CN111111625A - 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法 - Google Patents

一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法 Download PDF

Info

Publication number
CN111111625A
CN111111625A CN202010110952.4A CN202010110952A CN111111625A CN 111111625 A CN111111625 A CN 111111625A CN 202010110952 A CN202010110952 A CN 202010110952A CN 111111625 A CN111111625 A CN 111111625A
Authority
CN
China
Prior art keywords
micro
oil absorption
absorption rate
preparing
nano fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010110952.4A
Other languages
English (en)
Inventor
蒋国军
张军瑞
叶翔宇
薛立新
何羚玉
葛郡燕
郑忠
何政翰
吕聪
魏忠豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhijiang College of ZJUT
Original Assignee
Zhijiang College of ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhijiang College of ZJUT filed Critical Zhijiang College of ZJUT
Priority to CN202010110952.4A priority Critical patent/CN111111625A/zh
Publication of CN111111625A publication Critical patent/CN111111625A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/10Devices for removing the material from the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明涉及一种浸渍法制备高饱和吸油倍率微纳米纤维气凝胶材料的方法,属于功能性气凝胶材料制备领域。该方法是利用静电纺丝技术或熔喷技术制备微纳米纤维;将得到的微纳米纤维分散得到均匀的微纳米纤维分散液;然后将微纳米纤维分散液倒入模具后置于冷冻干燥机中进行冷冻干燥;再将冷冻干燥后的气凝胶样品在低表面能物质的溶液中进行浸渍;最后经过热固化处理得到高饱和吸油倍率微纳米纤维气凝胶。该制备方法制备工艺简单,制备的微纳米纤维气凝胶具有超轻、饱和吸油倍率高、吸油速率快、结构稳定、可多次循环使用等优点,可被广泛用于油污泄漏等领域。

