,而不需取出或重新定位所述电极。
附图说明
图1是细胞膜孔眼的图示。
图2是利用现有技术方法的细胞膜孔眼形成的图示。
图3是现有技术的电荷反转与本发明的即时电荷反转的比较。
图4是来自于本发明的即时电荷反转脉冲的方波。
图5是本发明的施加到细胞膜上的力随着电场脉冲宽度而变的图示。
图6是现有技术由于过量电流而不能发送规定脉冲的图示。
图7是本发明的反馈回路的示意图,控制器通过所述反馈回路减小施加的信号电压,以保持电流安培数等于或低于最大值。
图8是根据本发明在达到最大电流水平后减小施加的信号电压以允许连续信号发送的图示。
图9是用于应用本发明的方法的脉冲产生和发送系统的示意图。
图10是本发明的部分脉冲列的参数的图示。
图11是本发明的示例性治疗方案参数的图表。
图12是1号示例性治疗方案的参数的图示。
图13是2号示例性治疗方案的参数的图示。
图14是3号示例性治疗方案的参数的图示。
图15是4号示例性治疗方案的参数的图示。
具体实施方式
尽管在下文中详细讨论了本发明的各种实施方式的制造和使用,但应该认识到,本发明提供了许多实用性发明概念,其可以体现在广泛的各种具体情形中。本文中讨论的具体实施方式仅仅是为了说明制造和使用本发明的具体方式,并且不限制本发明的范围。
作为组织消融方法的不可逆电穿孔已被良好地开发并具有商业制造的设备,例如在市场上可获得的由AngioDynaraics(Latham,NY)制造的NanoKnife。正如所述,这种消融技术利用特定参数内的高电场强度引起细胞膜的不可逆电穿孔,由于内稳态的丧失和凋亡最终引起细胞死亡。本发明也描述了利用高频和高强度电场来消融对象体内细胞的方法,但是做到这一点是通过完全不同的电学膜击穿(EMB)方法,使用非常不同的能量特征。电学膜击穿是施加外部振荡电场以造成细胞膜的振动和挠曲,这导致细胞膜的动态和立即的机械撕裂、崩解或破裂。与在细胞膜中产生纳米孔眼但很少或没有细胞内含物通过所述孔眼释放的IRE不同,EMB完全撕开细胞膜,使得所述细胞的全部内含物被排出到细胞外流体中,并暴露出细胞膜本身的内部组分。
本发明依赖于外加电场与跨膜电势的相互作用,但是它与IRE的相似性到此为止。EMB通过特异性配置的电场特性(profile)施加显著更高的能量水平,以直接并完全崩解细胞膜而不是对细胞膜进行电穿孔。其他人证实了EMB所需的能量水平比通过目前可用的IRE设备和方案发送的使用相同脉冲配置(脉冲数目和电压密度)的IRE所需的能量水平高100倍。当前的IRE方法和能量方案不能发送造成EMB所必需的能量,解释了IRE处理的样本的病理学检查为什么从未显示出EMB的病理特征,并且是为什么到目前为止EMB尚未被认可作为细胞破坏的可替选方法的关键原因。
图9是用于产生引起患者12中的细胞11的EMB所必需的电场的系统10的示意图。系统10包括双极脉冲发生器16,其可操作地偶联到控制器14,所述控制器用于控制产生适合的电场所必需的电脉冲的产生及其向一个或多个治疗性探头20(示出了两个)的发送,以实现EMB。所述治疗性探头被置于打算通过EMB过程消融的软组织或癌细胞11附近,并且以最佳方式对所述双极脉冲进行造型、设计和施加以实现该结果。可以提供温度探头22,用于电极处或电极附近温度的经皮温度测量及所述温度向控制器的反馈。所述控制器可以优选地包括板载数字处理器和存储器,并且可以是通用计算机系统、可编程逻辑控制器或类似的数字逻辑控制装置。所述控制器优选地被配置成控制信号产生的信号输出特征,包括脉冲的电压、频率、形状、极性和持续时间,以及在脉冲列中发送的脉冲总数和脉冲爆发间隔期的持续时间。
参考图9,EMB方案需要从所述脉冲发生器通过直接插入到靶组织11中或置于靶组织11周围的一个或多个治疗性探头20(电极)发送的一串短且强的双极电脉冲。所述双极脉冲在电极之间产生振荡电场,这引起跨过细胞膜的同样快速且振荡的跨膜电势的积聚。积聚的电荷向细胞膜施加振荡和挠曲力,其在达到临界值后造成膜的破裂和细胞内含物的泄漏。双极脉冲比单极脉冲更加致命,这是因为脉冲电场造成带电荷分子在细胞膜中移动,并且电场方向或极性的反转造成带电荷分子的移动方向和作用在细胞上的力的方向发生相应变化。由带电荷分子移动的交替变化添加的置于细胞膜上的应力造成附加的内部和外部变化,这在细胞膜中引起凹陷、破口、裂缝和不规则的突然撕裂,造成细胞膜的更广泛、多样和随机的损伤和崩解。
参考图4,除了是双极的之外,电脉冲的优选实施方式是电压随时间的变化描记方波形并以即时电荷反转脉冲(ICR)为特征的电脉冲。方电压波形是除了在极性转变期间之外,在描记图的单极性部分的持续时间中维持不小于峰值电压的80%的基本上恒定的电压的波形。即时电荷反转脉冲是被特别设计以确保在双极脉冲的正和负极性之间基本上不容许弛豫时间的脉冲。也就是说,极性转变事实上即时发生。
如果施加的电压脉冲可以不延迟地从正极性转变到负极性,通过电学膜击穿过程引起的介电细胞膜的破坏将明显更加有效。即时电荷反转阻止诱导的表面电荷的重新排列,在细胞中引起短暂的拉伸状态和瞬时机械力,其效果被大且突然的力反转放大。靶细胞上造成结构疲劳的交替应力据认为减小了EMB所需的临界电场强度。细胞膜内部和沿着细胞膜的增添的结构疲劳引起或造成细胞结构的物理变化。这些物理变化和缺陷对使用振荡EMB方案施加的力做出响应而出现,并且当膜位置对振荡做出响应而迁移直至总体膜破裂和灾难性放电的时间点时达到介电膜击穿。这可以类比于由材料经历周期性负载例如金属回形针经历重复弯曲时发生的渐进性和局部结构损伤所造成的材料的疲劳或弱化。造成这种损伤的标称最大应力值可能远小于材料在通常条件下的强度。这种波形与其他脉冲波形相比的有效性可以节省多达1/5或1/6的总能量需求。
参考图10,外加电场的另一个重要特征是电场强度(伏特/cm),它是由脉冲发生器16施加到电极的电压30和电极间隔两者的函数。对于双极针式探头来说,典型的电极间隔可以是1cm,而多个针式探头电极之间的间隔可以由外科医生选择,并且通常可以为0.75cm至1.5cm。用于本发明的应用的脉冲发生器能够发送高达10kV的电势。实际施加的电场强度在治疗过程中变化以控制电路电流,所述电路电流是产热和患者安全性的控制因素(在治疗期间当组织阻抗下降时防止意料之外的大电流流量)。在电压以及因此电场强度受到发热顾虑限制的情况下,可以延长治疗循环的持续时间以补偿减少的电荷积累。在没有热学考虑的情况下,用于EMB的优选电场强度在1,500V/cm至10,000V/cm的范围内。
继续参考图10,供应到电极20的电信号的频率31以及因此得到的电场的电场极性振荡的频率31,影响提供在对象组织上的总能量并因此影响治疗的功效,但是与其他特征相比关键性较低。优选的信号频率为14.2kHz至低于500kHz。频率下限提供了每个循环的最高能量,低于所述频率下限时不能获得进一步的增量能量沉积。参考图5,频率上限在下述观察的基础上设定,即高于500kHz时,极性振荡太短而不能在细胞膜上产生足够的动力以引起所需细胞膜扭曲和移动。更具体来说,在500kHz下,单个完整循环的持续时间为2μs,它的一半是正极性,一半是负极性。当单一极性的持续时间接近1μs时,没有足够的时间使电荷积累以及使动力出现在膜上。因此,膜的移动减少或消除,并且EMB不发生。在更优选的实施方式中,信号频率为100kHz至450kHz。在这里,下限由以下需求所决定:避免对麻醉剂或阻断神经肌肉的药物的需要以限制或避免施加到身体的电信号的肌肉收缩刺激效应。在这个更优选实施方式中,上限由FDA已批准的射频热消融设备的频率所建议,所述频率已被视为对于在医学患者中的治疗性使用来说是安全的。
除了控制由脉冲发生器16提供的脉冲振幅30、频率31、极性和形状之外,逻辑控制器14控制在治疗脉冲串或脉冲列中施加的脉冲32的数目、每个脉冲32的持续时间和脉冲爆发间延迟33。尽管由于空间限制在图10中仅示出了2个,但RF-EMB消融优选地通过在脉冲列中施加一串不少于100个的电脉冲32来进行,以便在靶组织11上提供必需的能量而不以任何临床上显著的方式发生热问题。每个单个脉冲32的宽度优选为100至1000μs,并具有脉冲爆发间隔期33,在所述间隔期期间不施加电压以便促进散热并避免热效应。每个脉冲32的持续时间与频率31(周期)之间的关系决定了每个脉冲32期间所述细胞膜所经历的即时电荷反转的数目。每个脉冲爆发间隔期33的持续时间由控制器14在热考虑的基础上确定。在可替选实施方式中,系统10被进一步提供有温度探头22,所述温度探头22被插入到靶组织11附近以向控制器14提供治疗位点处的局部温度读数。温度探头22可以是独立的具有热电偶尖头的针式探头,或者可以与一个或多个针式电极集成形成在一起或从一个或多个针式电极部署。使用实时温度反馈,所述控制器可以通过将观察到的温度与储存在存储器中的各个不同的温度设定点进行比较,根据需要调节治疗参数以消除热效应。更具体来说,所述控制器可以缩短或增加每个脉冲32的持续时间以维持治疗位点处的设定温度,以例如为针道产生加热(高温)以防止出血或限制加热(低温)以防止任何凝固性坏死。脉冲爆发间隔期的持续时间可以以相同方式进行调节,以便消除对停止治疗和使能量沉积最大化以实现RF-EMB的需求。出于相同目的和结果,也可以调节脉冲振幅30和脉冲列中的脉冲总数。
在另一个实施方式中,出于避免过度加热并在同时还通过降低施加的电压允许继续治疗的目的,所述控制器可以监测或确定在治疗期间通过所述组织的电流流量。在治疗期间由电荷积聚和膜破裂造成的组织阻抗的降低可以造成电流流量增加,这在治疗位点处引起附加的加热。参考图6,以前的治疗方法具有在电流超过最大容许值使得治疗目标不能满足时停止治疗的需要。当使用直接温度监测时,本发明可以通过降低施加的电压并因此减少通过组织的电流以控制和防止不想要的临床上显著的热效应,来避免对停止治疗的需要。正如所述,也可以将通过控制器11调节脉冲持续时间和脉冲爆发间隔期持续时间用于此目的。
参考图11,详细描述了4种示例性RF-EMB治疗方案。另外参考图12,在方案1中,将持续时间各为10ms的83个脉冲32的脉冲列以600伏特施加到间隔1cm的电极,在电极之间产生600V/cm的电场强度。在这个实施例中,施加的脉冲是双极的,频率为125kHz并具有10ms的脉冲宽度,使得在0.83秒的脉冲列持续时间内施加的总能量为10.38mJ。这些治疗模型和发送的总能量参考自描述用于藻类的膜击穿的能量参数的工作(Foltz,G.,使用脉冲电场的藻类裂解(Algae Lysis With Pulsed Electric Fields),California StatePolytechnic University,San Luis Obispo 2012;从http://digitalcommons.-calpoly.edu/theses/732/下载)。Foltz使用不具有即时电荷反转脉冲的优点的单极脉冲证实了这种能量需求,使这成为关于产生EMB的能量需求的最糟糕的情形。
参考图13,在方案2中,通过将脉冲宽度减小到200μs并将脉冲列扩展到2490个脉冲,在10kV/cm电场中总共0.49秒的治疗时间中,获得了EMB。施加的总能量同样为10.38mJ。参考图14,在方案3中,在来自于治疗位点的反馈的基础上,通过控制器11在最初目标的2490个脉冲之上增加了附加脉冲,以补偿治疗期间电压/电场强度的降低。参考图15,在方案4中,在最初目标的2490个脉冲之上增加了附加脉冲,以补偿由250kHz信号与前面的示例性方案中125kHz的信号频率相比引起的效率损失。
