CN111151295B - 一种用于氧化脱硫的表面改性复合炭材料及制备方法 - Google Patents

一种用于氧化脱硫的表面改性复合炭材料及制备方法 Download PDF

Info

Publication number
CN111151295B
CN111151295B CN201911425918.XA CN201911425918A CN111151295B CN 111151295 B CN111151295 B CN 111151295B CN 201911425918 A CN201911425918 A CN 201911425918A CN 111151295 B CN111151295 B CN 111151295B
Authority
CN
China
Prior art keywords
carbon material
surface modified
ionic liquid
modified composite
composite carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911425918.XA
Other languages
English (en)
Other versions
CN111151295A (zh
Inventor
于英豪
梅智宏
郭国庆
王自怡
何循标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911425918.XA priority Critical patent/CN111151295B/zh
Publication of CN111151295A publication Critical patent/CN111151295A/zh
Application granted granted Critical
Publication of CN111151295B publication Critical patent/CN111151295B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0279Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the cationic portion being acyclic or nitrogen being a substituent on a ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于油品加工的技术领域,公开了一种用于氧化脱硫的表面改性复合炭材料及制备方法。制备方法:1)将炭材料进行氧化处理,再在保护性氛围下进行高温退火处理,获得改性炭材料;2)以改性炭材料为载体,以酸性离子液体为活性组分,将活性组分负载在载体上,获得表面改性复合炭材料。本发明的方法简单,所获得的表面改性复合炭材料,其活性组分与载体的物理作用强、活性组分在表面的分布状态有的是拟液相环境,这些特点使表面改性复合炭材料用于燃油氧化脱硫,具有稳定性好、脱硫效率高等性能。