Description

一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法
技术领域
本发明涉及一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,属于功能性气凝胶材料制备领域。
背景技术
在石油的开采、运输和贮存的过程中经常会发生石油泄漏事件,造成海洋生态环境的巨大破坏,含油污水处理已经成为目前世界上亟待解决的环境问题之一。为缓解溢油事件对海洋环境的影响,人们提出了焚烧、机械回收、吸附材料吸收以及生物降解等方法,在实际溢油事故处理中,吸附法具有极大的优势,使用吸附材料一直被认为是最有效的方法。目前的常见的吸附材料包括无纺布、吸油毡、海绵、麻袋、活性炭等,但仍然存在饱和吸油倍率低下等问题。由于静电纺丝技术具有操作简单,聚合物来源广泛,且静电纺丝制备的纳米纤维具有直径小,孔隙率高,比表面积大等优点。将静电纺丝纳米纤维制成纳米纤维气凝胶,其具有整体密度小,孔隙率高等优点,结合纤维表面特殊浸润性质的可控修饰技术,在吸油领域具有巨大的发展潜力及应用价值。
现有的高吸油气凝胶材料的制备方法需要进行预氧化和碳化等工艺,制备时间长,能量消耗大,工艺复杂且成本高,为了克服现有高吸油气凝胶材料的制备方法存在的缺点,本发明希望提供一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法。
发明内容
为了克服现有高吸油气凝材料制备方法却在的缺陷,本发明提供了一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其具体技术方案如下:
一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,包括以下步骤:
(1)将高聚物材料A溶于溶剂B中,搅拌均匀,得到纺丝溶液,将所述纺丝溶液注入到静电纺丝装置的溶液通道,调节纺丝参数进行静电纺丝制备微纳米纤维毡;或采用熔喷纺丝技术,通过调节纺丝参数,将高聚物材料C制备成微纳米纤维毡;
(2)将所述微纳米纤维毡加入到分散剂D中,再经均质机高速剪切,分散得到微纳米纤维分散液;
(3)将所述微纳米纤维分散液倒入模具后,置于冷冻干燥机中在-50℃至-10℃的温度下冷冻12-24小时,然后真空冷冻干燥48-72小时,得到冻干后的微纳米纤维集合体;
(4)将所述冻干后的微纳米纤维集合体浸渍在低表面能物质溶液浸渍液E中一定时间后捞出风干,得到风干后的微纳米纤维集合体;所述浸渍液E为PDMS溶液或苯并噁嗪溶液,浓度为1%-30%;
(5)将所述风干后的微纳米纤维集合体置于80-210℃的温度下,固化60-240 min,得到高饱和吸油倍率微纳米纤维气凝胶。
作为优选,步骤(1)中所述的高聚物材料A为聚丙烯腈、聚酰胺、聚己内酯、醋酸纤维素、聚砜、聚苯乙烯、聚乳酸、聚乙烯醇、聚乙烯吡咯烷酮、聚氨酯、聚偏氟乙烯、聚氯乙烯中的一种或多种组合。
作为优选,步骤(1)中所述的溶剂B为N,N二甲基甲酰胺、N,N二甲基乙酰胺, 去离子水、二氯甲烷、三氯甲烷、二甲基亚砜、四氢呋喃、甲酸、甲苯中的一种,或两种及两种以上的混合溶剂。
作为优选,步骤(1)中所述的高聚物材料C为聚丙烯、聚乙烯、聚酰胺、聚己内酯、聚酯、聚乳酸、聚氨酯、聚偏氟乙烯、聚氯乙烯中的一种或多种组合。
作为优选,步骤(1)中静电纺丝参数为:纺丝电压10-35 kV,接收距离10-25 cm,纺丝溶液流速为0.3-2 ml/h;步骤(2)中熔喷纺丝参数为:螺杆温度为120-300℃,热空气压力为0.5-15 MPa,接收距离为10-35 cm,计量泵流量为0.5-5千克/小时,热空气温度为150-350℃。
作为优选,步骤(2)中分散剂D选自去离子水、叔丁醇、二氧六环、莰烯、甲苯中的一种,或两种及两种以上的混合溶剂。
作为优选,所述步骤(2)中微纳米纤维分散液浓度为0.5%-15%。
作为优选,所述步骤(2)中均质机转速为10000-18000 r/min,分散时间为10-30min。
作为优选,所述步骤(3)中真空度为0.5-20帕。
作为优选,所述步骤(4)中PDMS纺丝溶液的主剂和固化剂比例为质量比10:1,溶剂为甲苯、正庚烷、正己烷、异丙醇、丙酮、丁酮、乙酸乙酯、氯仿、二氯甲烷、四氢呋喃中的一种,或两种及两种以上的混合溶剂。
