CN111097401A - 旋涂制备ZnO/TiO2异质结薄膜材料的方法 - Google Patents

旋涂制备ZnO/TiO2异质结薄膜材料的方法 Download PDF

Info

Publication number
CN111097401A
CN111097401A CN201911187413.4A CN201911187413A CN111097401A CN 111097401 A CN111097401 A CN 111097401A CN 201911187413 A CN201911187413 A CN 201911187413A CN 111097401 A CN111097401 A CN 111097401A
Authority
CN
China
Prior art keywords
zno
tio
film
spin
spin coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911187413.4A
Other languages
English (en)
Other versions
CN111097401B (zh
Inventor
周保学
周廷生
白晶
李金花
王蓬勃
张博
查丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201911187413.4A priority Critical patent/CN111097401B/zh
Publication of CN111097401A publication Critical patent/CN111097401A/zh
Application granted granted Critical
Publication of CN111097401B publication Critical patent/CN111097401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/11Electrochemical processes, e.g. electrodialysis
    • A62D3/115Electrolytic degradation or conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2203/00Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
    • A62D2203/02Combined processes involving two or more distinct steps covered by groups A62D3/10 - A62D3/40
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种旋涂制备ZnO/TiO2异质结薄膜材料的方法,通过在TiO2纳米棒薄膜表面,控制旋涂醋酸锌‑乙醇溶液旋涂转速和旋涂次数,以控制ZnO晶种形成的均匀分布程度和密度,然后在水热条件下在ZnO晶种上生长ZnO纳米线,制备得到ZnO/TiO2异质材料具有鸟巢状结构。本发明得到的ZnO/TiO2薄膜,比表面积大,具有更高的光吸收性能、高的光电效率和电荷传输效率,可以广泛应用于光电催化产氢和光电催化降解有机物等领域。