Description

一种用于氧化脱硫的表面改性复合炭材料及制备方法
技术领域
本发明属于油品加工技术领域,具体涉及一种用于氧化脱除燃油中硫化物的表面改性复合炭材料及其制备方法。
背景技术
燃油中含有大量的硫化物,这些硫化物燃烧后将形成SOx,SOx是主要的大气污染源之一。因此许多国家法规强制要求降低燃油中硫化物的含量。2019年12月召开的中央经济工作会议明确强调:要打好打赢包含“污染防治”的三大攻坚战,其重点在于打好蓝天、碧水、净土保卫战,完善相关治理机制,强调抓好源头防控。而燃油脱硫正是从源头上控制SOx的产生,减少大气污染。目前诸多脱硫手段中,加氢脱硫、萃取脱硫、吸附脱硫、生物脱硫、氧化脱硫各有缺点,如:加氢脱硫需要高温高压、条件苛刻、消耗氢源、降低辛烷值、且对于噻吩、苯并噻吩等硫化物更是难以脱除;吸附脱硫所存在的吸附容量低、再生困难、竞争性吸附等问题也亟待解决;生物脱硫有待进一步研究。氧化脱硫被认为是最具有前景的燃油深度脱硫技术。氧化脱硫技术在常温常压下,采用催化氧化的方法将加氢脱硫难以脱出的硫化物氧化成强极性的砜类化合物,然后采用极性溶剂萃取、吸附剂吸附、蒸馏或热解等方法除去燃油中的砜类化合物。燃油氧化脱硫的研究起源于上世纪中期,早期的氧化脱硫技术多采用有机酸或无机酸作为催化剂。在1996年petrostar公司首次开发出工业深度脱硫技术(CED技术),该技术属于乙酸/双氧水体系,经氧化和萃取两步工艺处理后能将燃油中的硫化物从4200ppm降低至10ppm以下,并且进行了规模为5000桶/日的工业化试生产。之后2001年Unipure公司开发出了ASR-2技术,其也是用的有机液体酸和双氧水体系,并实现了工业化生产。虽然这些技术都有优异的氧化脱硫性能,但催化剂不能回收利用,且腐蚀设备。因此,为了解决上述问题,陆续有文献或专利公开了金属催化剂用于氧化脱硫,但均存在制备方法复杂、寿命短、选择性不够理想,成本高等问题。为了解决上述问题,本发明提供一种制备简单,无金属、氧化性能优异、耐久性好的炭材料表面改性复合材料的制备方法及其在氧化脱硫中的应用。
发明内容
为了克服现有技术中的缺点和不足,本发明的目的在于提供一种用于氧化脱硫的表面改性复合炭材料及其制备方法。该复合材料具有催化活性高、选择性高、稳定性好等优点。
本发明的另一目的还在于提供上述表面改性复合炭材料在氧化脱除燃油中硫化物的应用。
本发明目的通过以下技术方案实现:
一种表面改性复合炭材料的制备方法,包括以下步骤:
1)将炭材料进行氧化处理,再在保护性氛围下进行高温退火处理,获得改性炭材料;
2)以改性炭材料为载体,以酸性离子液体为活性组分,将活性组分负载在载体上,获得表面改性复合炭材料。
所述酸性离子液体为以下式I~V中的一种以上:
Figure BDA0002350525910000021
式I中R1=CH3(CH2)n,n=0-8的整数;
R2=CH2(CH2)nSO3H,n=2,3或CH2(CH2)nCOOH,n=0,1,2,3;
R3=CH3;X-为C1-,Br-,(H2PO4)-,(HSO4)-,TFSI(CF3-(O)S(O)-N-(O)S(O)-CF3),(BF4)-,(PF6)-,CH3COO-
式I中R1与R2的基团可以互换;
式II中R1=CH3(CH2)n,n=0-8的整数,或者R1=(CH2)nCOOH n=1,2,3;
R2=CH2(CH2)nSO3H n=2,3或CH2(CH2)nCOOH n=0,1,2,3;式II中R1与R2的基团可以互换;
式III~V中R2各自为CH2(CH2)nSO3H,n=2,3或CH2(CH2)nCOOH,n=0,1,2,3;又或者CH3(CH2)n,n=0-8的整数;
式IV~V中n1独自为2~6中整数。
所述高温退火的温度为600~1200℃,高温退火的时间为2~6小时。高温退火的升温速率为3~10℃/min。
步骤1)中所述炭材料包括但不仅限于下述的炭材料的任意一种:木质活性炭、矿物质原料活性炭、废塑料或橡胶制成的活性炭。
所述保护性氛围为真空条件或保护性气体提供的氛围。保护性气体为氮气、氦气、氩气等。
所述氧化处理为气相氧化处理或液相氧化处理。
所述气相氧化处理为在空气气氛下或者氧气气氛下,于200~500℃进行热处理2~7h;所述热处理的升温速率为2-10℃/min。
所述液相氧化处理为采用氧化剂进行氧化处理。所述氧化剂为硝酸,其溶液质量浓度为15%-68%,高锰酸钾,双氧水(其浓度为30%),硫酸、过硫酸铵等,氧化处理的时间为2-36h。