有益效果:
(1)本发明制备高吸油倍率微纳米纤维气凝胶材料的过程简单,原料来源广泛;
(2)通过浸渍法,使PDMS或苯并噁嗪作为低表面能物质修饰到微纳米纤维表面,经高温下热固化,使微纳米纤维气凝胶在具有较低表面能的同时具有良好的结构稳定性;
(3)制备的高吸油倍率微纳米纤维气凝胶材料孔隙率极高,密度小,饱和吸油倍率达到50倍以上,在吸油领域具有巨大的应用价值。
具体实施方式
下面结合具体实施方式,对本发明技术方案进行进一步说明。
实施例1
一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法的具体应用:
(1)配置纺丝溶液:将质量分数为12%的聚丙烯腈溶解在N,N二甲基甲酰胺中,搅拌至均匀溶解,得到纺丝溶液;
(2)将得到的纺丝溶液注入到静电纺丝装置的溶液通道,调节纺丝参数进行静电纺丝,其中纺丝电压为18 kV,接收距离15 cm,纺丝溶液流速为0.8 ml/h;
(3)将制备的微纳米纤维毡在分散剂去离子水中经均质机高速剪切(14000r/min)分散20 min得到微纳米纤维分散液,该微纳米纤维分散液浓度为0.6%;
(4)将微纳米纤维分散液倒入烧杯,置于冷冻干燥机中,在零下20度冷冻24小时,真空度为0.5帕,干燥48小时;
(5)将冷冻干燥后得到的气凝胶浸渍在浓度为5%的苯并噁嗪溶液中,溶剂为丁酮,浸渍时间为10min;
(6)将浸渍后的微纳米纤维气凝胶高温固化,固化温度210℃,时间120min,所得微纳米纤维气凝胶饱和饱和吸油倍率为自重的76倍。
实施例2
一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法的具体应用:
(1)以聚丙烯为原料,采用熔喷纺丝制备微纳米纤维毡,纺丝参数为:螺杆温度为210℃,热空气压力为6 MPa,接收距离为25cm,计量泵流量为1.5千克/小时,热空气温度为180℃;
(2)将制备的微纳米纤维毡在体积比为4:1的叔丁醇、去离子水混合溶剂中经均质机高速剪切(15000 r/min)分散30 min得到微纳米纤维分散液,该微纳米纤维分散液浓度为1.3%;
(3)将微纳米纤维分散液倒入烧杯,置于冷冻干燥机,在零下20度冷冻12小时,真空度为0.5帕,干燥48小时;
(4)将冷冻干燥后得到的气凝胶浸渍在浓度为2%的PDMS溶液中,其中PDMS主剂和固化剂比例为10:1,溶剂为四氢呋喃,浸渍时间为20min;
(5)高温固化,固化温度80℃,时间100min,所得微纳米纤维气凝胶饱和饱和吸油倍率为自重的62倍。
实施例3-6
仅冷冻的温度与实施例1不同,其余条件均与实施例1相同:
冷冻的温度(℃) 饱和吸油倍率
-50 75
-40 71
-30 74
-10 72
实施例7-8
仅冷冻的时间与实施例1不同,其余条件均与实施例1相同:
冷冻时间(h) 饱和吸油倍率
12 72
18 74
实施例9-10
仅干燥的时间与实施例1不同,其余均与实施例1相同:
干燥的时间(h) 饱和吸油倍率
60 75
72 77
实施例11-14
仅冷冻干燥的真空度与实施例1不同,其余均与实施例1相同:
真空度(帕) 饱和吸油倍率
5 76
10 75
15 75
20 72
实施例15-20
仅浸渍液浓度与实施例1相同,其余均与实施例1相同:
浸渍液浓度 饱和吸油倍率
1% 79
10% 75
15% 73
20% 70
25% 66
30% 60
实施例21-24
仅固化的温度与实施例1不同,其余均与实施例1相同:
固化的温度(℃) 饱和吸油倍率
80 72
110 74
140 73
170 78
实施例25-27
仅固化的时间与实施例1不同,其余均与实施例1相同:
固化的时间(min) 饱和吸油倍率
60 70
180 72
240 78
实施例28-30
仅纳米纤维分散液浓度与实施例1相同,其他均与实施例1相同:
纳米纤维分散液 饱和吸油倍率
5% 52
10% 43
15% 35
上述实施例仅用于解释说明本发明的发明构思,而非对本发明权利保护的限定,凡利用此构思对本发明进行非实质性的改动,均应落入本发明的保护范围。

Claims (10)

1.一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于,包括以下步骤:
(1)将高聚物材料A溶于溶剂B中,搅拌均匀,得到纺丝溶液,将所述纺丝溶液注入到静电纺丝装置的溶液通道,调节纺丝参数进行静电纺丝制备微纳米纤维毡;或采用熔喷纺丝技术,通过调节纺丝参数,将高聚物材料C制备成微纳米纤维毡;
(2)将所述微纳米纤维毡加入到分散剂D中,再经均质机高速剪切,分散得到微纳米纤维分散液;
(3)将所述微纳米纤维分散液倒入模具后,置于冷冻干燥机中在-50℃至-10℃的温度下冷冻12-24小时,然后真空冷冻干燥48-72小时,得到冻干后的微纳米纤维集合体;
(4)将所述冻干后的微纳米纤维集合体浸渍在低表面能物质溶液浸渍液E中一定时间后捞出风干,得到风干后的微纳米纤维集合体;所述浸渍液E为PDMS溶液或苯并噁嗪溶液,浓度为1%-30%;
(5)将所述风干后的微纳米纤维集合体置于80至210℃的温度下,固化60-240 min,得到高饱和吸油倍率微纳米纤维气凝胶。
2.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(1)中所述的高聚物材料A为聚丙烯腈、聚酰胺、聚己内酯、醋酸纤维素、聚砜、聚苯乙烯、聚乳酸、聚乙烯醇、聚乙烯吡咯烷酮、聚氨酯、聚偏氟乙烯、聚氯乙烯中的一种或多种组合。
3.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(1)中所述的溶剂B为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺, 去离子水、二氯甲烷、三氯甲烷、二甲基亚砜、四氢呋喃、甲酸、甲苯中的一种,或两种及两种以上的混合溶剂。
4.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(1)中所述的高聚物材料C为聚丙烯、聚乙烯、聚酰胺、聚己内酯、聚酯、聚乳酸、聚氨酯、聚偏氟乙烯、聚氯乙烯中的一种或多种组合。
5.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(1)中静电纺丝参数为:纺丝电压10-35 kV,接收距离10-25 cm,纺丝溶液流速为0.3-2 ml/h;步骤(1)中熔喷纺丝参数为:螺杆温度为120-300℃,热空气压力为0.5-15 MPa,接收距离为10-35 cm,计量泵流量为0.5-5千克/小时,热空气温度为150-350℃。
6.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(2)中所述分散剂D选自去离子水、叔丁醇、二氧六环、莰烯、甲苯中的一种,或两种及两种以上的混合溶剂。
7.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(2)中所述微纳米纤维分散液的浓度为0.5 %-15 %。
8.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(2)中所述均质机的转速为10000-18000 r/min,分散时间为10-30 min。
9.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法,其特征在于:步骤(3)中真空度为0.5-20帕。
10.根据权利要求1所述的一种浸渍法制备高吸油倍率微纳米限位气凝胶的方法,其特征在于:步骤(4)中所述PDMS纺丝溶液的主剂和固化剂比例为质量比10:1,溶剂为甲苯、正庚烷、正己烷、异丙醇、丙酮、丁酮、乙酸乙酯、氯仿、二氯甲烷、四氢呋喃中的一种或两种及以上的混合溶剂。
CN202010110952.4A 2020-02-24 2020-02-24 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法 Pending CN111111625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010110952.4A CN111111625A (zh) 2020-02-24 2020-02-24 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010110952.4A CN111111625A (zh) 2020-02-24 2020-02-24 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法

Publications (1)

Publication Number Publication Date
CN111111625A true CN111111625A (zh) 2020-05-08

Family

ID=70492051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010110952.4A Pending CN111111625A (zh) 2020-02-24 2020-02-24 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法

Country Status (1)