Description

旋涂制备ZnO/TiO2异质结薄膜材料的方法
技术领域
本发明涉及的是一种光电催化领域的技术,具体是一种旋涂制备ZnO/TiO2异质结薄膜材料的方法。
背景技术
二氧化钛(TiO2)作为光电催化光阳极,具有合适的导带/价带位置、储量丰富、低价、无毒、稳定性好等优点。但TiO2较宽的带隙能(锐钛矿~3.2eV,金红石~3.0eV),使其只能吸收紫外光,且载流子分离和传输动力学过程非常缓慢。现有技术有采用氧化锌(ZnO)修饰TiO2的ZnO/TiO2异质结薄膜作为改进光电极,由于其具有基于ZnO较高的电子迁移率(ZnO纳米线:1000cm2 V s-1)和基于二者之间良好的能级匹配关系而具有优异光生电荷分离效率的潜力。
现有的ZnO/TiO2薄膜的制备方法,是通过在TiO2薄膜表面生长ZnO来进行制备的。但是现有方法无法在TiO2薄膜表面生长出有序的ZnO纳米结构,因而难以获得高比表面积的ZnO薄膜层,导致ZnO/TiO2薄膜载流子分离效率和传输性能差,光电催化活性和稳定性差。如Int.J.hydrogen Energy 42(2017)3938-3946将醋酸锌直接滴加到TiO2薄膜上,浸润之后,烧结后形成ZnO/TiO2异质结薄膜,由于该方法也没有采用ZnO晶种诱导ZnO生长,获得的ZnO/TiO2薄膜,ZnO薄膜层为核壳结构,这种核壳结构的ZnO层比表面积小,光吸收差。中国发明专利CN101760739A中,则直接在TiO2薄膜表面水热生长ZnO纳米棒,获得ZnO/TiO2薄膜,该方法在TiO2薄膜表面制备ZnO时,没有使用ZnO晶种,但所获得的ZnO纳米棒短,比表面积小,光吸收差。J.Nanopart.Res,2017,19(9):297通过在TiO2薄膜表面上先引入ZnO晶种,通过在TiO2薄膜表面浸渍醋酸锌-乙醇溶液,烧结形成ZnO晶种,然后放入水热体系,在ZnO晶种上生长ZnO,形成了表面包含有粗短ZnO纳米棒(长~200nm)的ZnO/TiO2异质结薄膜。该方法尽管改善了ZnO的表面结构,但是由于浸渍醋酸锌-乙醇溶液,无法在TiO2薄膜表面均匀地分散,导致ZnO晶种局部堆积在TiO2薄膜表面而无法均匀分散,最终ZnO在TiO2薄膜表面生长了较厚的核壳结构ZnO/TiO2,这种堆积结构的ZnO层比表面积依然较小,光吸收差,光电催化活性和稳定性差。
发明内容
本发明针对现有技术存在的上述不足,提出一种旋涂制备ZnO/TiO2异质结薄膜材料的方法,得到的ZnO/TiO2薄膜具有鸟巢状有序结构,比表面积大,光吸收性能强、光电效率和电荷传输效率高,可以广泛应用于光电催化产氢和光电催化降解有机物等领域。
本发明是通过以下技术方案实现的:
本发明涉及一种旋涂制备ZnO/TiO2异质结薄膜材料的方法,通过在TiO2纳米棒薄膜表面,控制旋涂醋酸锌-乙醇溶液旋涂转速和旋涂次数,以控制ZnO晶种形成的均匀分布程度和密度,然后在水热条件下在ZnO晶种上生长ZnO纳米线,制备得到具有鸟巢状有序结构的ZnO/TiO2异质材料。
所述的TiO2纳米棒薄膜其制备方法是:在30mL的1:1浓盐酸-水溶液中加入0.6mL钛酸四丁酯,快速搅拌2h,得透明溶液;将导电玻璃置于装有上述钛酸四丁酯溶液的水热釜中,150℃反应12h,冷却后,经水洗、烘干后,在马弗炉中以1℃/min的速度加热到450℃,保温1h,即得TiO2纳米棒薄膜。
所述的控制旋涂,具体是指:在制备好的TiO2纳米棒薄膜上旋涂10mM的醋酸锌-乙醇溶液,旋涂转速为2000~4000rpm,旋涂次数为6~10次,每次旋涂完毕后,将其置于150℃的热盘上加热2min后取下并冷却至室温,然后再进行下一次旋涂。
所述的ZnO晶种形成,具体是指:全部旋涂步骤完成后,将TiO2纳米棒薄膜置于450℃的热盘上1h,在TiO2纳米棒薄膜表面生长ZnO晶种。
所述的生长ZnO纳米线,具体是指:将表面具有ZnO晶种的TiO2纳米棒薄膜置于5~20mM硝酸锌和六次甲基四胺的混合溶液中,于烘箱90℃下加热4h生长ZnO纳米线。
本发明涉及上述方法制备得到的ZnO/TiO2异质结薄膜材料,表面具有鸟巢状有序结构,与传统的ZnO/TiO2异质结薄膜相比,具有更大的比表面积,更好的光吸收和更高的载流子分离和传输性能,以及更好的光电催化性能。