所述将活性组分负载在载体上具体的步骤:将酸性离子液体与水混合,得到酸性离子液体溶液;将酸性离子液体溶液与改性炭材料混合,搅拌,去除溶剂,干燥,获得表面改性复合炭材料。
所述酸性离子液体溶液的质量浓度为5%-85%;所述酸性离子液体溶液与改性炭材料的用量为2-6mL溶液/g改性炭材料或者满足等体积浸渍法;所述搅拌为高速搅拌,搅拌前进行超声分散,超声的时间为20~40min。
所述搅拌的温度为20~70℃,搅拌的时间为12~30小时。
所述去除溶剂为旋转蒸发去除溶剂。
本发明的表面改性复合炭材料用于氧化脱除燃油中的硫化物。
所述应用具体为以表面改性复合炭材料为催化剂,以H2O2为氧化剂,在萃取剂和燃油中通过氧化-萃取的方式脱除燃油中的硫化物。
所述萃取剂为乙腈、吡咯烷酮,甲醇,二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)中一种以上或常见的离子液体(1-丁基-3-甲基咪唑三氯化铝盐([BMIM]Cl/AlCl3)、1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)、[BMIM][BF4]、[BMIM][OcSO4]、[MMIM][DMP]和[BMIM][Cu2Cl2]等离子液体)。
本发明所述表面改性复合炭材料以改性炭材料为载体,以酸性离子液体为活性组分,载体与活性组分之间通过炭材料表面∏电子与离子液体阳离子咪唑环上的∏电子形成强烈的∏-∏作用,及范德华力,静电力、极化等相互作用,使得活性组分牢固地吸附于载体表面。
本发明的表面改性复合炭材料,其优点及有益效果在于:
(1)本发明先对炭材料表面进行氧化处理,增加其表面极性基团的数量,再于保护性气氛下高温退火处理将其表面基团除去留下表面缺陷,得到改性的炭材料表面,改性后的炭材料表面一方面对活性组分酸性离子液体有强烈的相互作用,使得离子液体能牢牢地固定于载体上,提高了复合材料的使用寿命,另一方面有缺陷的炭材料表面与活性组分协同提高催化氧化效率。
(2)本发明复合材料制备简单、绿色是一种无金属复合材料,其氧化脱硫效果媲美传统金属催化剂。
(3)本发明形成拟液相的反应场所:活性组分酸性离子液体在载体表面有两种分布形式,一种是简单的吸附于表面,一种是以准液体态定向有序排列并牢固锚定于载体表面的存在形式,这种分布给催化反应形成了一个有区别于传统的液固、气固催化的拟液相催化环境,这种环境有更优的传质传热特点,进而提高了反应活性及催化效率。
(4)本发明的复合材料性能优越,在极低的硫化物浓度下也具有优异的氧化脱硫效果,如:硫化物(DBT)含量为50ppm,脱硫率能够达到98%以上。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。别发明的复合炭材料中活性组分的负载量为4~55wt%。
实施例1
一种表面改性复合炭材料的制备方法,包括以下步骤:
(1)氧化表面改性炭材料的制备:取适量的品牌号为CPL(上海汇平化工有限公司)活性炭或AC-Y(平顶山湛河活性炭有限公司)于坩埚中,置于高温炉中400℃气相氧化处理6h,设置程序升温速率为5℃/min,即得氧化表面改性炭材料CPL400、AC-Y400;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料放置于氮气氛围下的高温炉中1000℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料CPL-4-1000、AC-Y-4-1000;
(3)表面改性复合炭材料的制备:取1-丙基磺酸-3-甲基咪唑硫酸氢盐PrSO3HMIm[HSO4]酸性离子液体1.2g溶解于5mL去离子水中形成PrSO3HMIm[HSO4]溶液,在室温高速搅拌中加入步骤(2)所得的CPL-4-1000或AC-Y-4-1000炭材料表面改性材料2.0g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空24h,即得表面改性复合炭材料A(CPL-4-1000/PrSO3HMIm[HSO4])。
PrSO3HMIm[HSO4]:
Figure BDA0002350525910000051
