CN111154760A - 抑制人PCSK9基因表达的siRNA及其应用 - Google Patents

抑制人PCSK9基因表达的siRNA及其应用 Download PDF

Info

Publication number
CN111154760A
CN111154760A CN202010059160.9A CN202010059160A CN111154760A CN 111154760 A CN111154760 A CN 111154760A CN 202010059160 A CN202010059160 A CN 202010059160A CN 111154760 A CN111154760 A CN 111154760A
Authority
CN
China
Prior art keywords
sirna
pcsk9
expression
cells
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010059160.9A
Other languages
English (en)
Inventor
谭树华
王维
陈佳利
陈雪梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202010059160.9A priority Critical patent/CN111154760A/zh
Publication of CN111154760A publication Critical patent/CN111154760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21061Kexin (3.4.21.61), i.e. proprotein convertase subtilisin/kexin type 9

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Obesity (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种特异抑制人蛋白转化酶枯草溶菌素9(PCSK9)靶基因表达的siRNA序列及其用途。所述siRNA可化学合成,也可根据其序列构建成相应的重组慢病毒或腺相关病毒等。上述siRNA或病毒转染人肝癌细胞HepG2及人正常肝细胞LO2后可有效抑制PCSK9表达,增加低密度脂蛋白受体(LDLR)蛋白水平,显著增强肝细胞摄取低密度脂蛋白(LDL)的活性。重组慢病毒高压尾静脉注射给药后可显著降低高胆固醇血症模型小鼠血浆总胆固醇(TC)、低密度脂蛋白胆固醇(LDL‑C)水平。上述siRNA或其重组病毒或其修饰物可用于预防和/或治疗高血脂症、动脉粥样硬化、心脑血管疾病、肥胖、糖尿病及肾病等病症。