本发明的消融不想要的软组织的方法通过首先鉴定所述对象中待消融的软组织的位置来进行。组织鉴定可以通过已知的医学成像技术例如超声、CT或MRI来进行。靶软组织可以是或者可以不是恶性的,而只需要是出于某些原因在它出现的位置中是不想要的组织。在靶组织鉴定后,在待消融的组织的位置和形状、邻近结构的形状和位置、靶和周围软组织的介电常数和电导率的基础上确定电极相对于靶软组织的优选位置和间隔。通常使用1至6个针式探头电极。将电极引入到治疗位点中和附近的位置中,并连接到用于电脉冲的受控发送用于电场产生和治疗的控制器。探头电极可以包括温度传感器例如热电偶,用于读取电极处或电极附近的局部温度并将所述温度信号传导到控制器。电极的放置和定位优选地可以通过医学成像来证实。通过控制器激活脉冲发生器以将电脉冲施加到电极,产生如上所述的治疗电场,由此造成所述软组织的一些或所有细胞的电学膜击穿。
与IRE或热消融技术不同,电学膜击穿造成破裂的细胞的所有细胞内组分立即泄漏到细胞外空间中,并将细胞膜的内部组成部分暴露于所述细胞外空间。所述细胞内组分包括细胞抗原,所述细胞膜的内部组成部分包括对细胞膜特异的抗原,所述抗原在对象身体中诱导免疫应答以破坏并除去这种物质和类似的物质。类似的物质可以是对象身体中在远离治疗位点的位置(包括转移组织)处具有相同细胞抗原或细胞膜特异性抗原的其他物质。然而,人体也具有用于肿瘤的天然防御系统,其在某些情况下阻止肿瘤的破坏和/或去除。其中之一通过抑制性信号起作用,所述抑制性信号将其自身呈递给身体的细胞毒性T淋巴细胞(CTL)——在身体内识别并破坏癌细胞的细胞,并结合到细胞毒性T淋巴细胞相关抗原4(CTLA-4)受体,关闭原本可能破坏癌细胞的细胞毒性反应。
因此,根据本发明的另一个实施方式,通过给药增强免疫应答过程的药物来增强RF-EMB的免疫应答,所述药物包括阻断细胞毒性淋巴细胞的CTLA-4抑制性信号的抑制的药物或结合到参与调节调控性髓系细胞功能的S100-A9蛋白的药物。前一种药物类型的实例是Ipilimumab(作为
Figure BDA0002224907940000141
销售)。后者的实例是Tasquinimod。这些药物可以以任何手段给药,包括但不限于静脉内、经口或肌内途径,并且也可以在即将施加EMB电场之前或之后或在RF-EMB治疗之前或之后设定的天数直接注射到靶软组织中或其附近,正如在下面的样品治疗方案中所描述的。这样的增强免疫应答的药物也可以包含自体树突状细胞。例如,Sipulencel-T(作为Provenge销售)疗法使用用前列腺酸性磷酸酶(PAP)激活并输注回患者系统中的患者自体的树突状细胞。另一种相关的免疫药物是pembrolizumab,其通过阻断被称为程序化死亡受体(PD-1)的蛋白或被称为PD-L1的相关蛋白起作用,这两种蛋白都被肿瘤用作针对抗肿瘤细胞的防御措施。另一种相关的免疫药物是环磷酰胺,其抑制调节性T细胞并干扰DNA复制。许多免疫药物例如本文中描述的那些免疫药物有效地对抗一种或少量几种癌症类型,但是在孤立情况下不能有效对抗这类药物被设计用于的所有癌症类型。
将RF-EMB治疗与免疫药物例如上面描述的免疫药物的给药相组合,使靶细胞的抗原保持完整并暴露于外部环境,允许它们与患者的免疫系统反应,所有这些都有助于免疫药物发挥作用。组合治疗可能有助于具有两种不同疾病病理学之一的患者的治疗。在包含用于治疗具有原发癌性肿瘤和高的微量转移疾病的可能性的患者的方法的第一个实施方式中,可以在被设计成与作为RF-EMB治疗的结果而暴露出的完整抗原协同相互作用的免疫药物方案的给药之前或之后,施加RF-EMB以造成原发肿瘤的直接破坏。所选的免疫药物可以是阻断抑制性应答的药物,所述抑制性应答原本可能作为RF-EMB治疗的结果而阻止患者的身体识别并破坏RF-EMB靶细胞和具有相同细胞抗原的其他细胞(即微量转移生长)。在包含用于治疗具有晚期转移疾病的患者的方法的第二个实施方式中,RF-EMB治疗可以在利用如上所述的免疫药物的正在进行的治疗计划的中点时给药。在这种实施方式下,RF-EMB治疗通过将独特的细胞抗原暴露于患者的免疫系统而增强所述免疫药物的有效性。
现在描述与免疫药物的给药联合使用RF-EMB的3种样品治疗方案。在实施例1中,在治疗的第1天将300mg/m2的环磷酰胺静脉内给药到患者。在第3天,患者按照上面参考图11描述的四种方案之一接受RF-EMB治疗。在RF-EMB治疗后两周开始并持续到RF-EMB治疗后第26周,将25mg环磷酰胺经口给药到患者共6个循环,每个循环包括4周,其中患者以7天开放(其中给药药物)、7天关闭(其中不给药药物)的循环每日两次接受环磷酰胺的经口药剂。在实施例2中,患者在使用RF-EMB治疗的第1天按照上面参考图11描述的四种方案之一进行治疗。也在第1天,患者在90分钟的过程中被静脉内给予3mg/kg的ipilimumab。然后患者静脉内接受另外3剂3mg/kg的ipilimumab,每剂隔开3周的时间段。在实施例3中,在治疗的第1天将300mg/m2的环磷酰胺静脉内给药到患者。在治疗的第3天,患者按照上面参考图11描述的四种方案之一接受RF-EMB治疗,并增添将自体树突状细胞直接注射到靶肿瘤内。在RF-EMB治疗后两周开始并持续到RF-EMB治疗后第26周,将25mg环磷酰胺经口给药到患者共6个循环,每个循环包括4周,其中患者以7天开放(其中给药药物)、7天关闭(其中不给药药物)的循环每日两次接受环磷酰胺的经口药剂。
电学膜击穿造成立即的可目测观察的组织变化、细胞膜破坏和细胞死亡。结果,所述方法可以包括一部分被治疗的靶组织的活组织检查,以在治疗完成后当所述患者仍处于可进行附加治疗的情况下立即验证治疗功效。在活组织检查结果和治疗功效的目测确定的基础上,可以立即进行附加治疗。
或者,由于细胞内环境包含独特的化学组成例如高的钾和尿酸浓度,因此现在可以通过多种方法检测细胞内含物的泄漏,例如将一个或多个针式探头置于治疗区域的关键位置内,以使用化学试剂、电阻抗或电阻测量、pH测量、光谱术等测量化学物水平。此外,可以将装置例如包含整合在微针的中空核心中或通过所述中空核心插入的一个或多个能够测量上述性质的传感器的微型针式传感器,在RF-EMB程序期间插入在治疗区域中的一个或多个预定位置处,以通过细胞外化学组成实时测量细胞的泄漏。
根据这种方法,在优选实施方式中,具有至少一个小于1毫米的尺寸的中空针(被称为微针)配备有一个或多个传感器,所述传感器通过针的中空中心插入。所述传感器可以是上面描述的一种或多种类型,包括但不限于pH传感器、乳酸传感器、葡萄糖传感器、电阻抗传感器、钾传感器和/或尿酸传感器。多个这样的传感器可以捆绑在一起,或者可以使用测量一种或多种相关性质的单一传感器。在可选实施方式中,所述传感器可以是光谱仪。最优选地,将一个或多个含有传感器的微针在即将施用RF-EMB治疗之前插入到所选治疗区域中,并在治疗期的整个持续时间中保持插入在治疗组织中。来自于传感器的读数可以通过本领域中已知的任何手段来测量。这种方法具有附加的益处,即允许治疗提供者实时并在体内观察和定量靶细胞破坏的水平并因此观察和定量治疗功效。作为对比,现有技术的热消融方法或非热消融方法例如IRE缺少这种能力,因为它们不造成可测量量的细胞内含物立即泄漏到细胞外区域中,相反引起热坏死或靶向凋亡性细胞死亡,热坏死或靶向凋亡性细胞死亡在任何细胞内含物被暴露以备测量之前破坏细胞及其内含物。因此,现有技术的消融方法通常需要治疗区域的活组织检查来确定治疗功效,这在治疗结束之前不能完成。
根据这种优选实施方式,可以在治疗过程中细胞泄漏的实时测量水平的基础上实时监测和/或调整治疗参数和/或位置。此外或可替选地,可以在治疗阶段之前、之后或之间获取如本文中所述的细胞内含物的测量值,而不需对患者进行活组织检查或其他侵入性程序来测量治疗功效。用于细胞内含物的测量技术不限于本文中描述的那些,而是可以通过本领域中已知的在体内和/或实时测量靶向治疗区域的化学组成的任何手段来进行。
在本发明的另一个可选替实施方式中,使用或不使用立即的活组织检查和目测观察来获得功效,本发明的治疗模式可以从EMB切换到热消融,而不需取出或重新放置电极。切换成热消融可能是合乎需要的,以控制组织位点处的出血或用于与RF-EMB相呼应直接破坏不想要的组织。所述切换可以通过控制器的操作在单一脉冲列内发生,或者可以通过导向仅仅RF热消融的第二或附加的脉冲列来实现。所述切换通过重新配置由脉冲发生器产生的信号以按照已知的RF热技术提高电极处的组织温度来实现。
现在已充分阐述了隐含在本发明之下的概念的优选实施方式和某些修改,对于本领域技术人员来说,在对所述隐含的概念变得熟悉后,各种不同的其他实施方式以及本文中示出并描述的实施方式的某些变动和修改是显而易见的。因此,应该理解,本发明可以以权利要求书中具体阐述的之外的其他方式实践。
工业实用性
研究估计,癌症在全世界每天杀死约20,000人。使用癌性肿瘤和产生不想要的软组织的其他病症的更有效的侵入性极小的治疗方法,许多伤亡可以避免,并且许多患者的生活质量可以提高。能够在攻击和移除患者身体内的不想要的或癌性组织中协助患者自己的免疫系统的侵入性极小的治疗,将进一步有助于挽救生命和改进患者的生活质量。所需要的是移除不想要的软组织例如癌性肿瘤的侵入性极小的方法。本发明是一种消融患者身体内不想要的软组织的革新方法,其适用于许多类型的癌性组织以及非癌性组织,显著提高进行这种程序的有效性,并且还提供了在体内并与治疗同时地直接测量这些程序的功效的手段。

Claims (17)

1.一种在活体对象中治疗靶软组织的系统,包括:
能量源;
与所述能量源连接的治疗性探头,所述治疗性探头的远端被配置成插入到所述靶软组织中;
控制器,其被配置成控制所述能量源以向所述治疗性探头发送能量脉冲,其中所述能量脉冲被配置成向所述靶软组织施加足以引起所述靶软组织的细胞的细胞膜的电学膜击穿的场,其中细胞的细胞膜的电学膜击穿引起细胞的胞内组分泄露到细胞外空间中。
2.根据权利要求1所述的系统,其中所述能量源包括电脉冲发生器。
3.根据权利要求2所述的系统,其中所述电脉冲发生器被配置成向所述治疗性探头发送足以引起所述治疗性探头施加在1,500V/cm至10,000V/cm范围内的电场的能量脉冲。
4.根据权利要求3所述的系统,其中所述电脉冲发生器被配置成向所述治疗性探头发送足以引起所述治疗性探头施加具有14.2kHz至500kHz的频率的电场的能量脉冲。
5.根据权利要求4所述的系统,其中所述电脉冲发生器被配置成向所述治疗性探头发送足以引起所述治疗性探头施加具有100kHz至450kHz的频率的电场的能量脉冲。
6.根据权利要求2所述的系统,其中所述电脉冲发生器被配置成发送具有0.5kV至10kV的电压的能量脉冲。
7.根据权利要求1所述的系统,其中所述控制器被配置成控制所述能量源以向所述治疗性探头发送至少一个双极脉冲。
8.根据权利要求7所述的系统,其中所述控制器被配置成控制所述能量源以发送至少一个以在正极性与负极性之间的即时电荷反转为特征的双极电脉冲。
9.根据权利要求1所述的系统,其中所述控制器被配置成控制所述能量源以发送具有100μs到1000μs的持续时间的能量脉冲。
10.根据权利要求1所述的系统,其中所述系统被配置成能够向所述对象给药增强免疫应答的药物。