考虑到燃油中噻吩类化合物,尤其是带有芳香烃基团的噻吩类化合物较难脱除,采用含二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm。取上述模拟燃油10mL,之后依次加入表面改性复合炭材料A(CPL-4-1000/PrSO3HMIm[HSO4])50mg,萃取剂乙腈可按剂油体积比萃取剂/模拟油V/V=0.2-1.5加入2-15mL乙腈,下面实施例亦如此,30%双氧水溶液按氧硫摩尔比O/S=15-50加入(其中以氧硫比为25左右为佳较佳即28uL,下面实施例亦如此)30μL;60℃恒温(恒温油浴温度可在30-80℃,以60℃为佳)油浴下磁力搅拌回流2.5h,取上层油相测定硫含量,脱硫率达99%。
实施例2
一种表面改性复合炭材料的制备方法,包括以下步骤:
(1)氧化表面改性炭材料的制备:取适量的品牌号为CPL活性炭(上海汇平化工有限公司)于坩埚中,置于高温炉中350℃气相氧化处理6h,设置程序升温速率为5℃/min,即得氧化表面改性炭材料CPL350;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料置于氮气氛围下的高温炉中1000℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料CPL-3-1000;
(3)表面改性复合炭材料的制备:取1-丙基磺酸-3-甲基咪唑氯盐PrSO3HMImCl酸性离子液体1.2g溶解于5mL去离子水中形成均匀的PrSO3HMImCl溶液,在室温高速搅拌中加入步骤(2)所得的CPL-3-1000炭材料表面改性材料2.0g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空干燥24h,即得表面改性复合炭材料B(CPL-3-1000/PrSO3HMImCl)。
PrSO3HMIm[C1]:
Figure BDA0002350525910000061
采用含二苯并噻吩溶于正辛烷中做为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入炭材料表面改性复合材料B(CPL-3-1000/PrSO3HMImCl)50mg,萃取剂乙腈2mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流2.5h,,取上层模拟汽油测定硫含量,脱硫率达到98%。
采用含苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm,之后依次加入炭材料表面改性复合材料B 50mg,萃取剂乙腈5mL,30%的双氧水溶液28μL;60℃恒温油浴下搅拌回流2.5h,取上层模拟油测定硫含量脱硫率达到97%。
实施例3
一种表面改性复合炭材料的制备方法,包括以下步骤:
(1)氧化表面改性炭材料的制备:取适量的品牌号为ENOP活性炭(上海汇平化工有限公司)于坩埚中,置于高温炉中400℃气相氧化处理6h,设置程序升温速率为5℃/min,即得氧化表面改性炭材料ENOP400;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料放置于氮气氛围下的高温炉中1000℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料ENOP-4-1000;
(3)表面改性复合炭材料的制备:取1-丁基磺酸-3-甲基咪唑氯盐BSO3HMImCl酸性离子液体1.2g溶解于5mL去离子水中形成均匀的BSO3HMImCl溶液,在室温高速搅拌中加入步骤(2)所得的ENOP-4-1000炭材料表面改性材料2.0g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空干燥24h,即得表面改性复合炭材料材料C(ENOP-4-1000/BSO3HMImCl)。
BSO3HMImCl:
Figure BDA0002350525910000071
采用含二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入炭材料表面改性复合材料C(ENOP-4-1000/BSO3HMImCl)50mg,萃取剂乙腈5mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流2.5h,,取上层模拟油测定硫含量,脱硫率达到98%。
采用含噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm,之后依次加入表面改性复合炭材料C 50mg,萃取剂乙腈10mL,30%的双氧水溶液28μL;60℃恒温油浴下搅拌回流2.5h,取上层模拟油测定硫含量脱硫率达到85%。
实施例4