Description

抑制人PCSK9基因表达的siRNA及其应用
技术领域
本发明属于生物医药领域,具体涉及一种抑制人蛋白转化酶枯草溶菌素9(PCSK9)基因表达的siRNA及其在制备治疗PCSK9介导的相关疾病如高血脂 症、动脉粥样硬化、心脑血管疾病、肥胖、糖尿病、肾病等病症药物中的应用。
背景技术
高胆固醇血症可分为家族性和非家族性,临床表现为高血浆低密度脂蛋白胆 固醇水平(low density lipoprotein cholesterol,LDL-C),是心血管类疾病发生的 重要因素。目前临床上广泛应用的降血脂药物以他汀类为主,但相当一部分患者 会对其产生耐受(Eckel(2010)J Clin Endocrinol Metab 95:2015-22),接受他汀类药 物治疗后无法使LDL-C水平降低至期望值(Toutouzas et al.(2010)Expert Opin Pharmacother 11:1659-72),因此研制新型降脂药物具有重要的临床应用价值。 PCSK9是由肝脏合成与分泌的蛋白酶,在胆固醇代谢中具有重要作用,可影响 肝脏低密度脂蛋白受体(low densitylipoprotein recepter,LDLR)水平(Fitzgerald et al.(2014)The Lancet 383:60-68)。PCSK9分泌进入血液循环后可与肝细胞表面 LDL-R的表皮生长因子样结构域特异性结合,介导其进入肝细胞到达溶酶体, 使LDL-R在溶酶体中降解,从而导致肝细胞表面LDL-R减少,进而降低肝脏 结合和清除LDL-C的能力,最终导致血液中LDL-C水平升高(Zhang etal.(2008) Proc Natl Acad Sci U S A 105:13045-50)。因此,可通过抑制PCSK9治疗高胆固 醇血症(Norata et al.(2014)Annu Rev Pharmacol Toxicol 54:273-93)。此外,PCSK9表达升高与肥胖及2型糖尿病密切相关(Levenson et al.(2017)Pediatr Diabetes 18:755-60;Yang et al.(2016)Diabetes Metab Res Rev 32:193-9),也与肾病综合症 及蛋白尿等慢性肾病(Pavlakou et al.(2017)Int Urol Nephrol 49: 1015-24),因此,抑制PCSK9表达可成为预防和治疗这些相关性疾病的重要途 径。
RNA干扰(RNA interference,RNAi)技术于1998年由Fire等(Fire et al.(1998)Nature 391:806-11)首次发现,随后迅速获得广泛应用。研究表明,在不同生物 中均存在RNA干扰现象(Wilson et al.(2013)Annu Rev Biophys 42:217-39)。RNA 干扰中引起基因沉默的双链RNA为siRNA,一般由一段长约21-23个核苷酸的 双链RNA组成,其序列中包括与靶mRNA配对的正义链和反义链,从而诱发宿 主细胞针对这些mRNA的降解反应(Singh etal.(2018)Artif Cells Nanomed Biotechnol 46:274-83)。虽然siRNA能特异性抑制靶基因表达,但细胞内的siRNA 很容易降解,难以实现稳定的基因沉默。慢病毒载体在细胞内感染效率高,免疫 原型低,既能干扰分裂期的细胞又能感染非分裂期的细胞,且其介导的RNAi 能在各种动物细胞内长期稳定地表达siRNA,抑制靶基因表达,因此具有高效、 稳定、特异性强、适用范围广的特点。
目前已有多种RNAi药物处于研发阶段或已获批上市,并显示出很好的治疗 效果。例如,2018年8月10日,美国食品和药物管理局(FDA)批准了第一个siRNA 药物ONPATTRO(patisiran),用于治疗多发性神经病变的遗传性转甲状腺素蛋 白淀粉样变性(hATTR)(Setten et al.(2019)Nat Rev Drug Discov 18:421-46)。 Alnylam公司的ALN-PC可抑制PCSK9的转录,且已进入I期临床试验(Della Badia et al.(2016)Pharmacol Ther 164:183-94)。因此,利用RNAi抑制特定疾病 靶基因表达已成为一种有效的疾病治疗途径。
发明内容
本发明的第一个目的在于提供一种有效抑制人PCSK9基因表达的siRNA。
本发明的第二个目的在于提供一种由上述siRNA序列构建而成的重组病毒 表达载体。
本发明的第三个目的在于提供上述siRNA、siRNA修饰物及重组病毒在制备 高血脂症、动脉粥样硬化、心脑血管疾病、糖尿病等与PCSK9相关病症药物中 的应用。
为实现上述第一个目的,本发明的技术方案如下:采用生物信息学方法从Genebank获取人、金黄地鼠及猴的PCSK9 mRNA序列(RefSeq ID编号依次为 NM_174936.3、XM_013114871.1和NM_001112660.1),用DNA man(V6)软件 寻找mRNA保守区序列。采用RNAstructure分析软件对PCSK9mRNA序列的 二级结构进行预测,依据siRNA设计原则,综合分析其GC含量、mRNA作用 位点的二级结构、siRNA对碱基偏爱性的要求等。在siRNA在线设计软件DSIR 设计基础上,进一步寻找合适的siRNA靶序列,初步筛选出3对siRNA序列。 再用NCBI GeneBank提供的BLAST软件,选择转录本参考序列数据库(Transcript ReferenceSequences),对上述siRNA序列进行同源分析,排除siRNA非特异性 抑制PCSK9以外其它基因的可能。
初步筛选出的3对siRNA由上海吉玛制药技术有限公司合成,再通过体外 细胞实验筛选出能有效抑制PCSK9基因表达的siRNA即si1318,所述siRNA序 列为:
正义链:5’-GGGACGAUGCCUGCCUCUAdTdT-3’(SEQ ID NO:3)
反义链:5’-UAGAGGCAGGCAUCGUCCCdTdT-3’(SEQ ID NO:4)
所述的抑制PCSK9基因表达的siRNA序列3’端垂悬有dTdT。
为实现上述第二个目的,本发明采取的技术方案是:根据筛选的si1318序 列,设计对应的带有环状结构的shDNA序列(SEQ ID NO:7和SEQ ID NO:8), shDNA序列框架中的loop结构选用TTCAAGAGA,shDNA的转录终止序列采 用TTTTTT结构。正义链模板的5’端添加了GATCC,反义链模板的5’端添加了 AATTC,分别与BamHI和EcoR I酶切后形成的粘端互补。