11.根据权利要求10所述的系统,其中所述系统被配置成能够在向所述治疗性探头发送所述脉冲之前或之后将所述增强免疫应答的药物直接注射到所述软组织中或其附近。
12.根据权利要求10所述的系统,其中所述免疫应答药物的给药被配置成增加所述对象的免疫过程。
13.根据权利要求10所述的系统,其中所述系统被配置成能够通过静脉内、经口和肌内途径之一给药所述增强免疫应答的药物。
14.根据权利要求10所述的系统,其中所述增强免疫应答的药物被配置成阻断细胞毒性淋巴细胞的CTLA-4抑制性信号的抑制。
15.根据权利要求10所述的系统,其中所述增强免疫应答的药物包括自体树突状细胞。
16.根据权利要求10所述的系统,其中所述增强免疫应答的药物被配置成结合到S100A9并调节调控性髓系细胞功能。
17.根据权利要求10所述的系统,其中所述增强免疫应答的药物被配置成阻断选自PD-1和PD-11的蛋白质。
CN201910948280.1A 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法 Pending CN111167008A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361912172P 2013-12-05 2013-12-05
US61/912,172 2013-12-05
US14/451,333 US10154869B2 (en) 2013-08-02 2014-08-04 System and method for creating radio-frequency energy electrical membrane breakdown for tissue ablation
US14/451,333 2014-08-04
CN201480066688.1A CN105792883B (zh) 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480066688.1A Division CN105792883B (zh) 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法

Publications (1)

Publication Number Publication Date
CN111167008A true CN111167008A (zh) 2020-05-19

Family

ID=53274159

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480066688.1A Active CN105792883B (zh) 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法
CN201910948280.1A Pending CN111167008A (zh) 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480066688.1A Active CN105792883B (zh) 2013-12-05 2014-12-05 利用射频电学膜击穿(rf-emb)的癌症免疫疗法

Country Status (17)

Country Link
US (3) US10849678B2 (zh)
EP (1) EP3077041B1 (zh)
JP (1) JP6723153B2 (zh)
KR (1) KR102171496B1 (zh)
CN (2) CN105792883B (zh)
AU (2) AU2014360318B2 (zh)
CA (1) CA2932765A1 (zh)
CL (1) CL2016001366A1 (zh)
DK (1) DK3077041T3 (zh)
DO (1) DOP2016000126A (zh)
EA (1) EA201691073A1 (zh)
FI (1) FI3077041T3 (zh)
HK (1) HK1222360A1 (zh)
IL (2) IL245957B (zh)
MX (2) MX2016007411A (zh)
PH (1) PH12016501065A1 (zh)
WO (1) WO2015085162A1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
WO2010138919A2 (en) 2009-05-28 2010-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US11911629B2 (en) 2013-03-11 2024-02-27 NeurEM Therapeutics, Inc. Treatment of primary and metastatic brain cancers by transcranial electromagnetic treatment
US11759650B2 (en) 2013-03-11 2023-09-19 NeuroEM Therapeutics, Inc. Immunoregulation, brain detoxification, and cognitive protection by electromagnetic treatment
US11813472B2 (en) 2013-03-11 2023-11-14 NeuroEM Therapeutics, Inc. Systems for sensing proper emitter array placement
US11752356B2 (en) 2013-03-11 2023-09-12 NeuroEM Therapeutics, Inc. Systems for controlling power to differently loaded antenna arrays
DK3077041T3 (da) 2013-12-05 2024-10-14 Rfemb Holdings Llc Immunterapi mod kræft ved radiofrekvent elektrisk nedbrydning af membraner (rf-emb)
EP3143124A4 (en) 2014-05-12 2018-01-17 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
KR102128856B1 (ko) * 2015-01-30 2020-07-02 알에프이엠비 홀딩스, 엘엘씨 고주파 전기적 막 파괴를 이용하여 생명체의 바람직하지 않은 연조직을 절제하는 시스템
US10745998B2 (en) 2015-04-21 2020-08-18 Schlumberger Technology Corporation Multi-mode control module
AU2016335755B2 (en) 2015-10-07 2021-07-01 Mayo Foundation For Medical Education And Research Electroporation for obesity or diabetes treatment
WO2017118390A1 (zh) * 2016-01-05 2017-07-13 吴翔 利用变化电场磁场电磁场有选择地操控分子
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11432871B2 (en) 2017-04-10 2022-09-06 St. Jude Medical, Cardiology Division, Inc. Electroporation system and method of preconditioning tissue for electroporation therapy
US11590345B2 (en) 2017-08-08 2023-02-28 Pulse Biosciences, Inc. Treatment of tissue by the application of energy
US10850095B2 (en) 2017-08-08 2020-12-01 Pulse Biosciences, Inc. Treatment of tissue by the application of energy
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
CN107802955B (zh) * 2017-11-16 2024-03-22 中国人民解放军火箭军总医院 一种陡脉冲电场肿瘤治疗电极
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
EP3731771B1 (en) 2017-12-26 2023-07-19 Galvanize Therapeutics, Inc. Optimization of energy delivery for various applications
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US12064622B2 (en) 2018-03-30 2024-08-20 Minnetronix, Inc. Medical devices for ablating tissue
EP3762099A1 (en) * 2018-04-24 2021-01-13 Centre national de la recherche scientifique Generator for affecting biological tissues and cells using microwave-induced heat profiles
EP3801340A4 (en) * 2018-05-31 2022-03-09 North Carolina State University ELECTROTHERMAL THERAPY FOR THE TREATMENT OF DISEASE OR UNWANTED TISSUE
EP3852868A4 (en) * 2018-09-18 2022-06-15 Virginia Tech Intellectual Properties, Inc. TREATMENT PLANNING SYSTEM FOR IMMUNOTHERAPY USING NON-THERMAL ABLATION
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
KR20210136058A (ko) 2019-03-01 2021-11-16 램파트 헬스, 엘.엘.씨. 암의 치료를 위하여 면역학적 및 화학요법 방법을 조합하는 약제학적 조성물