(1)氧化表面改性炭材料的制备:取适量的品牌号为CPL活性炭用68%浓度的硝酸浸泡36h,即得氧化表面改性炭材料CPL-N;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料放置于氮气氛围下的高温炉中900℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料CPL-N-900;
(3)表面改性复合炭材料的制备:取1-羧乙基-3-甲基咪唑氯盐HOOCEMImCl酸性离子液体0.8g溶解于4mL去离子水中形成HOOCEMImCl溶液,在室温高速搅拌中加入步骤(2)所得的CPL-N-900炭材料表面改性材料2.1g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空24h,即得表面改性复合炭材料D(CPL-N-900/HOOCEMImCl)。
采用含4,6-二甲基-二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料D50mg,萃取剂乙腈10mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流3h,取上层模拟汽油测定硫含量,脱硫率达到98%。
HOOCEMImCl:
Figure BDA0002350525910000081
采用含二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料D 50mg,萃取剂乙腈5mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流2h,取上层模拟汽油测定硫含量,脱硫率达到98%。
实施例5
(1)氧化表面改性炭材料的制备:取适量的品牌号为CPL活性炭用68%浓度的硝酸浸泡36h,即得氧化表面改性炭材料CPL-N;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料放置于氮气氛围下的高温炉中900℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料CPL-N-900;
(3)表面改性复合炭材料的制备:取1,3-二羧甲基咪唑硝酸盐(BCINO3)酸性离子液体0.8g溶解于4mL去离子水中形成(BCINO3)溶液,在室温高速搅拌中加入步骤(2)所得的CPL-N-900炭材料表面改性材料2.1g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空24h,即得表面改性复合炭材料E(CPL-N-900/BCINO3)。
BCINO3
Figure BDA0002350525910000082
采用含4,6-二甲基-二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料E50mg,萃取剂乙腈10mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流3h,取上层模拟汽油测定硫含量,脱硫率达到96%。
采用含二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料E 50mg,萃取剂乙腈5mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流2h,取上层模拟汽油测定硫含量,脱硫率达到94.5%。
实施例6
(1)氧化表面改性炭材料的制备:取适量的品牌号为CPL活性炭用68%浓度的硝酸浸泡36h,即得氧化表面改性炭材料CPL-N;
(2)炭材料表面改性材料:将步骤(1)制得的氧化表面改性炭材料放置于氮气氛围下的高温炉中900℃退火4h,设置程序升温速率10℃/min,即得炭材料表面改性材料CPL-N-900;
(3)表面改性复合炭材料的制备:取N-丙基磺酸吡啶硫酸氢盐[PSPy][HSO4]酸性离子液体0.8g溶解于4mL去离子水中形成溶液,在室温高速搅拌中加入步骤(2)所得的CPL-N-900炭材料表面改性材料2.1g,再超声30min,之后室温高速搅拌24h,旋干溶剂,105℃真空24h,即得表面改性复合炭材料F(CPL-N-900/[PSPy][HSO4])。
[PSPy][HSO4]:
Figure BDA0002350525910000091