本发明涉及一种旋涂制备ZnO/TiO2异质结薄膜电极在光电催化制氢和光电催化降解有机污染物等领域中的应用。
技术效果
与现有技术相比,本发明整体解决了ZnO/TiO2异质结中ZnO层比表面积小、光吸收性能差、载流子动力学缓慢的问题,由此产生的技术效果包括:
1)ZnO/TiO2异质结是在TiO2纳米棒表面,由均匀分散的ZnO晶种生长的ZnO长纳米线结合而成,ZnO长纳米线相互交错,构成具有更高比表面积的鸟巢庄有序结构,当其与电解液界面接触时,具有更大的接触面积,有利于光的吸收和载流子的传输和界面反应;
2)TiO2与ZnO之间存在着能级匹配关系,见图1,这种能级匹配关系能够满足电子与空穴的分离与传输,有利于克服TiO2中光生电子-空穴对复合严重的问题;
3)相比传统结构的ZnO/TiO2薄膜,本发明是一种开放的具有高比表面积的鸟巢状结构,光线可以直接照射到TiO2纳米棒上,有效减弱了ZnO的光腐蚀,提高了其稳定性。
附图说明
图1为TiO2与ZnO的能级结构示意图;
图2为本发明的制备工艺示意图;
图3为实施例1中TiO2纳米棒薄膜(a)和本发明鸟巢状结构的ZnO/TiO2薄膜(b)的扫面电镜照片;
图4为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜的紫外可见吸收光谱图;
图5为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解液中、100mW cm-2光照强度下测得的线性扫描伏安曲线示意图;
图6为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解液中、100mW cm-2光照强度和1.23V(vs.RHE)偏压下测得的光电转化效率曲线示意图;
图7为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜的交流阻抗曲线示意图;
图8为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜在不同光照强度下的电子传输时间和电子寿命示意图;
图9为实施例1中TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜和本发明鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解液中、100mW cm-2光照强度和1.23V(vs.RHE)偏压下测得的光电流-时间曲线示意图。
具体实施方式
实施例1
本实施例具体包括以下步骤:
①采用水热法制备TiO2纳米棒薄膜:在30mL的1:1浓盐酸的水溶液中加入0.6mL钛酸四丁酯,快速搅拌2h,得透明溶液;将导电玻璃置于装有上述钛酸四丁酯溶液的水热釜中,150℃反应12h,冷却后,经水洗、烘干后,在马弗炉中以1℃/min的速度加热到450℃,保温1h,即得TiO2纳米棒薄膜。
②在制备好的TiO2纳米棒薄膜上旋涂10mM的醋酸锌-乙醇溶液,制备ZnO晶种;旋涂速度为3000rpm,旋涂次数为8次,每次旋涂完毕后,将其置于150℃的热盘上加热2min,然后取下,冷却至室温,进行下一次旋涂。
③旋涂完成后,将其置于450℃的热盘上加热1h,在TiO2纳米棒薄膜表面生长ZnO晶种层;随后,将具有ZnO晶种层的TiO2薄膜置于10mM的硝酸锌和六次甲基四胺的混合溶液中,于烘箱90℃下加热4h生长ZnO纳米线后,取出并用去离子水冲洗数次,然后在50℃下干燥1h,即得表面具有鸟巢状结构的ZnO/TiO2异质结薄膜电极。
将本实施例制备得到的鸟巢状结构的ZnO/TiO2薄膜光阳极在0.2M Na2SO4电解质溶液中、100mW cm-2光照强度下测得的伏安曲线表明,其光电流密度在1.23V(vs RHE)偏压下为2.72mA/cm-2,经过8h稳定性测试光电流只下降了不到4%,光电转换效率达到88.4%。该薄膜材料可以作为光电催化电极用于光电催化制氢和光电催化降解有机污染物中。
以下以1个对照例来说明实施例1的效果。
对照例1
步骤1)先采用水热法制备TiO2纳米棒薄膜:在30mL的1:1浓盐酸的水溶液中加入0.6mL钛酸四丁酯,快速搅拌2h,得透明溶液;将导电玻璃置于装有上述钛酸四丁酯溶液的水热釜中,150℃反应12h,冷却后,经水洗、烘干后,在马弗炉中以1℃/min的速度加热到450℃,保温1h,即得TiO2纳米棒薄膜。