US20200289188A1 (en) * 2019-03-15 2020-09-17 Boston Scientific Scimed, Inc. Spatially multiplexed waveform for selective cell ablation
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
US20210161582A1 (en) * 2019-12-03 2021-06-03 St. Jude Medical, Cardiology Division, Inc. Electroporation system and method
CN111317557A (zh) * 2020-03-12 2020-06-23 北京三春晖医疗器械有限公司 一种靶向消融细胞方法和系统
KR102405967B1 (ko) * 2020-06-11 2022-06-07 인하대학교 산학협력단 실시간 영상기술 기반 전기장 인가 시스템 및 방법
CN112694974B (zh) * 2020-11-26 2023-02-10 中国石油大学(华东) 针对纳秒脉冲电场消融动态监测系统构建及监测方法
WO2022174064A2 (en) 2021-02-12 2022-08-18 Rampart Health, L.L.C. Therapeutic composition and method combining multiplex immunotherapy with cancer vaccine for the treatment of cancer
CA3214189A1 (en) 2021-04-07 2022-10-13 Vojtech NEDVED Pulsed field ablation device and method
CN113229928B (zh) * 2021-06-18 2023-12-15 杭州维纳安可医疗科技有限责任公司 电极针、消融设备及消融方法、装置、存储介质
CN113229930B (zh) * 2021-06-18 2023-09-22 杭州维纳安可医疗科技有限责任公司 电极针、消融设备及消融方法、装置、存储介质
EP4366637A1 (en) 2021-07-06 2024-05-15 BTL Medical Development A.S. Pulsed field ablation device and method
EP4404857A1 (en) * 2021-09-20 2024-07-31 Galvanize Therapeutics, Inc. Controlled lesion and immune response to pulsed electric field therapy
WO2023172773A1 (en) * 2022-03-11 2023-09-14 Virginia Tech Intellectual Properties, Inc. Systems and methods of using pulsed electric fields to spatially control cell death mechanisms
WO2024075034A1 (en) 2022-10-05 2024-04-11 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
CN118044871A (zh) * 2022-11-10 2024-05-17 杭州德诺电生理医疗科技有限公司 一种脉冲消融系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280513A (zh) * 1997-11-06 2001-01-17 A+科学投资股份公司 单个细胞结构和细胞器官结构的电渗透方法及其应用
US20020193833A1 (en) * 1999-03-25 2002-12-19 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
CN1658924A (zh) * 2002-04-16 2005-08-24 塞托·帕尔斯科技公司 借助于平移电场和电极极性反转治疗生物体部位的方法
CN101085391A (zh) * 2007-06-29 2007-12-12 重庆大学 高压纳秒脉冲诱导肿瘤细胞凋亡的装置
US20080071262A1 (en) * 2006-09-14 2008-03-20 Larry Azure Tissue ablation and removal
US20080132885A1 (en) * 2006-12-01 2008-06-05 Boris Rubinsky Methods for treating tissue sites using electroporation

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044898A (en) 1910-06-14 1912-11-19 Alexander Grant Mcgregor Fluid-pressure-controlling system for motor-vehicles.
JPS5743500Y2 (zh) 1976-09-16 1982-09-25
US4483338A (en) 1981-06-12 1984-11-20 Raychem Corporation Bi-Polar electrocautery needle
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
WO1994017856A1 (en) 1993-02-02 1994-08-18 Vidamed, Inc. Transurethral needle ablation device and method
US5464437A (en) 1993-07-08 1995-11-07 Urologix, Inc. Benign prostatic hyperplasia treatment catheter with urethral cooling
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US5672174A (en) 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6461350B1 (en) 1995-11-22 2002-10-08 Arthrocare Corporation Systems and methods for electrosurgical-assisted lipectomy
US20020040204A1 (en) 1996-06-24 2002-04-04 Dev Nagendu B. Electroporation-enhanced inhibition of vascular neointimal hyperplasia
US6505629B1 (en) 1996-07-23 2003-01-14 Endocare, Inc. Cryosurgical system with protective warming feature
US6102885A (en) 1996-08-08 2000-08-15 Bass; Lawrence S. Device for suction-assisted lipectomy and method of using same
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US5931807A (en) 1997-04-10 1999-08-03 Sonique Surgical Systems, Inc. Microwave-assisted liposuction apparatus
DE19726186A1 (de) 1997-06-20 1998-12-24 Boehringer Ingelheim Int Komplexe für den Transport von Nukleinsäure in höhere eukaryotische Zellen
AU9472998A (en) 1997-09-04 1999-03-22 Science Research Laboratory, Inc. Cell separation using electric fields
US6135990A (en) * 1997-12-17 2000-10-24 University Of South Florida Electroporation device and method
US6120493A (en) * 1998-01-27 2000-09-19 Genetronics, Inc. Method for the introduction of therapeutic agents utilizing an electroporation apparatus
US6623480B1 (en) 1998-07-24 2003-09-23 University Of Kentucky Research Foundation Flexible recording/high energy electrode catheter with anchor for ablation of atrial flutter by radio frequency energy
DE69938871D1 (de) 1998-12-03 2008-07-17 Univ California Stimulierung von T-Zellen gegen Selbstantigene unter Verwendung von CTLA-4 inhibierenden Wirkstoffen
US6214297B1 (en) 1999-03-24 2001-04-10 The Ohio State University High voltage pulse generator
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US6613026B1 (en) 1999-12-08 2003-09-02 Scimed Life Systems, Inc. Lateral needle-less injection apparatus and method
US6379348B1 (en) 2000-03-15 2002-04-30 Gary M. Onik Combined electrosurgical-cryosurgical instrument
US6725095B2 (en) 2000-04-13 2004-04-20 Celsion Corporation Thermotherapy method for treatment and prevention of cancer in male and female patients and cosmetic ablation of tissue