所述DNA分子序列为:
正义链:
5’GATCCGGGACGATGCCTGCCTCTATTCAAGAGATAGAGGCAGGCATCGT CCCTTTTTTG3’(SEQID NO:7)
反义链:
5’AATTCAAAAAAGGGACGATGCCTGCCTCTATCTCTTGAATAGAGGCAGG CATCGTCCCG3’(SEQID NO:8)
在此基础上,将上述序列插入慢病毒表达载体pLVX-shRNA2(Clontech产品) 的BamH I和EcoR I酶切位点从而构建出重组慢病毒表达载体,该重组表达载体 含有人U6启动子。
将上所述重组慢病毒表达载体和病毒包装系统共转染病毒包装细胞。所述病 毒包装系统包含有psPAX2和pMD2.G质粒,所述病毒包装细胞为293T细胞。
为实现上述第三个目的,本发明采取的技术方案是:
通过转染人肝癌细胞HepG2和人正常肝细胞LO2体外实验证明,所述 siRNA可显著抑制人肝细胞PCSK9表达,上调肝细胞LDLR蛋白水平,并增强 肝细胞摄取LDL-C的功能。同时,高胆固醇血症模型小鼠体内实验证明,根据 基于所述siRNA序列构建成的PCSK9 shRNA重组慢病毒,尾静脉给药后可显著 降低高脂血症小鼠血浆LDL-C及TC的水平。
所述siRNA、及其重组慢病毒在制备治疗高血脂症、动脉粥样硬化、心脑血 管疾病、糖尿病等与PCSK9相关病症的药物中的应用。
本发明抑制PCSK9基因表达的siRNA可以通过人工合成的方法制备。
本发明所述的抑制PCSK9基因表达的重组病毒表达载体为慢病毒表达载体 或腺相关病毒表达载体。
有益效果:本发明提供了一种特异性抑制PCSK9基因表达的siRNA,该 siRNA或根据其序列构建成的相应的重组病毒如慢病毒给药后可显著特异性抑 制人肝脏细胞PCSK9的表达与分泌,上调肝细胞LDLR蛋白水平,并增强肝细 胞摄取LDL-C的功能,体内实验进一步证明其显著降低高脂血症小鼠血浆LDL-C及TC的水平。所述siRNA或其重组病毒可用于制备预防和/或治疗高血 脂症、动脉粥样硬化、心脑血管疾病、糖尿病等与PCSK9相关病症的药物。
附图说明
图1是Western Blot检测30nM si1309、si1318及si1432转染人肝癌细胞 HepG2(图1A-B)及人正常肝细胞LO2(图1C-D)后抑制PCSK9表达及上调 LDLR水平示意图;
图2是流式细胞术检测si1318(30nM)转染人肝癌细胞HepG2及人正常肝 细胞LO2后上调细胞表面LDLR结果示意图;
图3是免疫荧光检测si1318(30nM)转染人肝癌细胞HepG2(图3A)及人 正常肝细胞LO2(图3B)后抑制PCSK9对LDLR的降解结果示意图;
图4是si1318(30nM)转染人肝癌细胞HepG2(图4A)及人正常肝细胞 LO2(图4B)后增强其DiI-LDL摄取功能结果示意图;
图5是慢病毒shRNA重组表达质粒示意图;
图6是Western Blot检测慢病毒sh1318感染人肝癌细胞HepG2(图6A-B) 及人正常肝细胞LO2(图6C-D)后显著沉默PCSK9基因表达并增加LDLR蛋 白水平示意图;
图7是流式细胞术检测慢病毒LV-sh1318感染人肝癌细胞HepG2及人正常 肝细胞LO2后增加细胞表面LDLR蛋白水平;
图8是免疫荧光检测慢病毒LV-sh1318感染人肝癌细胞HepG2(图8A)及 人正常肝细胞LO2(图8B)后抑制PCSK9对LDLR的降解示意;
图9是慢病毒LV-sh1318感染人肝癌细胞HepG2(图9A)及人正常肝细胞 LO2(图9B)后增强其DiI-LDL摄取功能结果示意;
图10是高胆固醇血症模型小鼠尾静脉注射慢病毒LV-sh1318给药后显著降 低血清总胆固醇和低密度脂蛋白胆固醇(图10A-B)结果示意;
图11是高胆固醇血症模型小鼠尾静脉注射慢病毒LV-sh1318给药后显著抑 制小鼠肝脏PCSK9表达(图11A)并增加LDLR蛋白水平(图11B)结果示意。
具体实施方式
下面结合具体实施例进一步说明本发明。以下实施例中所用材料、试剂、仪 器设备等,如无特殊说明,均可从商业途径获得,所有方法均为本领域中公知的 常规方法。
实施例1靶向人PCSK9的siRNA设计与合成
采用生物信息学方法从Genebank获取人、金黄地鼠及猴的PCSK9 mRNA 序列(RefSeq ID编号依次为NM_174936.3、XM_013114871.1和 NM_001112660.1),用DNA man(V6)软件寻找mRNA的保守区序列。采用 RNA structure分析软件对PCSK mRNA序列的二级结构进行预测,依据siRNA 设计原则,综合分析其GC含量、mRNA作用位点的二级结构、siRNA对碱基偏 爱性的要求等。在siRNA在线设计软件DSIR设计基础上,进一步寻找合适的siRNA靶序列,初步筛选出3对siRNA序列。再用NCBI GeneBank提供的BLAST 软件,选择转录本参考序列数据库(Transcript Reference Sequences),对上述siRNA 序列进行同源分析,排除siRNA非特异性抑制PCSK9以外其它基因的可能性。 本发明设计的3对siRNA序列分别为(由上海吉玛制药技术有限公司合成):
si1309:
正义链:5’-GCAACUUCCGGGACGAUGCdTdT-3’(SEQ ID NO:1)
反义链:5’-GCAUCGUCCCGGAAGUUGCdTdT-3’(SEQ ID NO:2)
si1318:
正义链:5’-GGGACGAUGCCUGCCUCUAdTdT-3’(SEQ ID NO:3)
反义链:5’-UAGAGGCAGGCAUCGUCCCdTdT-3’(SEQ ID NO:4)
si1432:
正义链:5’-GCUGUGUGGACCUCUUUGCdTdT-3’(SEQ ID NO:5)
反义链:5’-GCAAAGAGGUCCACACAGCdTdT-3’(SEQ ID NO:6)
实施例2Western blot检测靶向人PCSK9的siRNA转染HepG2及LO2细胞 对PCSK9及LDLR表达的影响