步骤2)按照文献Int.J.hydrogen Energy 42(2017)3938-3946的方法制备传统的核壳结构的ZnO/TiO2薄膜:首先配置5mM的醋酸锌溶液,将制备好的TiO2纳米棒薄膜置于100℃的热盘上,取1mL该溶液滴在TiO2纳米棒薄膜上,待所滴醋酸锌溶液干燥后,再进行下一次滴加,重复几次。然后,将其置于马弗炉中,加热到400℃,保温30min,冷却后,即得传统的具有核壳结构的ZnO/TiO2异质结薄膜电极。
如图3所示,为TiO2纳米棒薄膜(图3a)和本发明鸟巢状结构的ZnO/TiO2薄膜(图3b)的SEM照片,传统的核壳结构的SEM照片参见文献Int.J.hydrogen Energy 42(2017)3938-3946的3940页的图1d。在传统的核壳结构的ZnO/TiO2薄膜中,TiO2纳米棒被厚的ZnO包裹着。而在本发明鸟巢状结构的ZnO/TiO2薄膜中,TiO2纳米棒上长了很多相互交错的、疏密有致的ZnO纳米线,ZnO纳米线长度高达6μm,具有更高的比表面积。
如图4所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜的紫外可见吸收光谱。传统的核壳结构ZnO/TiO2薄膜表现出较差的吸光性能。
如图5所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解质溶液中、100mW cm-2光照强度下测得的伏安曲线。所述的TiO2薄膜和核壳结构的ZnO/TiO2薄膜的光电流密度在1.23V(vs RHE)偏压下分别为1.25mA/cm-2和1.74mA/cm-2,远低于实施例1中本发明具有鸟巢状结构的ZnO/TiO2薄膜的光电流密度(2.72mA/cm-2)。
如图6所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜的光电转化效率。所述的TiO2薄膜和传统核壳结构的ZnO/TiO2薄膜在380nm波长的光电转化效率分别为38.9%和58.5%,远低于实施例1中本发明具有鸟巢状结构的ZnO/TiO2薄膜的光电转化效率(88.4%)。
如图7所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜的电化学阻抗谱。所述的TiO2薄膜和传统核壳结构的ZnO/TiO2薄膜的阻抗明显大于本发明具有鸟巢结构的ZnO/TiO2薄膜,说明实施例1中鸟巢状结构的ZnO/TiO2薄膜的载流子分离和传输效率得到大幅度提高。
如图8所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜随光照强度变化的电子传输时间(图8a)和电子寿命(图8b)。电子传输时间为光阳极薄膜中多数载流子(电子)到达导电基底的平均迁移时间,电子寿命为光阳极薄膜中多数载流子(电子)的平均寿命。结果表明通过本发明得到的鸟巢状结构的ZnO/TiO2薄膜中的光生载流子的迁移速率和寿命均要远高于所述的TiO2薄膜和传统核壳结构的ZnO/TiO2薄膜中光生载流子的迁移速率和寿命。
如图9所示,为TiO2纳米棒薄膜、传统的核壳结构的ZnO/TiO2薄膜、本发明鸟巢状结构的ZnO/TiO2薄膜的稳定性测试。TiO2是一种非常稳定的光阳极材料,所述的TiO2薄膜经过8h稳定性测试后光电流没有发生衰减。所述的传统核壳结构的ZnO/TiO2薄膜在相同测试条件下光电流衰减了~28%,而实施例1中本发明具有鸟巢状结构的ZnO/TiO2薄膜的光电流仅衰减了不到4%,表现出非常好的稳定性。
对照例2
根据文献J.Nanopart.Res,2017,19(9):297制备表面具有粗短的ZnO棒的核壳结构的ZnO/TiO2薄膜。
步骤1)先采用水热法制备TiO2纳米棒薄膜:在20mL浓盐酸、4mL醋酸和24mL水的混合溶液中加入0.8mL钛酸四丁酯,快速搅拌至溶液透明后,将导电玻璃置于装有上述钛酸四丁酯溶液的水热釜中,150℃反应20h,冷却后,经水洗、烘干后,在马弗炉中以1℃/min的速度加热到450℃,保温0.5h,即得TiO2纳米棒薄膜。