US6905498B2 (en) 2000-04-27 2005-06-14 Atricure Inc. Transmural ablation device with EKG sensor and pacing electrode
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
US6408199B1 (en) 2000-07-07 2002-06-18 Biosense, Inc. Bipolar mapping of intracardiac potentials with electrode having blood permeable covering
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US7291129B2 (en) 2000-10-02 2007-11-06 Novasys Medical Inc. Apparatus and methods for treating female urinary incontinence
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US20020087151A1 (en) 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US6743226B2 (en) 2001-02-09 2004-06-01 Cosman Company, Inc. Adjustable trans-urethral radio-frequency ablation
US6827714B2 (en) 2001-03-07 2004-12-07 Scimed Life Systems, Inc. Internal indifferent electrode device for use with lesion creation apparatus and method of forming lesions using the same
US7244232B2 (en) 2001-03-07 2007-07-17 Biomed Solutions, Llc Process for identifying cancerous and/or metastatic cells of a living organism
US6733485B1 (en) * 2001-05-25 2004-05-11 Advanced Bionics Corporation Microstimulator-based electrochemotherapy methods and systems
CA2349506C (en) 2001-06-14 2009-12-08 Duke University A method for selective expression of therapeutic genes by hyperthermia
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
EP1441766B1 (en) 2001-10-16 2011-09-14 MacroGenics West, Inc. Antibodies that bind to cancer-associated antigen cd46 and methods of use thereof
US20030093067A1 (en) 2001-11-09 2003-05-15 Scimed Life Systems, Inc. Systems and methods for guiding catheters using registered images
US6741883B2 (en) 2002-02-28 2004-05-25 Houston Stereotactic Concepts, Inc. Audible feedback from positional guidance systems
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
EP1497414A1 (en) 2002-04-19 2005-01-19 I.D.M. Immuno-Designed Molecules Rapid generation of activated mononuclear antigen presenting cells from monocytes
US20030204161A1 (en) * 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US6932813B2 (en) 2002-05-03 2005-08-23 Scimed Life Systems, Inc. Ablation systems including insulated energy transmitting elements
US6814731B2 (en) 2002-05-20 2004-11-09 Scimed Life Systems, Inc. Methods for RF ablation using jet injection of conductive fluid
US7112197B2 (en) 2003-01-21 2006-09-26 Baylis Medical Company Inc. Surgical device with pressure monitoring ability
JP4374345B2 (ja) 2003-02-19 2009-12-02 タエウォン メディカル カンパニー リミテッド 高周波熱治療用ステント
US9259195B2 (en) 2003-06-18 2016-02-16 Koninklijke Philips N.V. Remotely held needle guide for CT fluoroscopy
AU2004311842C1 (en) 2003-12-24 2011-01-06 The Regents Of The University Of California Tissue ablation with irreversible electroporation
US20050214268A1 (en) 2004-03-25 2005-09-29 Cavanagh William A Iii Methods for treating tumors and cancerous tissues
JP4929159B2 (ja) 2004-04-16 2012-05-09 ヌーヴ セラピュティクス、インコーポレイテッド 画像誘導組織切除を改善するための装置
WO2005110263A2 (en) 2004-05-11 2005-11-24 Wisconsin Alumni Research Foundation Radiofrequency ablation with independently controllable ground pad conductors
US20050261672A1 (en) 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
US20080058706A1 (en) 2004-06-30 2008-03-06 Genetronics, Inc. Modular electroporation device with disposable electrode and drug delivery components
US20070083239A1 (en) 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
JP2006187446A (ja) 2005-01-06 2006-07-20 Olympus Corp 内視鏡用処置具
US20060264752A1 (en) 2005-04-27 2006-11-23 The Regents Of The University Of California Electroporation controlled with real time imaging
EP2439273B1 (en) 2005-05-09 2019-02-27 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
US8276590B2 (en) 2005-05-18 2012-10-02 Cooltouch Incorporated Thermally mediated tissue molding
US20060293730A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating restenosis sites using electroporation
US20060293725A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating fatty tissue sites using electroporation
US8114070B2 (en) 2005-06-24 2012-02-14 Angiodynamics, Inc. Methods and systems for treating BPH using electroporation
US20070031338A1 (en) 2005-08-02 2007-02-08 Zabinski Peter P Embolized cryoablation for treatment of tumors
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
JP2009506873A (ja) 2005-09-07 2009-02-19 ザ ファウンドリー, インコーポレイテッド 皮下構造を破壊するための装置および方法
CN101346101B (zh) 2006-01-05 2011-11-09 松下电器产业株式会社 血液检查装置
US7864129B2 (en) 2006-04-04 2011-01-04 Namiki Seimitsu Houseki Kabushiki Kaisha Radio frequency medical treatment device and system and usage method thereof
US20080033417A1 (en) 2006-08-04 2008-02-07 Nields Morgan W Apparatus for planning and performing thermal ablation
JP2010500153A (ja) 2006-08-14 2010-01-07 ノベリス・インコーポレーテッド 画像化装置、画像化システム、および画像化の方法
US9320794B2 (en) 2006-11-13 2016-04-26 Immunovative Therapies, Ltd. Ablative immunotherapy