将HepG2及LO2细胞(均购自中国医学科学院基础医学研究所基础医学细 胞中心)调按1×105个/孔接种于12孔板,1ml/孔,37℃培养12h后吸尽培养基, 更换为500μl无血清、青霉素和链霉素的MEM培养基。设置PCSK9 siRNA药 物Inclisiran的siRNA序列为阳性对照(PC),另设空白对照组(NC)。用无 血清Opti-MEM培养基分别稀释siRNA(阴性对照NC、阳性对照PC、si1309、 si1318、si1432)和脂质体lipofectamineTM3000(Invitrogen公司),室温孵育5min 后,再将siRNA与脂质体混合,室温孵育15min后,逐滴加入孔板,每孔终体积600μl,siRNA的作用浓度均为30nM,培养箱孵育4h后,每孔更换为600μl 含10%胎牛血清、青霉素(100U/mL)和链霉素(100μg/mL)的MEM培养基继 续培养。转染48h后,更换为无血清Opti-MEM培养基培养。转染时间达到72h 后,收集培养板中的细胞,分别取每孔转染细胞和培养基上清提取蛋白,Western Blot检测PCSK9基因沉默效果。具体过程如下:取处理好的蛋白样品进行 SDS-PAGE电泳,分离胶浓度为10%,4℃,100V恒压转印120min,将蛋白转印到PVDF膜(Millipore公司产品);转印结束,将膜置于5%TBST(含有5% 脱脂牛奶和0.1%吐温20的TBS)中室温封闭1h;用5%TBST按1∶2500稀释Anti-PCSK9抗体(Abcam公司,货号ab181142)和Anti-LDL Receptor抗体(Abcam 公司,货号ab52818),4℃孵育过夜,TBST洗涤3遍,每次10min;用1%PBST(含 有1%BSA和0.1%吐温20的PBS)按1∶3000稀释GoatAnti-Rabbit IgG二抗(福 麦斯生物技术有限公司,货号FMS-RB01),室温孵育1h,TBST洗涤3遍,每 次10min;ECL显色,以各组目的蛋白条带灰度值计算沉默效率。结果(图1) 显示,与阴性对照相比,si1309、si1318和si1432组PCSK9基因表达均有降低, 但si1318下调PCSK9表达最为明显,且上调LDLR也最显著,因此,si1318即 为筛选出的沉默PCSK9效率最高的siRNA。
实施例3流式细胞术检测转染人PCSK9 siRNA对HepG2及LO2细胞表面 LDLR表达的影响
按实施例2所述方法转染HepG2及LO2细胞,转染48h后,每孔更换为无 血清Opti-MEM培养基培养。通过流式细胞仪检测LDLR水平。具体过程如下: 用胰酶消化细胞并用PBS清洗,离心收集细胞。用80%甲醇固定5min,离心弃 上清,加入封闭液(含有10%山羊血清、0.3M甘氨酸的PBS缓冲液)重悬沉淀, 室温静置30min。离心弃上清,用含1%BSA的PBS按1﹕100稀释的Anti-LDLR Receptor抗体(Abcam公司,货号ab52818)重悬沉淀,室温静置60min;离心 弃上清,用含1%BSA的PBS按1﹕300稀释的Alexa
Figure BDA0002373849140000071
488Goat Anti-Rabbit IgG二抗(福麦斯生物技术有限公司,货号FMS-RBaf48801)重悬沉淀,避光室 温孵育60min,以不加抗体孵育的细胞做为空白对照。在Guava easyCyte flow cytometry system流式细胞仪(Millipore公司产品)上检测HepG2及LO2细胞表 面LDLR数量变化。结果(图2)表明,靶向PCSK9的si1318可显著提升HepG2 及LO2细胞表面的LDLR水平。
实施例4免疫荧光检测人PCSK9 siRNA体外沉默PCSK9及提升LDLR水 平
将HepG2和LO2细胞调按1×105个/孔接种于共聚焦培养皿(NEST公司, 货号801002),1mL/孔,37℃培养12h后吸尽培养基,更换为900μl无血清、 青霉素和链霉素的MEM培养基。设置PCSK9 siRNA药物Inclisiran的siRNA序 列为阳性对照(PC),另设空白对照组(NC)。用无血清Opti-MEM培养基分 别稀释siRNA(阴性对照NC、阳性对照PC、si1318)和脂质体lipofectamineTM3000 (Invitrogen公司产品),室温孵育5min后,再将siRNA与脂质体混合,室温 孵育15min后,逐滴加入孔板,每孔终体积1mL,siRNA的作用浓度均为30nM。 培养箱孵育4h后,HepG2及LO2细胞各孔分别更换为1mL含10%胎牛血清、 青霉素(100U/mL)和链霉素(100μg/mL)的MEM和DMEM培养基继续培养。 转染时间达到48h后,每孔更换为无血清Opti-MEM培养基培养。
转染时间达到72h后,通过免疫荧光检测PCSK9基因的沉默效果及LDLR 提升水平。具体过程如下:弃上清,用PBS清洗残余培养基。每孔加入100μL 4% 多聚甲醛,室温固定30min。固定结束后,弃上清用PBS洗3次,每孔加入100 μL 0.2%的Triton X-100,对细胞进行通透20min。通透结束后,弃上清,用PBS 洗3次,每孔加入100μL封闭液(含有2%BSA的PBS)室温封闭1h。封闭结束 后,用一抗稀释液(1%BSA的PBS)分别按1∶100及1∶250稀释Anti-PCSK9 antibody抗体(Abcam公司,货号ab181142)和Anti-LDLR Receptor抗体(Abcam公司,货号ab52818),4℃孵育过夜,PBS洗涤3遍,每次5min;用1%PBS (含有1%BSA的PBS)按1∶400稀释Alexa
Figure BDA0002373849140000081
488Goat Anti-Rabbit IgG二 抗(福麦斯生物技术有限公司,货号FMS-RBaf48801),室温孵育1h,PBS洗 涤3遍,每次5min。二抗孵育结束后,取适量4,6-联脒-2-苯基吲哚 (4,6-diamidino-2-phenylindole,DAPI)覆盖细胞表面,避光静置5-10min后, 将孔板置于激光共聚焦扫描显微镜(Zeiss公司,型号LSM700)下拍照。结果 (图3)表明,靶向PCSK9的si1318可显著沉默HepG2及LO2细胞PCSK9表 达并提升LDLR水平。
实施例5转染人PCSK9 siRNA增强肝细胞摄取DiI-LDL的活性
将HepG2及LO2细胞调按1×104个/孔接种于96孔板,100μl/孔,37℃培养 12h后吸尽培养基,更换为90μl无血清、青霉素和链霉素的MEM培养基。设置 PCSK9 siRNA药物Inclisiran的siRNA序列为阳性对照(PC),另设空白对照组 (NC)。用无血清Opti-MEM培养基分别稀释siRNA(阴性对照NC、阳性对照 PC和si1318)和脂质体lipofectamineTM3000(Invitrogen公司),室温孵育5min 后,再将siRNA与脂质体混合,室温孵育15min后,逐滴加入孔板,每孔终体 积100μl,siRNA的作用浓度均为30nM。37℃孵育4h后,HepG2与LO2细胞每孔分别更换为100μl含10%胎牛血清、青霉素(100U/mL)和链霉素(100μg/mL) 的MEM和DMEM培养基继续培养。转染时间达到48h后,每孔更换为无血清 Opti-MEM培养基培养。转染时间达到72h后,向各孔中加入终浓度为20μg/ml的 DiI-LDL试剂(广州奕元生物科技公司),37℃继续避光孵育4h后,吸取各孔 培养基,用PBS清洗细胞两次后再加入100μl PBS,以不加DiI-LDL试剂的细胞 做为空白对照,采用Varioskan flash全波长荧光酶标仪,以520nm为激发光波 长、580nm为发射光波长,检测相对荧光单位值(Relative fluorescenceunits,RFU), 并进行数据统计,结果(图4)表明,靶向人PCSK9的si1318可以显著增强HepG2及LO2细胞摄取DiI-LDL的功能。