采用含4,6-二甲基-二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料F50mg,萃取剂乙腈10mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流3h,取上层模拟汽油测定硫含量,脱硫率达到97%。
采用含二苯并噻吩硫化物的正辛烷溶液作为模拟燃油,其中硫含量为50ppm:取上述模拟燃油10mL,之后依次加入表面改性复合炭材料F 50mg,萃取剂乙腈5mL,30%的双氧水溶液28μL;60℃恒温油浴下磁力搅拌回流2h,取上层模拟汽油测定硫含量,脱硫率达到95%。
对比例1
在申请号200810123825.7,名称为钼基金属氮碳化间充合金在燃油脱硫中的应用的专利中,其能达到的最好脱硫效果也只能将硫化物控制在15mg/L左右,而本发明在对50ppm即50mg/L的硫化物也能脱除95%之上,即能降至10mg/L。故本发明采用非金属催化剂也能达到更优的效果。
上述实施例为本发明人的实施例,需要说明的是本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种表面改性复合炭材料在氧化脱除燃油中的硫化物中的应用,其特征在于:所述表面改性复合炭材料的制备方法,包括以下步骤:
1)将炭材料进行氧化处理,再在保护性氛围下进行高温退火处理,获得改性炭材料;
2)以改性炭材料为载体,以酸性离子液体为活性组分,将活性组分负载在载体上,获得表面改性复合炭材料;
所述酸性离子液体为以下式Ⅰ~Ⅴ中的一种以上:
Figure FDA0003313807520000011
式Ⅰ中R1=CH3(CH2)n,n=0-8的整数;
R2=CH2(CH2)nSO3H,n=2,3或CH2(CH2)nCOOH,n=0,1,2,3;
R3=CH3;Xˉ为Clˉ,Brˉ,(H2PO4)ˉ,(HSO4)ˉ,TFSI,(BF4)ˉ,(PF6)ˉ或CH3COOˉ
式Ⅰ中R1与R2的基团可以互换;
式II中R1=CH3(CH2)n,n=0-8的整数,或者R1=(CH2)nCOOH n=1,2,3;
R2=CH2(CH2)nSO3H n=2,3或CH2(CH2)nCOOH n=0,1,2,3;式II中R1与R2的基团可以互换;
式III~Ⅴ中R2各自为CH2(CH2)nSO3H,n=2,3或CH2(CH2)nCOOH,n=0,1,2,3;又或者CH3(CH2)n,n=0-8的整数;
式Ⅳ~Ⅴ中n1独自为2~6中整数;
所述高温退火的温度为600-1200℃,高温退火的时间为2-6小时;
所述氧化处理为气相氧化处理或液相氧化处理。
2.根据权利要求1所述的应用,其特征在于:所述气相氧化处理为在空气气氛下或者氧气气氛下,于200-500℃进行热处理2-7h;
所述液相氧化处理为采用氧化剂进行氧化处理;所述氧化剂为硝酸、高锰酸钾或双氧水。
3.根据权利要求1所述的应用,其特征在于:所述将活性组分负载在载体上具体的步骤:将酸性离子液体与水混合,得到酸性离子液体溶液;将酸性离子液体溶液与改性炭材料混合,搅拌,去除溶剂,干燥,获得表面改性复合炭材料。
4.根据权利要求3所述的应用,其特征在于:所述酸性离子液体溶液的质量浓度为5%-85%;所述酸性离子液体溶液与改性炭材料的用量为2-6mL溶液/g改性炭材料或者满足等体积浸渍;
搅拌前进行超声分散,超声的时间为20~40min;
所述搅拌的温度为20~70℃,搅拌的时间为12~30小时。
5.根据权利要求1所述的应用,其特征在于:
所述高温退火的升温速率为3~10℃/min;
所述保护性氛围为真空条件或保护性气体提供的氛围。
6.根据权利要求1所述的应用,其特征在于:所述应用以表面改性复合炭材料为催化剂,以H2O2为氧化剂,在萃取剂和燃油中通过氧化-萃取的方式脱除燃油中的硫化物。
CN201911425918.XA 2019-12-31 2019-12-31 一种用于氧化脱硫的表面改性复合炭材料及制备方法 Expired - Fee Related CN111151295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911425918.XA CN111151295B (zh) 2019-12-31 2019-12-31 一种用于氧化脱硫的表面改性复合炭材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911425918.XA CN111151295B (zh) 2019-12-31 2019-12-31 一种用于氧化脱硫的表面改性复合炭材料及制备方法