US20080132884A1 (en) 2006-12-01 2008-06-05 Boris Rubinsky Systems for treating tissue sites using electroporation
DE102006061178A1 (de) 2006-12-22 2008-06-26 Siemens Ag System zur Durchführung und Überwachung minimal-invasiver Eingriffe
US8226648B2 (en) 2007-12-31 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive flexible polymer bipolar electrode
US8192424B2 (en) 2007-01-05 2012-06-05 Arthrocare Corporation Electrosurgical system with suction control apparatus, system and method
EP2532320A3 (en) 2007-04-19 2013-04-03 Miramar Labs, Inc. Apparatus for reducing sweat production
US9387036B2 (en) * 2007-05-14 2016-07-12 Pyrexar Medical Inc. Apparatus and method for selectively heating a deposit in fatty tissue in a body
US20080312581A1 (en) * 2007-06-06 2008-12-18 Biovaluation & Analysis, Inc. Peptosomes for Use in Acoustically Mediated Intracellular Drug Delivery in vivo
US8172757B2 (en) 2007-06-18 2012-05-08 Sunnybrook Health Sciences Centre Methods and devices for image-guided manipulation or sensing or anatomic structures
WO2009014708A2 (en) 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
US9044212B2 (en) 2007-07-30 2015-06-02 Nuvue Therapeutics, Inc. Fluid flowing device and method for tissue diagnosis or therapy
WO2009016155A2 (en) 2007-07-31 2009-02-05 Total Petrochemicals Research Feluy Use of phosphorus modified molecular sieves in conversion of organics to olefins
US8535306B2 (en) 2007-11-05 2013-09-17 Angiodynamics, Inc. Ablation devices and methods of using the same
CA2706563C (en) 2007-11-21 2018-08-21 Focus Surgery, Inc. Method of diagnosis and treatment of tumors using high intensity focused ultrasound
US20090177094A1 (en) * 2008-01-08 2009-07-09 Oncoscope, Inc. Systems and methods for tissue examination, diagnostic, treatment, and/or monitoring
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US9198733B2 (en) * 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
EP3646917B1 (en) 2008-05-06 2021-04-28 Corindus, Inc Catheter system
DE102008030242A1 (de) 2008-06-25 2010-01-07 Siemens Aktiengesellschaft Verfahren zur Bildüberwachung einer irreversiblen Elektroporations-Behandlung sowie zugehörige Vorrichtung
US8221411B2 (en) 2008-07-28 2012-07-17 Medtronic, Inc. Systems and methods for cardiac tissue electroporation ablation
US10736689B2 (en) 2008-08-20 2020-08-11 Prostacare Pty Ltd Low-corrosion electrode for treating tissue
US9408654B2 (en) 2008-09-03 2016-08-09 Endocare, Inc. Modular pulsed pressure device for the transport of liquid cryogen to a cryoprobe
EP2370593B1 (en) 2008-11-28 2016-03-30 Emory University Methods for determining the efficacy of pd-1 antagonists
US20100152725A1 (en) 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
WO2010093692A2 (en) 2009-02-10 2010-08-19 Hobbs Eamonn P Irreversible electroporation and tissue regeneration
US20100221351A1 (en) 2009-02-27 2010-09-02 University Of South Carolina Controlled Drug Delivery Using a Thermally Responsive Nanocapsule to Augment Cryoablation
WO2010117806A1 (en) 2009-03-31 2010-10-14 Angiodynamics, Inc. System and method for estimating a treatment region for a medical treatment device and for interactively planning a treatment of a patient
GB2481760B (en) 2009-04-30 2014-01-29 Alma Lasers Ltd Devices for dermatological treatment
CN102481115B (zh) 2009-06-05 2014-11-26 皇家飞利浦电子股份有限公司 用于集成式活检和治疗的系统和方法
WO2011014946A1 (en) 2009-08-02 2011-02-10 Samad Talebpour Cell concentration, capture and lysis devices and methods of use thereof
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US20110082534A1 (en) 2009-10-06 2011-04-07 Wallace Michael P Ultrasound-enhanced stenosis therapy
US20110112520A1 (en) 2009-11-11 2011-05-12 Invasix Corporation Method and device for fat treatment
EP2519175A1 (en) 2009-12-30 2012-11-07 Koninklijke Philips Electronics N.V. Dynamic ablation device
US20110160514A1 (en) 2009-12-31 2011-06-30 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US20110190764A1 (en) 2010-01-29 2011-08-04 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
WO2011103096A2 (en) 2010-02-16 2011-08-25 Angiodynamics, Inc. Ablation device with guide sleeves
US9924997B2 (en) 2010-05-05 2018-03-27 Ablacor Medical Corporation Anchored ablation catheter
US9394535B2 (en) 2010-05-25 2016-07-19 National University Corporation Kumamoto University Plasma irradiation device for substance introduction and substance introduction method using plasma irradiation device
US8557777B2 (en) 2010-07-09 2013-10-15 The Board Of Trustees Of The University Of Illinois Methods for treating cancer using prostate specific antigen and tumor endothelial marker peptides
JP2013531043A (ja) 2010-07-16 2013-08-01 ザ・ジョンズ・ホプキンス・ユニバーシティー 癌の免疫療法のための方法及び組成物
WO2012010969A2 (en) 2010-07-20 2012-01-26 Board Of Regents, The University Of Texas System Electromechanical lysing of algae cells
CN103582463B (zh) 2011-01-19 2018-02-13 弗拉克泰尔实验室公司 用于组织处理的装置与方法
US8880189B2 (en) 2011-02-23 2014-11-04 John D. LIPANI System and method for electrical stimulation of the lumbar vertebral column
US9314620B2 (en) * 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US20140012251A1 (en) 2011-03-07 2014-01-09 Tidal Wave Technology, Inc. Ablation devices and methods
US20120253188A1 (en) 2011-03-29 2012-10-04 University Of Rochester Reducing risk of complications associated with tissue ablation
KR102289394B1 (ko) 2011-03-31 2021-08-13 머크 샤프 앤드 돔 코포레이션 인간 프로그램화된 사멸 수용체 pd-1에 대한 항체의 안정한 제제 및 관련된 치료
WO2012135786A2 (en) 2011-04-01 2012-10-04 The Regents Of The University Of California Cryoelectric systems and methods for treatment of biological matter
US20120252087A1 (en) 2011-04-04 2012-10-04 Board Of Regents, The University Of Texas System Bipolar Flyback Power Supply
AU2012250807A1 (en) 2011-05-03 2013-12-12 Immunovative Therapies, Ltd. Induction of IL-12 using immunotherapy
EP2755587B1 (en) 2011-09-14 2018-11-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
EP3351261B1 (en) 2011-10-11 2021-06-02 Universität Zürich Combination medicament comprising il-12 and an agent for blockade of t-cell inhibitory molecules for tumour therapy
US20130108667A1 (en) 2011-10-27 2013-05-02 Soiwisa Soikum Method, apparatus and system for electroporation
US9204916B2 (en) 2011-10-27 2015-12-08 Medtronic Cryocath Lp Cryogenic balloon device with radiofrequency tip
GB201120779D0 (en) 2011-12-02 2012-01-11 Immodulon Therapeutics Ltd Cancer therapy
WO2013141974A1 (en) 2012-02-08 2013-09-26 Convergent Life Sciences, Inc. System and method for using medical image fusion
CN104519817B (zh) 2012-04-24 2017-11-10 西比姆公司 用于颈动脉体摘除的血管内导管和方法
US20130289369A1 (en) 2012-04-27 2013-10-31 Volcano Corporation Methods and Apparatus for Renal Neuromodulation
SG10201603896RA (en) 2012-05-04 2016-07-28 Pfizer Prostate-associated antigens and vaccine-based immunotherapy regimens
US9717555B2 (en) 2012-05-14 2017-08-01 Biosense Webster (Israel), Ltd. Catheter with helical end section for vessel ablation
EP2879498A4 (en) 2012-07-30 2016-03-30 Alex Wah Hin Yeung BY TREATMENT OF AT LEAST TWO OR ALL THREE OF THE FOLLOWING COMPONENTS SUCH AS TUMOR CELLS, AN ONCOLYTIC VIRUS VECTOR WITH TRANSGENIC EXPRESSION OF GM-CSF AND AN IMMUNE TEST MODULE DEVELOPED TUMOR SPECIFIC LIVING AND IN VIVO CANCER VACCINE SYSTEM
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US20140205609A1 (en) 2013-01-24 2014-07-24 Fred T. Valentine Methods for inducing systemic immune responses to cancer
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9023022B2 (en) 2013-03-15 2015-05-05 Warsaw Orthopedic, Inc. Nerve and soft tissue ablation device having release instrument
EP2967707B1 (en) 2013-03-15 2023-11-08 Varian Medical Systems, Inc. Cryogenic system and methods
JP6139772B2 (ja) 2013-03-15 2017-05-31 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 電極パッドと共に使用するための制御ユニットおよび漏電を推定するための方法
JP6426706B2 (ja) * 2013-04-18 2018-11-21 イミューン デザイン コーポレイション がん処置で使用するためのgla単剤療法
US20160128767A1 (en) 2013-06-05 2016-05-12 Metavention, Inc. Modulation of targeted nerve fibers
US10154869B2 (en) 2013-08-02 2018-12-18 Gary M. Onik System and method for creating radio-frequency energy electrical membrane breakdown for tissue ablation
US20190183561A1 (en) 2013-08-02 2019-06-20 Immunsys, Inc. In situ therapeutic cancer vaccine creation system and method
DK3077041T3 (da) 2013-12-05 2024-10-14 Rfemb Holdings Llc Immunterapi mod kræft ved radiofrekvent elektrisk nedbrydning af membraner (rf-emb)
US20240156513A1 (en) * 2013-12-05 2024-05-16 Immunsys, Inc. Cancer Immunotherapy by Radiofrequency Electrical Membrane Breakdown (RF-EMB)
RU2712635C1 (ru) 2014-02-05 2020-01-30 Репонекс Фармасьютикалз А/С Композиции для содействия заживлению кожных язв и ран
WO2015125159A1 (en) 2014-02-21 2015-08-27 Nektar Therapeutics (India) Pvt. Ltd. Il-2rbeta-selective agonists in combination with an anti-ctla-4 antibody or an an anti-pd-1 antibody
WO2015140150A1 (en) 2014-03-17 2015-09-24 Piotr Jachimczak Combination for use in a method of treating cancer
WO2015153639A1 (en) 2014-03-31 2015-10-08 The Johns Hopkins University Use of bacteria, bacterial products, and other immunoregulatory entities in combination with anti-ctla-4 and/or anti-pd-1 antibodies to treat solid tumor malignancies
AU2015289081B2 (en) 2014-07-16 2020-02-06 Transgene Sa Combination of oncolytic virus with immune checkpoint modulators
WO2016033384A1 (en) 2014-08-28 2016-03-03 The General Hospital Corporation Injectable slurries and methods of manufacturing and using the same
KR102128856B1 (ko) 2015-01-30 2020-07-02 알에프이엠비 홀딩스, 엘엘씨 고주파 전기적 막 파괴를 이용하여 생명체의 바람직하지 않은 연조직을 절제하는 시스템
WO2016126905A2 (en) 2015-02-04 2016-08-11 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for reducing restenosis