实施例6靶向人PCSK9的shRNA慢病毒载体构建
根据实施例2所筛选的si1318序列,设计与si1318对应的带有环状结构的 DNA序列(即对应siRNA的shDNA,其两条互补链中间由一个不能互补的5-8bp 的单链连接,shRNA由对应的DNA序列转录形成,转录后的RNA单链通过碱 基互补及形成茎环结构,中间不互补的地方形成环,以此形成shRNA)。
shRNA模板序列:
正义链:
5’GATCCGGGACGATGCCTGCCTCTATTCAAGAGATAGAGGCAGGCATCGT CCCTTTTTTG3’(SEQID NO:7)
反义链:
5’AATTCAAAAAAGGGACGATGCCTGCCTCTATCTCTTGAATAGAGGCAGG CATCGTCCCG3’(SEQID NO:8)
其中正向序列从5’至3’依次为BamH I酶切位点+靶序列+茎环结构+靶序列 +RNApoly III聚合酶转录终止位点+EcoR I酶切位点。
本发明所用的siRNA重组慢病毒由本实验室构建,重组慢病毒图谱见图5。 主要构建步骤如下:用BamH I和EcoR I双酶切慢病毒表达载体pLVX-shRNA2, 电泳回收载体大片段。将上述shRNA模板序列与载体大片段连接,得到重组穿 梭质粒,测序正确后抽提阳性克隆质粒,用于制备慢病毒包装质粒。
实施例7靶向人PCSK9 shRNA慢病毒包装、浓缩及滴度测定
接种3×106个293T细胞于10cm培养皿,细胞密度为50-70%为宜。37℃培 养24h后进行转染,即将12μg PCSK9 shRNA重组慢病毒质粒、9μg psPAX和3μg pMD2.g辅助包装质粒混匀,按PEI:包装质粒的质量比3:1加入转染试剂PEI (1mg/mL),静置20min后将转染混合物加入到含有常规培养基的培养皿中, 37℃培养,分别收集培养48h和72h的病毒上清,与5×PEG8000以4:1比例混 合,冰浴12h。4℃4000g离心30min,可见白色沉淀即为病毒颗粒,弃上清, 加入适量PBS重悬,分装后保存于-70℃。
取一支分装保存的病毒采用荧光法测定滴度,测定前一天,将测定滴度所需 的293T细胞铺板,96孔板,每孔加1×104个细胞,体积为100μl。根据病毒的 预期滴度,准备7~10个无菌的Eppendorf管,每管加入90μl无血清培养基。取 10μl待测定病毒原液加入到第一个管中,混匀后再取10μl加入到第二个管中, 继续相同操作进行梯度稀释。病毒稀释完成后,吸去各孔细胞培养基,加入含有 稀释后病毒的细胞培养基,放入培养箱培养,24h后加入完全培养基100μl,3 天后观察荧光表达情况,荧光细胞数随稀释倍数的增加而减少,根据各孔荧光细 胞数确定计量孔,病毒滴度(TU/ml)=计量孔荧光细胞数×稀释倍数。
实施例8Western blot检测靶向人PCSK9的shRNA转染HepG2及LO2细 胞后对PCSK9表达及LDLR水平的影响
将人肝癌HepG2及LO2细胞调按1×105个/孔接种于12孔板,1ml/孔,37℃ 培养12h后,加入2×106单位(TU)的慢病毒shRNA(LV-sh1318、阴性对照 LV-shNC和阳性对照LV-shPC)进行感染,24h后HepG2及LO2细胞各孔培养 基分别更换为1mL含10%胎牛血清、青霉素(100U/mL)和链霉素(100μg/mL) 的MEM和DMEM继续培养。感染48h后,每孔培养基更换为无血清Opti-MEM 培养。感染时间达到72h后,通过Western blot检测PCSK9基因的沉默效果。 具体过程如下:收集培养板中的细胞,分别取每孔转染细胞和培养基上清提取蛋 白。取处理好的蛋白样品进行10%SDS-PAGE电泳分离,并于4℃,100V恒压 电转印120min,将蛋白转印到PVDF膜(Millipore公司)。转印结束,将膜置 于5%TBST(含有5%脱脂牛奶和0.1%吐温20的TBS)中室温封闭1h。用5%TBST 按1∶2500稀释Anti-PCSK9抗体(Abcam公司,货号ab181142)和Anti-LDLR Receptor抗体(Abcam公司,货号ab52818),4℃过夜,TBST洗涤3遍,每次 10min。用1%PBST(含有1%BSA和0.1%吐温20的PBS)按1∶3000稀释Goat Anti-Rabbit IgG二抗(福麦斯生物技术有限公司,货号FMS-RB01),室温孵育 1h,TBST洗涤3遍,每次10min。ECL显色,以各组目的蛋白条带灰度值计算 沉默效率。结果表明,LV-sh1318可显著沉默HepG2及LO2细胞中PCSK9表 达并提高LDLR蛋白水平(图6)。
实施例9流式细胞术检测靶向人PCSK9的shRNA转染HepG2及LO2细胞 后对细胞表面LDLR水平的影响
按实施例8将人肝癌HepG2及LO2细胞感染慢病毒shRNA,慢病毒感染 48h后,每孔更换为无血清Opti-MEM培养基培养。感染时间达到72h后,通过 流式细胞仪检测LDLR提升水平。具体过程如下:用胰酶消化细胞并用PBS清 洗,离心收集细胞;用80%甲醇固定5min,离心弃上清,沉淀加入封闭液(含 有10%山羊血清、0.3M甘氨酸的PBS缓冲液)重悬,室温静置30min,离心弃 上清,沉淀加入用含1%BSA的PBS按1﹕100稀释的Anti-LDLR Receptor抗体 (Abcam公司,货号ab52818)重悬,室温静置60min。离心弃上清,沉淀加入 用含1%BSA的PBS按1﹕300稀释的Alexa
Figure BDA0002373849140000112
555Goat Anti-Rabbit IgG二 抗(上海生工生物工程股份有限公司,货号D110070)重悬,避光室温孵育60min, 以不加抗体孵育的细胞为空白对照。Guava easyCyte flow cytometry system流式 细胞仪(Millipore公司)检测HepG2及LO2细胞表面LDLR蛋白水平。使用流 式分析软件FlowJo 7.6.1分析检测结果。结果(图7)表明,LV-sh1318可显著 提升HepG2及LO2细胞表面LDLR蛋白水平。