步骤2)将1.01g醋酸锌和0.5mL二乙基胺加入到50mL的乙醇溶液中,搅拌至均匀,得到ZnO晶种溶液。将TiO2纳米棒薄膜浸渍在该溶液中,一段时间后取出,干燥后,在空气气氛中,400℃下热解0.5h,即得到表面覆盖一层ZnO晶种的TiO2纳米棒薄膜。
步骤3)随后,将具有ZnO晶种层的TiO2薄膜置于10mM的硝酸锌和六次甲基四胺的混合溶液中,于烘箱90℃下加热3h后,取出并用去离子水冲洗数次,然后在50℃下干燥1h;然后将其置于马弗炉中,于450℃下热解0.5h,即得表面具有粗短的ZnO棒的核壳结构的ZnO/TiO2异质结薄膜电极。
所述的核壳结构的ZnO/TiO2薄膜的扫描电镜照片、伏安曲线和光电转化效率曲线分别见文献J.Nanopart.Res,2017,19(9):297第四页图2c,第六页图5a和第七页图6b。从扫描电镜照片中可以清晰地看到,TiO2纳米棒被厚厚的ZnO包裹着,形成核壳结构,同时在表面生长了许多粗短的ZnO纳米棒(长~200nm)。其光电流密度在1.23V(vs RHE)偏压下分别为1.12mA/cm-2,最大光电转化效率为35%,远低于实施例1中鸟巢状结构的ZnO/TiO2薄膜的光电流密度(2.72mA/cm-2)和光电转化效率(88.4%)。
实施例2
按照实施例1制备TiO2纳米棒薄膜,在制备好的TiO2纳米棒薄膜上旋涂10mM的醋酸锌-乙醇溶液,制备ZnO晶种;旋涂速度为2000rpm,旋涂次数为6次,每次旋涂完毕后,将其置于150℃的热盘上加热2min,然后取下,冷却至室温,进行下一次旋涂直至旋涂完成后,置于450℃的热盘上加热1h,在TiO2纳米棒薄膜表面生长ZnO纳米线;随后,将具有ZnO晶种层的TiO2薄膜置于20mM的硝酸锌和六次甲基四胺的混合溶液中,于烘箱90℃下加热4h生长ZnO纳米线后,取出并用去离子水冲洗数次,然后在50℃下干燥1h,即得鸟巢状结构的ZnO/TiO2异质结薄膜电极。
本实施例制备得到的鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解质溶液中、100mW cm-2光照强度下测得的伏安曲线表明,其光电流密度在1.23V(vs RHE)偏压下为2.42mA/cm-2,经过8h稳定性测试光电流只下降了不到8%,光电转换效率达到83.1%。该薄膜材料可以作为光电催化电极用于光电催化制氢和光电催化降解有机污染物中。
实施例3
按照实施例1制备TiO2纳米棒薄膜,在制备好的TiO2纳米棒薄膜上旋涂10mM的醋酸锌-乙醇溶液,制备ZnO晶种;旋涂速度为4000rpm,旋涂次数为10次,每次旋涂完毕后,将其置于150℃的热盘上加热2min,然后取下,冷却至室温,进行下一次旋涂直至旋涂完成后,将其置于450℃的热盘上加热1h,在TiO2纳米棒薄膜表面生长ZnO纳米线;随后,将具有ZnO晶种层的TiO2薄膜置于5mM的硝酸锌和六次甲基四胺的混合溶液中,于烘箱90℃下加热4h生长ZnO纳米线后,取出并用去离子水冲洗数次,然后在50℃下干燥1h,即得表面具有鸟巢状结构的ZnO/TiO2异质结薄膜电极。
本实施例制备得到的鸟巢状结构的ZnO/TiO2薄膜在0.2M Na2SO4电解质溶液中、100mW cm-2光照强度下测得的伏安曲线表明,其光电流密度在1.23V(vs RHE)偏压下为2.50mA/cm-2,经过8h稳定性测试光电流只下降了不到6%,光电转换效率达到84.4%。该薄膜材料可以作为光电催化电极用于光电催化制氢和光电催化降解有机污染物中。
本发明通过控制旋涂醋酸锌-乙醇溶液的转速和旋涂次数,实现ZnO晶种在/TiO2薄膜表面的均匀分布,最终控制水热条件得到具有鸟巢状结构的ZnO/TiO2异质薄膜,该薄膜ZnO层具有更高的比表面积。
经过具体实际实验,在室温的具体环境设置下,以0.2M Na2SO4电解质溶液中、100mW cm-2光照强度,能够得到的实验数据是:光电流、光电转化效率以及稳定性。
与现有技术相比,本发明的鸟巢状结构的ZnO/TiO2具有更高的光电催化活性和稳定性,在光电催化制氢和光电催化降解有机污染物中具有广泛的前途。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (6)