US20180028260A1 (en) 2015-02-04 2018-02-01 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of adipose tissue and removal of unwanted body fat
US20180028267A1 (en) 2015-02-04 2018-02-01 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of benign prostatic hyperplasia
CA2975888A1 (en) 2015-02-06 2016-08-11 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of cardiac rhythm disorders and for renal neuromodulation
ES2873093T3 (es) 2015-03-26 2021-11-03 Oncosec Medical Inc Método para el tratamiento de neoplasias malignas
WO2016209936A1 (en) 2015-06-22 2016-12-29 Duke University Synergistic nanotherapy systems and methods of use thereof
EP3365062B1 (en) 2015-10-19 2024-09-18 CG Oncology, Inc. Methods of treating solid or lymphatic tumors by combination therapy
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
US11612426B2 (en) 2016-01-15 2023-03-28 Immunsys, Inc. Immunologic treatment of cancer
MA45595A (fr) 2016-07-07 2019-05-15 Iovance Biotherapeutics Inc Protéines de liaison au ligand (1) de mort programmée (1) (pd-l1) et leurs procédés d'utilisation
CN109922822A (zh) 2016-09-23 2019-06-21 昂科赛克医疗公司 调节对检查点抑制剂疗法的应答
US20180154142A1 (en) 2016-12-05 2018-06-07 Old Dominion University Research Foundation Methods and devices for treatment of tumors with nano-pulse stimulation
KR20210136058A (ko) 2019-03-01 2021-11-16 램파트 헬스, 엘.엘.씨. 암의 치료를 위하여 면역학적 및 화학요법 방법을 조합하는 약제학적 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280513A (zh) * 1997-11-06 2001-01-17 A+科学投资股份公司 单个细胞结构和细胞器官结构的电渗透方法及其应用
US20020193833A1 (en) * 1999-03-25 2002-12-19 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
CN1658924A (zh) * 2002-04-16 2005-08-24 塞托·帕尔斯科技公司 借助于平移电场和电极极性反转治疗生物体部位的方法
US20080071262A1 (en) * 2006-09-14 2008-03-20 Larry Azure Tissue ablation and removal
US20080132885A1 (en) * 2006-12-01 2008-06-05 Boris Rubinsky Methods for treating tissue sites using electroporation
CN101085391A (zh) * 2007-06-29 2007-12-12 重庆大学 高压纳秒脉冲诱导肿瘤细胞凋亡的装置

Also Published As

Publication number Publication date
AU2020200688A1 (en) 2020-02-20
US20160367310A1 (en) 2016-12-22
JP2016538961A (ja) 2016-12-15
US10849678B2 (en) 2020-12-01
AU2020200688B2 (en) 2021-07-01
AU2014360318A1 (en) 2016-06-30
JP6723153B2 (ja) 2020-07-15
MX2016007411A (es) 2017-01-09
KR102171496B1 (ko) 2020-10-30
CN105792883A (zh) 2016-07-20
HK1222360A1 (zh) 2017-06-30
EP3077041A4 (en) 2017-08-23
CL2016001366A1 (es) 2017-06-30
EP3077041B1 (en) 2024-07-10
DK3077041T3 (da) 2024-10-14
FI3077041T3 (fi) 2024-10-16
IL245957B (en) 2022-04-01
WO2015085162A1 (en) 2015-06-11
DOP2016000126A (es) 2017-01-31
IL245957A0 (en) 2016-07-31
US20200038093A1 (en) 2020-02-06
CA2932765A1 (en) 2015-06-11
PH12016501065A1 (en) 2017-02-06
EP3077041A1 (en) 2016-10-12
KR20160095080A (ko) 2016-08-10
AU2014360318B2 (en) 2019-10-31
IL290976A (en) 2022-05-01
MX2022002416A (es) 2022-04-01
EA201691073A1 (ru) 2016-12-30
US11696797B2 (en) 2023-07-11
US20210177491A1 (en) 2021-06-17
CN105792883B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
US11696797B2 (en) Cancer immunotherapy by radiofrequency electrical membrane breakdown (RF-EMB)
US10154869B2 (en) System and method for creating radio-frequency energy electrical membrane breakdown for tissue ablation
US11723709B2 (en) System, method and computer-accessible medium for in-vivo tissue ablation and/or damage
US11033321B2 (en) Tissue ablation with irreversible electroporation
Ellis et al. Nonthermal irreversible electroporation for intracranial surgical applications
JP2022525345A (ja) 選択的細胞アブレーションのための波形発生器と制御
WO2023172773A1 (en) Systems and methods of using pulsed electric fields to spatially control cell death mechanisms
JP2022542825A (ja) パルス電界による生殖器の治療
WO2019232358A9 (en) Electro-thermal therapy for the treatment of diseased or unwanted tissue
US20240156513A1 (en) Cancer Immunotherapy by Radiofrequency Electrical Membrane Breakdown (RF-EMB)
Takeda et al. Radiofrequency lesioning through deep brain stimulation electrodes in patients with generalized dystonia
Ammar et al. Pathophysiology of renal denervation procedures: from renal nerve anatomy to procedural parameters
AU2017279765A1 (en) Tissue ablation with irreversible electroporation
Mattison An Examination of the Cardiothoracic Tissue Biophysical Response to Electroporation Therapies
Aycock et al. Extended interpulse delays improve therapeutic efficacy of microsecond-duration pulsed electric fields
WO2020243461A1 (en) Methods and apparatus for identifying and mitigating arcing during pulsed electric field treatments
Kothari Radiofrequency Lesioning in Pain Management: Principles and Clinical Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40031252

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200519

WD01 Invention patent application deemed withdrawn after publication