Publications (2)

Publication Number Publication Date
CN111151295A CN111151295A (zh) 2020-05-15
CN111151295B true CN111151295B (zh) 2021-12-21

Family

ID=70560799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911425918.XA Expired - Fee Related CN111151295B (zh) 2019-12-31 2019-12-31 一种用于氧化脱硫的表面改性复合炭材料及制备方法

Country Status (1)

Country Link
CN (1) CN111151295B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660318A (zh) * 2012-05-21 2012-09-12 江苏科技大学 一种燃油脱硫方法
KR20150088540A (ko) * 2014-01-24 2015-08-03 웨이-밍 창 연료유 정화 방법
CN109012576A (zh) * 2018-07-02 2018-12-18 昆明理工大学 一种负载氧化亚铜粒子活性炭的制备方法和应用
CN109589949A (zh) * 2018-12-21 2019-04-09 齐鲁工业大学 一种离子液体负载多孔材料的合成方法及应用
CN109835901A (zh) * 2019-03-26 2019-06-04 厦门大学 一种高比表面积活性炭及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011815A1 (de) * 2009-03-05 2010-09-09 Marco Haumann Hybridmaterialien zur heterogen katalysierten asymmetrischen Hydrierung im Gaskontakt und Verfahren zur ihrer Anwendung
CN101736157B (zh) * 2009-12-14 2011-08-17 北京有色金属研究总院 应用固定化室温离子液体吸附提取红土镍矿浸出液中有价金属离子的工艺
CN101773852B (zh) * 2010-01-26 2011-11-09 清华大学 一种负载型离子液体催化剂、其制备方法及其应用
CN102513063B (zh) * 2011-12-16 2013-06-05 福建农林大学 活性炭固定化咪唑类离子液体及其制备方法和应用
CA2907221A1 (en) * 2013-03-15 2014-09-18 Materials Modification Inc. Functionalized ionic liquids and their applications
CN104258847A (zh) * 2014-08-15 2015-01-07 华东理工大学 一种铂-碳复合物纳米催化剂及其制备方法和用途
KR20160074844A (ko) * 2014-12-18 2016-06-29 명지대학교 산학협력단 아미노산 기반 아민 작용기가 도입된 이산화탄소 흡착제 및 그 제조방법
CN109603911A (zh) * 2018-12-29 2019-04-12 华南理工大学 一种功能化离子液体/沸石咪唑酯骨架复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660318A (zh) * 2012-05-21 2012-09-12 江苏科技大学 一种燃油脱硫方法
KR20150088540A (ko) * 2014-01-24 2015-08-03 웨이-밍 창 연료유 정화 방법
CN109012576A (zh) * 2018-07-02 2018-12-18 昆明理工大学 一种负载氧化亚铜粒子活性炭的制备方法和应用
CN109589949A (zh) * 2018-12-21 2019-04-09 齐鲁工业大学 一种离子液体负载多孔材料的合成方法及应用
CN109835901A (zh) * 2019-03-26 2019-06-04 厦门大学 一种高比表面积活性炭及其制备方法

Also Published As

Publication number Publication date
CN111151295A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
Saleh et al. Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber
Yang et al. Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel
Rezvani et al. Green and efficient organic–inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline
Hou et al. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil
Qiu et al. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil
Rezvani et al. Synthesis and characterization of a new nanocomposite (FeW11V@ CTAB‐MMT) as an efficient heterogeneous catalyst for oxidative desulfurization of gasoline
CN101153225A (zh) 一种基于离子液体的油品氧化-萃取脱硫技术
CN107413835B (zh) 一种石油类污染土壤的修复方法
JP2010248509A (ja) 炭化水素油から不純物を除去する方法
Wang et al. Ultra‐Deep Oxidative Desulfurization of Model Oil Catalyzed by In Situ Carbon‐Supported Vanadium Oxides Using Cumene Hydroperoxide as Oxidant
Seredych et al. Analysis of factors affecting visible and UV enhanced oxidation of dibenzothiophenes on sulfur-doped activated carbons
GB2600900A (en) Monolithic catalyst preparation method employing 3D printing, and application of monolithic catalyst
JP3678251B2 (ja) 高比表面積炭素材料の製造方法
CN111151295B (zh) 一种用于氧化脱硫的表面改性复合炭材料及制备方法
Blanco-Brieva et al. Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene
CN113856734B (zh) 一种金属单原子催化剂氧化脱硫的方法
Rezvani et al. Synthesis and characterization of new organic–inorganic nanohybrid film (TBA) PWFe/PVA/CTS as an efficient and reusable amphiphilic catalyst for ODS of real fuel
CN103509590B (zh) 一种基于Lewis酸性离子液体的氧化脱硫方法
CN115709056A (zh) 含五氧化二钒的废活性炭的再生方法
CN107434980A (zh) 一种活性炭的制备及用于炼厂馏分油吸附脱硫的方法
JPS60238144A (ja) 砒素化合物除去剤
Jiao et al. In situ highly dispersed loading of molybdenum dioxide with oxygen vacancies on N-doped graphene for enhanced oxidative desulfurization of fuel oil
Zhou et al. Superhydrophobic polyoxometalate/calixarene inorganic–organic hybrid materials with highly efficient desulfurization ability
Ahmed et al. Efficient metal-free aerobic oxidative desulfurization with nitrogen and sulfur co-doped covalent organic polymer-derived carbon
CN109266378B (zh) 一种过二硫酸根类离子液体化合物在油品脱硫中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211221