1.一种旋涂制备ZnO/TiO2异质结薄膜材料的方法,通过在TiO2纳米棒薄膜表面,控制旋涂醋酸锌-乙醇溶液的旋涂转速和旋涂次数,以控制ZnO晶种形成的分布程度和密度,然后在水热条件下在ZnO晶种上生长ZnO纳米线,制备具有鸟巢状结构的ZnO/TiO2异质材料;
所述的旋涂转速为2000~4000rpm,旋涂次数为6~10次,水热反应液为5~20Mm硝酸锌和六次甲基四胺的混合溶液。
2.根据权利要求1所述的制备方法,其特征是,所述的TiO2纳米棒薄膜的制备方法:在30mL的1:1浓盐酸-水溶液中加入0.6mL钛酸四丁酯,快速搅拌2h,得透明溶液;将导电玻璃置于装有上述钛酸四丁酯溶液的水热釜中,150℃反应12h,冷却后,经水洗、烘干后,在马弗炉中以1℃/min的速度加热到450℃,保温1h,即得TiO2纳米棒薄膜。
3.根据权利要求1所述的制备方法,其特征是,所述的控制旋涂,具体是指:在制备好的TiO2纳米棒薄膜上旋涂10mM的醋酸锌-乙醇溶液;每次旋涂完毕后,将其置于150℃的热盘上加热2min后取下并冷却至室温,然后再进行下一次旋涂。
4.根据权利要求1所述的制备方法,其特征是,所述的ZnO晶种形成,具体是指:全部旋涂步骤完成后,将TiO2纳米棒薄膜置于450℃的热盘上1h,在TiO2纳米棒薄膜表面生长ZnO晶种。
5.根据权利要求1所述的制备方法,其特征是,所述的生长ZnO纳米线,具体是指:将表面具有ZnO晶种的TiO2纳米棒薄膜置于水热反应液硝酸锌和六次甲基四胺混合溶液中,于烘箱90℃下加热4h生长ZnO纳米线。
6.一种根据上述任一权利要求所述方法制备得到的ZnO/TiO2异质结薄膜电极的应用,其特征在于,用于光电催化制氢和光电催化降解有机污染物的电极材料。
CN201911187413.4A 2019-11-28 2019-11-28 旋涂制备ZnO/TiO2异质结薄膜材料的方法 Active CN111097401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911187413.4A CN111097401B (zh) 2019-11-28 2019-11-28 旋涂制备ZnO/TiO2异质结薄膜材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911187413.4A CN111097401B (zh) 2019-11-28 2019-11-28 旋涂制备ZnO/TiO2异质结薄膜材料的方法