实施例10免疫荧光检测靶向人PCSK9的shRNA转染HepG2及LO2细胞 后对PCSK9表达及及LDLR水平的影响
按实施例8将人肝癌HepG2及LO2细胞转染慢病毒shRNA,转染时间达到 72h后,通过免疫荧光检测PCSK9基因的沉默效果及LDLR提升水平。具体过 程如下:弃细胞培养液上清,PBS清洗后,每孔加入100μL 4%多聚甲醛,室温 固定30min。固定结束后,弃上清,PBS洗3次,每孔加入100μL 0.2%的Triton X-100,对细胞进行通透20min。通透结束后,弃上清,PBS洗3次,每孔加入 100μL封闭液(含有2%BSA的PBS)室温封闭1h。封闭结束后,用一抗稀释液 (1%BSA的PBS)分别按1∶100及1∶250稀释Anti-PCSK9 antibody抗体 (Abcam公司,货号ab181142)和Anti-LDLR Receptor抗体(Abcam公司,货 号ab52818),4℃孵育过夜,PBS洗涤3遍,每次5min。用含1%BSA的PBS 按1∶400稀释Alexa
Figure BDA0002373849140000111
555Goat Anti-Rabbit IgG二抗(上海生工生物工程 股份有限公司,货号D110070),室温孵育1h,PBS洗涤3遍,每次5min。二 抗孵育结束后,取适量4,6-联脒-2-苯基吲哚(4,6-diamidino-2-phenylindole,DAPI) 覆盖细胞表面,避光静置5-10min后,将孔板置于激光共聚焦荧光显微镜(ZeissLSM700,德国)拍照。结果(图8)表明,LV-sh1318可显著沉默HepG2及LO2 细胞中PCSK9表达并提升LDLR蛋白水平。
实施例11靶向人PCSK9 shRNA增强肝细胞摄取DiI-LDL的活性
将人肝癌HepG2及LO2细胞调按1×104个/孔接种于96孔板,100μl/孔,37℃ 培养12h后,加入2×105单位(TU)的慢病毒shRNA(LV-sh1318、阴性对照 LV-shNC和阳性对照LV-shPC)进行感染,24h后HepG2及LO2细胞各孔分别 更换为100μL含10%胎牛血清、青霉素(100U/mL)和链霉素(100μg/mL)的MEM和DMEM培养基继续培养。慢病毒感染48h后,每孔更换为无血清 Opti-MEM培养基培养。转染时间达到72h后,采用标记Di-LDL法检测HepG2 及LO2细胞表面的LDLR水平。具体过程如下:向各孔中加入终浓度为20μg/ml 的DiI-LDL试剂(广州奕元生物科技公司),37℃继续培养4h后,吸取各孔培 养基,用PBS清洗细胞两次后再加入100μl PBS,以不加DiI-LDL试剂的细胞做 为空白对照。采用Varioskan flash全波长荧光酶标仪,以520nm为激发光波长、 580nm为发射光波长,检测细胞荧光值。结果(图9)显示,LV-sh1318可显著 增强肝细胞摄取DiI-LDL的功能。
实施例12靶向人PCSK9 shRNA的体内生物学活性评价
按文献(GENE THERAPY,1999,6(7):1258-1266)所述方法造模,5s内尾静 脉注射人PCSK9表达质粒pTT5-hPCSK9(50μg于2mL生理盐水中),使人 PCSK9在C57BL/6小鼠体内过表达,建立PCSK9过表达引起的高胆固醇血症小 鼠模型。具体地,30只C57/BL6小鼠随机分为5组,每组6只,其中模型组在 小鼠尾静脉以流体动力注射法注射50μg pTT5-hPCSK9(于2ml生理盐水中), 阴性对照组(LV-shNC)、阳性对照组(LV-shPC)和实验组(LV-sh1318)每只注射50μg pTT5-PCSK9和5×107TU慢病毒混合物2ml,空白对照组注射2ml 生理盐水。各组均为单次给药。各组小鼠予以普通饮食,自由饮水,给药1周后 处死动物,收集血液及肝脏等组织标本。采用试剂盒(南京建成生物产品)检测 小鼠血清总胆固醇、低密度脂蛋白胆固醇水平,并进行统计分析。结果如图10 所示,与阴性对照组相比,经LV-sh1318干预后小鼠血清总胆固醇(TC)和低密度 脂蛋白胆固醇(LDL-C)水平明显下降。
此外,取小鼠肝脏组织,研磨破碎提取肝脏细胞蛋白,利用抗人PCSK9和 抗小鼠LDLR抗体(均为abcam公司产品)进行Western blot,检测肝细胞PCSK9 和LDLR蛋白水平。结果表明,LV-sh1318可显著降低小鼠肝脏中人PCSK9基 因表达并提升LDLR的表达水平(图11)。
序列表
<110> 中国药科大学
<120> 抑制人PCSK9基因表达的siRNA及其应用
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 1
gcaacuuccg ggacgaugc 19
<210> 2
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcaucguccc ggaaguugc 19
<210> 3
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
gggacgaugc cugccucua 19
<210> 4
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 4
uagaggcagg caucguccc 19
<210> 5
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
gcugugugga ccucuuugc 19
<210> 6
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 6
gcaaagaggu ccacacagc 19
<210> 7
<211> 59
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gatccgggac gatgcctgcc tctattcaag agatagaggc aggcatcgtc ccttttttg 59
<210> 8
<211> 59
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aattcaaaaa agggacgatg cctgcctcta tctcttgaat agaggcaggc atcgtcccg 59

Claims (8)

1.一种抑制人PCSK9靶基因表达的siRNA,其特征在于,所述RNA序列如下:
正义链:5’-GGGACGAUGCCUGCCUCUA-3’,即SEQ ID NO:3;
反义链:5’-UAGAGGCAGGCAUCGUCCC-3’,即SEQ ID NO:4。
2.根据权利要求1所述的抑制人PCSK9靶基因表达的siRNA,其特征在于,所述序列3’端垂悬有dTdT。
3.一种编码抑制人PCSK9基因表达的shRNA的DNA序列,其特征在于,所述DNA序列的正义链如SEQ ID NO:7所示,反义链如SEQ ID NO:8所示。
4.一种含权利要求3所述DNA序列的重组慢病毒表达载体和病毒颗粒。
5.一种含权利要求3所述DNA序列的重组腺相关病毒表达载体和病毒颗粒。
6.权利要求1或2所述siRNA通过化学修饰得到的修饰物。
7.权利要求1或2所述siRNA在制备预防和/或治疗高血脂症、动脉粥样硬化、心脑血管疾病、肥胖及糖尿病等相关病症药物中的应用。
8.权利要求4或5所述重组病毒表达载体和病毒颗粒在制备预防和/或治疗高血脂症、动脉粥样硬化、心脑血管疾病、肥胖及糖尿病等相关病症药物中的应用。
CN202010059160.9A 2020-01-16 2020-01-16 抑制人PCSK9基因表达的siRNA及其应用 Pending CN111154760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010059160.9A CN111154760A (zh) 2020-01-16 2020-01-16 抑制人PCSK9基因表达的siRNA及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010059160.9A CN111154760A (zh) 2020-01-16 2020-01-16 抑制人PCSK9基因表达的siRNA及其应用

Publications (1)

Publication Number Publication Date
CN111154760A true CN111154760A (zh) 2020-05-15

Family

ID=70564265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010059160.9A Pending CN111154760A (zh) 2020-01-16 2020-01-16 抑制人PCSK9基因表达的siRNA及其应用

Country Status (1)

Country Link
CN (1) CN111154760A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957567A (zh) * 2017-12-26 2019-07-02 广州市锐博生物科技有限公司 一种抑制PCSK9基因表达的siRNA分子及其应用
CN114223613A (zh) * 2021-11-30 2022-03-25 西安医学院 一种基于aav8-pcsk9诱导的高胆固醇血症和动脉粥样硬化小鼠模型及构建方法
CN114657136A (zh) * 2020-12-22 2022-06-24 未来智人再生医学研究院(广州)有限公司 一种表达靶向PCSK9的shRNA和/或shRNA-miR的多能干细胞或其衍生物
CN115770247A (zh) * 2021-09-08 2023-03-10 中国药科大学 一类具有pcsk9抑制活性的化合物的医药用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289094A1 (en) * 2010-10-29 2013-10-31 Alnylam Pharmaceuticals, Inc. Compositions and Methods for Inhibition of PCSK9 Genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289094A1 (en) * 2010-10-29 2013-10-31 Alnylam Pharmaceuticals, Inc. Compositions and Methods for Inhibition of PCSK9 Genes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957567A (zh) * 2017-12-26 2019-07-02 广州市锐博生物科技有限公司 一种抑制PCSK9基因表达的siRNA分子及其应用
CN109957567B (zh) * 2017-12-26 2022-09-23 阿格纳生物制药有限公司 一种抑制PCSK9基因表达的siRNA分子及其应用
CN114657136A (zh) * 2020-12-22 2022-06-24 未来智人再生医学研究院(广州)有限公司 一种表达靶向PCSK9的shRNA和/或shRNA-miR的多能干细胞或其衍生物
CN115770247A (zh) * 2021-09-08 2023-03-10 中国药科大学 一类具有pcsk9抑制活性的化合物的医药用途
CN115770247B (zh) * 2021-09-08 2024-07-02 中国药科大学 一类具有pcsk9抑制活性的化合物的医药用途
CN114223613A (zh) * 2021-11-30 2022-03-25 西安医学院 一种基于aav8-pcsk9诱导的高胆固醇血症和动脉粥样硬化小鼠模型及构建方法

Similar Documents

Publication Publication Date Title
CN111154760A (zh) 抑制人PCSK9基因表达的siRNA及其应用
Bin et al. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum
CN104774929B (zh) miR‑455‑3p在食管鳞状细胞癌中的诊断、治疗和预后的应用
CN101708328A (zh) Cyr61蛋白在制药中的应用
CN109055374B (zh) 特异性抑制OCT1基因表达的shRNA及应用
CN102188707B (zh) Il-17抑制剂在制备治疗流感的药物中的用途
CN113491772B (zh) P4hb抑制剂在治疗或预防肿瘤恶病质中的用途
CN112359039A (zh) 靶向沉默BRD4基因表达的shRNA序列及其用途
US20110229560A1 (en) Nlrc5 as a target for immune therapy
CN109735570B (zh) Xist修饰的脂肪来源间充质干细胞外泌体的制备及其应用
CN113862273B (zh) 一种HK2低表达的乳腺癌细胞系及其使用的siRNA
CN113355328B (zh) 抑制IDOL基因表达的siRNA及其应用
CN1834254A (zh) 一种可稳定表达VEGF shRNA的载体pCD-VEGF
CN110396544B (zh) Cul7在胶质瘤诊断、治疗和预后中的应用
CN109266684B (zh) 一种构建病原感染敏感性动物模型的方法
CN107184984B (zh) Rpl10的抑制剂在制备治疗卵巢癌的药物中的应用
CN112553163A (zh) 一种hACE2敲入的新冠病毒RNA干扰干细胞
CN104450710A (zh) 抑制myd88基因的寡聚核酸及其应用
CN104267188A (zh) 针对msk1基因的相关制剂在制备5-fu耐药性检测试剂及5-fu耐药逆转剂方面的应用
CN111840292B (zh) 环丙沙星在制备人巨细胞病毒抑制剂中的应用
CN1247608C (zh) 一种新型乳腺癌基因治疗药物hdm2-siRNA
CN115992244B (zh) Sart1在肝癌治疗中的作用
CN108283646A (zh) hsa-miRNA-155-5p在制备抑制人肠道病毒71型药物中的应用
CN109701018B (zh) 靶向干扰golph3基因表达在提高非小细胞肺癌放疗敏感性中的应用
CN106344923B (zh) 组蛋白去乙酰化酶-4抑制剂在制备治疗多发性骨髓瘤疾病药物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200515