Country Link
CN (1) CN111111625A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426030A (zh) * 2023-04-24 2023-07-14 新疆大学 一种分离油包水乳液pvc气凝胶的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102561037A (zh) * 2011-12-15 2012-07-11 东华大学 一种苯并恶嗪修饰超疏水纳米纤维膜及其制备方法
US20140322512A1 (en) * 2013-03-15 2014-10-30 Quynh Pham Core-sheath fibers and methods of making and using same
CN104674384A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 基于静电纺丝技术的三维油水分离材料及其制备方法
CN109731533A (zh) * 2019-01-22 2019-05-10 北京交通大学 一种聚酰亚胺纳米纤维气凝胶及其制备方法和应用
CN110079876A (zh) * 2019-04-30 2019-08-02 苏州大学 一种高吸油性纳米纤维气凝胶的制备方法及应用
CN110128694A (zh) * 2019-05-13 2019-08-16 浙江工业大学 一种疏水吸油型纤维素基气凝胶的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102561037A (zh) * 2011-12-15 2012-07-11 东华大学 一种苯并恶嗪修饰超疏水纳米纤维膜及其制备方法
US20140322512A1 (en) * 2013-03-15 2014-10-30 Quynh Pham Core-sheath fibers and methods of making and using same
CN104674384A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 基于静电纺丝技术的三维油水分离材料及其制备方法
CN109731533A (zh) * 2019-01-22 2019-05-10 北京交通大学 一种聚酰亚胺纳米纤维气凝胶及其制备方法和应用
CN110079876A (zh) * 2019-04-30 2019-08-02 苏州大学 一种高吸油性纳米纤维气凝胶的制备方法及应用
CN110128694A (zh) * 2019-05-13 2019-08-16 浙江工业大学 一种疏水吸油型纤维素基气凝胶的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426030A (zh) * 2023-04-24 2023-07-14 新疆大学 一种分离油包水乳液pvc气凝胶的制备方法及其应用
CN116426030B (zh) * 2023-04-24 2024-01-26 新疆大学 一种分离油包水乳液pvc气凝胶的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN108893863B (zh) 一种zif-8/聚偏氟乙烯复合纳米纤维膜及其制备方法和应用
CN110872741B (zh) 一种同时用于乳液分离和染料吸附的复合纳米纤维膜及其制备方法
CN109133962B (zh) 一种静电纺纳米纤维复合碳气凝胶及其制备方法
CN111135771B (zh) 一种高效吸油纳米纤维气凝胶的制备方法
CN110079876A (zh) 一种高吸油性纳米纤维气凝胶的制备方法及应用
Yuan et al. A novel hydrophobic adsorbent of electrospun SiO 2@ MUF/PAN nanofibrous membrane and its adsorption behaviour for oil and organic solvents
CN105970485A (zh) 一种聚酰亚胺/二氧化锆复合纳米纤维膜及其制备方法
CN109943920B (zh) 一种静电混纺聚丙烯腈/木质素制备碳纳米纤维的方法
WO2016120076A1 (de) Verfahren und vorrichtung zur herstellung anorganischer aerogel-fasern
CN108854596B (zh) 一种连续油水分离中空纤维膜的制备方法
CN111111625A (zh) 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法
CN106757538A (zh) 一种电纺丝方法制备多孔炭纤维制备方法
CN1493720A (zh) 一种相变复合纺丝原液及其制备和应用
CN106245149A (zh) 一种高均匀性车模聚酯工业丝及其制备方法
Kang et al. Electrospun poly (tetrafluoroethylene) nanofiber membranes from PTFE-PVA-BA-H 2 O gel-spinning solutions
CN106283250A (zh) 一种高均匀性高强超低缩型聚酯工业丝及其制备方法
Zhong et al. Green electrospun poly (vinyl alcohol)/silicon dioxide nanofibrous membrane coated with polydopamine in the presence of strong oxidant for effective separation of surfactant-stabilized oil-in-water emulsion
CN111589307B (zh) 一种复合纳滤膜及其制备方法
CN104928789B (zh) 静电纺丝结合反溶剂技术制备多孔纳米纤维及制备方法
CN101775744B (zh) 一种织物的超疏水改性方法
CN112030239B (zh) 一种液态高分子材料的高压静电纺丝方法
CN106319676A (zh) 一种高均匀性活化型聚酯工业丝及其制备方法
CN110938897A (zh) 一种快速制备纤维状多孔材料的技术
CN111648044A (zh) 一种超吸水纳米纤维膜及其制备方法
CN109322010A (zh) 利用废聚丙烯腈纤维制备的聚丙烯腈碳纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200508

RJ01 Rejection of invention patent application after publication