Publications (2)

Publication Number Publication Date
CN111097401A true CN111097401A (zh) 2020-05-05
CN111097401B CN111097401B (zh) 2022-06-21

Family

ID=70420980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911187413.4A Active CN111097401B (zh) 2019-11-28 2019-11-28 旋涂制备ZnO/TiO2异质结薄膜材料的方法

Country Status (1)

Country Link
CN (1) CN111097401B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974375A (zh) * 2020-08-28 2020-11-24 嘉兴学院 一种复合光催化剂薄膜及其制备方法和应用
CN113101878A (zh) * 2021-04-08 2021-07-13 中国科学院兰州化学物理研究所 一种原位生长制备放射状二氧化钛纳米棒包裹硅胶核-壳结构微球的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760739A (zh) * 2008-12-25 2010-06-30 黑龙江大学 氧化锌纳米棒阵列在二氧化钛薄膜上的直接垂直沉积方法
CN103397382A (zh) * 2013-04-01 2013-11-20 济南大学 氧化锌纳米棒阵列薄膜的制备方法
CN106540673A (zh) * 2016-09-20 2017-03-29 河南师范大学 一种三维TiO2/ZnO异质结阵列的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760739A (zh) * 2008-12-25 2010-06-30 黑龙江大学 氧化锌纳米棒阵列在二氧化钛薄膜上的直接垂直沉积方法
CN103397382A (zh) * 2013-04-01 2013-11-20 济南大学 氧化锌纳米棒阵列薄膜的制备方法
CN106540673A (zh) * 2016-09-20 2017-03-29 河南师范大学 一种三维TiO2/ZnO异质结阵列的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUJUAN HU等: "High-performance 1D type-II TiO2@ZnO core-shell nanorods arrays photoanodes for photoelectrochemical solar fuel production", 《APPLIED SURFACE SCIENCE》 *
WOO-YOUNG KIM等: "Annealing Effect of ZnO Seed Layer on Enhancing Photocatalytic Activity of ZnO/TiO2 Nanostructure", 《INTERNATIONAL JOURNAL OF PHOTOENERGY》 *
戴松元著: "《薄膜太阳电池关键科学和技术》", 31 January 2013, 上海:上海科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974375A (zh) * 2020-08-28 2020-11-24 嘉兴学院 一种复合光催化剂薄膜及其制备方法和应用
CN113101878A (zh) * 2021-04-08 2021-07-13 中国科学院兰州化学物理研究所 一种原位生长制备放射状二氧化钛纳米棒包裹硅胶核-壳结构微球的方法

Also Published As

Publication number Publication date
CN111097401B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN104362412B (zh) 一种ZnO/g-C3N4纳米复合材料及其制备方法
Hao et al. A novel semiconductor-sensitized solar cell based on P3HT@ CdS@ TiO2 core-shell nanotube array
CN102412369B (zh) 一种有机/无机杂化太阳电池及其制备方法
Hu et al. High-performance 1D type-II TiO2@ ZnO core-shell nanorods arrays photoanodes for photoelectrochemical solar fuel production
CN107123693B (zh) 一种基于溶液法加工的具有高透明窗口层材料的高效CdTe纳米晶太阳电池及其制备方法
Qi et al. Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes
CN109778223B (zh) 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
CN109772369B (zh) 一种钼酸铋/硫化铋/二硫化钼三元光电催化薄膜材料电极的制备方法
CN101834068A (zh) 一种用于染料敏化太阳能电池的核壳结构阳电极及其制备方法
CN110311012B (zh) 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法
Oh et al. Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes
Nan et al. Improved photocatalytic efficiency and stability of CdS/ZnO shell/core nanoarrays with high coverage and enhanced interface combination
CN111097401B (zh) 旋涂制备ZnO/TiO2异质结薄膜材料的方法
CN114016077B (zh) 一种硫化镉-硫铟锌异质结纳米棒阵列复合材料及其制备方法
Chen et al. Hydrothermal synthesis of Fe 2 O 3/ZnO heterojunction photoanode for photoelectrochemical water splitting
CN110735151A (zh) 一种碳化钛复合硫化铟锌光阳极的制备方法
KR101828943B1 (ko) 금속 산화물 나노섬유, 나노막대 및 코팅층을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
CN103137868B (zh) 一种基于三元纳米阵列的有机/无机杂化太阳电池及其制备方法
Gao et al. ZnO/TiO2 core–shell heterojunction for CdS and PbS quantum dot-cosensitized solar cells
CN110350053B (zh) CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN112117383A (zh) 一种结构可调节的电子传输层及其制备方法、太阳能电池及其制备方法
CN109608055B (zh) 一种硫化铋敏化的二氧化钛纳米棒薄膜及其制备方法
CN114150338B (zh) 一种碳量子点和氮掺杂氮化碳共修饰的氧化锌光阳极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant