CN111086974B - 一种自bog中分离纯化氢与氦的系统与方法 - Google Patents

一种自bog中分离纯化氢与氦的系统与方法 Download PDF

Info

Publication number
CN111086974B
CN111086974B CN202010038470.2A CN202010038470A CN111086974B CN 111086974 B CN111086974 B CN 111086974B CN 202010038470 A CN202010038470 A CN 202010038470A CN 111086974 B CN111086974 B CN 111086974B
Authority
CN
China
Prior art keywords
hydrogen
helium
membrane separation
separation
pressure swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010038470.2A
Other languages
English (en)
Other versions
CN111086974A (zh
Inventor
王志高
吴海雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Ruifen Gas Technology Co ltd
Original Assignee
Suzhou Ruifen Gas Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Ruifen Gas Technology Co ltd filed Critical Suzhou Ruifen Gas Technology Co ltd
Priority to CN202010038470.2A priority Critical patent/CN111086974B/zh
Publication of CN111086974A publication Critical patent/CN111086974A/zh
Priority to PCT/CN2020/104763 priority patent/WO2021143093A1/zh
Application granted granted Critical
Publication of CN111086974B publication Critical patent/CN111086974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种自BOG中分离纯化氢与氦的系统及方法,所述系统包括依次连接的膜分离单元与吸附分离单元;所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置;所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元。本方案开创性的发明了结合了膜分离与吸附分离等技术,实现了氦气和氢气从BOG中高效提取分离并分别纯化到电子级纯度。相对于现有技术,本发明大幅减少了能耗、缩短了系统流程,实现了模块化组合,从而提高了应用的灵活性。

Description

一种自BOG中分离纯化氢与氦的系统与方法
技术领域
本发明涉及化工技术领域,涉及一种分离提纯的系统与方法,尤其涉及一种自BOG中分离氢与氦的系统与方法。
背景技术
原料天然气中主要含有CH4(甲烷),同时往往伴生有C2H6(乙烷)、C3H8(丙烷)、C4H10(正丁烷、异丁烷)和较重的CXHY(X>4)等烃类,同时含有H2O(水)、H2(氢气)、N2(氮气)、He(氦气)和酸性气体,诸如CO2(二氧化碳)、H2S(硫化氢)与C2H5SH(硫醇)。当天然气被冷却到-150℃至-162℃(视具体原料组分和压力而定)时,天然气被液化为液化天然气(LNG),同时未被液化的称为闪蒸气(boiled off gas,BOG),例如:沸点低于CH4的气体,如N2、H2和He等尚未被液化。
经过一次或者多次闪蒸,以上不凝气的浓度相对在原料天然气中的各自比例被大幅提高了,基本上以上未被液化的不凝气体被浓缩了几十倍,甚至100倍,值得关注的是被浓缩后的BOG中He含量已经达到或者超过海外富氦气田中的含量。
国内外针对BOG中提取氦气出现了多种可行的方案,部分已经获得了工业化实施,例如:深冷法、液化法、变压吸附(PSA)法、膜分离,以及以上两种或多种方法的结合。
深冷方案的技术要点是要通过严格的计算来控制制冷量与消耗冷量之间的平衡,当系统中冷量控制不匹配,系统会产生温度骤升骤降的问题,当温度过高时,氦气无法被提取;当温度过低时,能耗大幅增加,甚至液体进入压缩机导致压缩机损坏。故深冷方案除能耗过高外,系统稳定性不良。
膜分离法虽然以其模块化和节能性具有很大的优势,但是膜分离只能获得浓度99%(最高不超过99.9%)的氦气;PSA方法非常成熟,但是对于低浓度的氦气提纯存在收率很低的问题。
虽然以上方法都得到了工业化应用,尚无法处理氦气和氢气的分离。液化法虽然可以实现较好的氦气和氢气分离,但是由于氦气和氢气的液化点很接近,无非彻底分离氦气和氢气,同时能耗非常高。
目前最常规的处理氦气和氢气的方法是通过加入过量氧气,通过催化氧化的方法将氢气氧化为水,然后分别除去水和过量的氧气,最终实现从氦气中净化掉氢气。但是,上述方案存在流程复杂,同时浪费了氢气。
氦气是一种稀有气体,且不可再生,氦气具有很多特殊的物理和化学性质,被广泛应用于核磁共振、泛半导体、检漏、飞艇,以及尖端科研和军事工业,同时氦气或者液氦在上述行业中具有不可替代性,而且国内的氦气或者液氦几乎完全来自海外。
氢气是一种应用广泛的大宗气体,其中超纯的氢气(99.999%,5N)以上,被广泛用于泛半导体、仪器分析和混合气等行业。同时,高纯氢气又是氢燃料电池汽车不可或缺的原料,当前氢气已然是一种资源。
本方案开创性的发明了结合了膜分离与吸附分离等技术,实现了氦气和氢气从BOG中高效提取分离。相对于现有技术,本发明大幅减少了能耗、缩短了系统流程,而且在实现氦气提纯的同时,能够获得超纯氢气作为副产品。
不同纯度的氦气、不同纯度的氢气、液氦具有不同的应用价值和领域。本发明实现了完全的模块化配置,可以根据所需产品的要求,获得不同纯度的氦气、液氦与氢气,而且压力可调,通过模块化的配置,大幅减少了分离提纯氢气、氦气与液氦的能耗和投资。
发明内容
本发明的目的在于提供一种自BOG中分离氢与氦的系统与方法,所述系统能够结合膜分离与吸附分离技术,提高闪蒸气中氢气与氦气的分离效果,而且所述系统能够根据对所得氢气、氦气纯度的需要,灵活设置吸附分离单元,减少了分离提纯氢与氦的能耗与成本。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种自BOG中分离氢与氦的系统,所述自BOG中分离氢与氦的系统包括依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元包括闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置。
所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元。
本发明所述深度膜分离装置包括至少一组深度膜分离组件;当深度膜分离装置包括至少两组深度膜分离组件时,所述深度膜分离组件串联连接和/或并联连接。
本发明所述“初级膜分离装置”以及“深度膜分离装置”中的“初级”与“深度”对应膜分离的不同阶段。本领域技术人员可以根据膜分离的实际需要,对初级膜分离装置以及深度膜分离装置中所用膜的型号进行合理地选择。
本发明根据对氢气、氦气纯度的要求,灵活的调整变压吸附单元与氢氦分离纯化单元的位置,即根据对产品的不同需求,使膜分离单元与变压吸附单元或氢氦分离纯化单元连接。本发明通过模块化的设计,根据产品的不同需求灵活的调节吸附单元的连接关系,减少了氢气与氦气的生产成本与投资。
优选地,所述深度膜分离组件所用膜为高分子分离膜。
所述变压吸附单元用于变压吸附闪蒸气中的杂质气体,从而提高氦气和/或氢气的纯度。所述氢氦分离纯化单元用于吸附和解吸附氢气,从而实现氢气与氦气的高效分离。
优选地,所述变压吸附单元包括至少两组并联连接的变压吸附装置,优选为至少两组并联连接的变压吸附塔。
本发明通过使变压吸附单元为并联连接的变压吸附塔,根据变压吸附塔的数量,采用一开多备或多开多备的方法运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成,从而提高了所述自BOG中分离氢与氦的系统的运行效率,保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
优选地,所述变压吸附单元还包括设置于变压吸附装置入口处的增压装置。
优选地,所述增压装置为第一压缩机。本发明通过在变压吸附单元的入口前设置压缩机,并根据进入变压吸附装置的气体压力大小进行启闭,保证了变压吸附的效果。
优选地,所述氢氦分离纯化单元包括至少两组并联连接的氢氦分离纯化装置;进一步优选地,所述氢氦分离纯化装置为氢氦分离纯化床,所述氢氦分离纯化床通过氢气的吸附与解吸,实现氢气与氦气的分离并得到电子级纯度的氢气。
本发明通过设置至少两组并联连接的氢氦分离纯化床,根据氢氦分离纯化单元的工作原理,氢氦混合气进入其中一个氢氦分离纯化床,氢气被吸附分离出氦气,当氢氦分离纯化床吸附氢气到额定值时,切换到另一个氢氦分离纯化床吸附氢气分离氦气,同时吸附氢气后的氢氦分离纯化床解吸出氢气,以上两个氢氦分离纯化床重复交替运行,从而完美的分别分离出高纯氢气和氦气,进而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
优选地,所述氢氦分离纯化床中吸附氢气所用填料的材料为合金材料,包括钛锰系合金、钛锰锆系合金、镁系合金、镁铝系合金或镧镍系合金中的任意一种或至少两种的组合,优选为钛锰系合金和/或钛锰锆系合金。
优选地,所述自BOG中分离氢与氦的系统还包括设置于吸附分离单元后的氦气液化装置,所述氦气液化装置用于将提纯后的氦气液化为液氦。
本发明所述氦气液化装置为本领域技术人员惯用的氦气液化装置,本发明在此不再过多限定。
优选地,所述闪蒸气进气单元还包括设置于闪蒸气进气管道上依次连接的第一颗粒过滤器、第一油水过滤器、压缩机、冷干机、第二油水过滤器、第二颗粒过滤器以及加热器。为了区分第一压缩机,所述压缩机命名为第三压缩机。
本发明通过设置第一颗粒过滤器、第一油水过滤器、冷干机、第二油水过滤器以及第二颗粒过滤器使闪蒸气内的水蒸气、油类以及固体颗粒物得以去除。所述第三压缩机用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求。所述加热器用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
优选地,本发明所述系统还包括设置于第一颗粒过滤器之前的缓冲罐,BOG首先流入缓冲罐,然后再进入第一颗粒过滤器。
优选地,所述自BOG中分离氢与氦的系统还包括设置于膜分离单元与闪蒸气进气单元之间的循环管道。
优选地,所述循环管道上设置有背压阀与增压装置。
所述背压阀与增压装置的设置,用于使膜分离单元中的穿透气和/或渗透气与闪蒸气混合,循环进行分离提纯;优选地,所述增压装置为第二压缩机。
第二方面,本发明提供了一种应用如第一方面所述的自BOG中分离氢与氦的系统分离BOG中氢与氦的方法,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;
(2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气。
优选地,步骤(1)所述闪蒸气中氢气和氦气的总浓度为1-15%vol,例如可以是1%vol、2%vol、3%vol、4%vol、5%vol、6%vol、7%vol、8%vol、9%vol、10%vol、11%vol、12%vol、13%vol、14%vol或15%vol,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述提浓混合气中氢气和氦气的总浓度为20-99.9%vol,例如可以是20%vol、30%vol、40%vol、50%vol、60%vol、70%vol、80%vol、90%vol或99.9%,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述膜分离的进气绝对压力为0.3-2MPa,例如可以是0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1MPa、1.1MPa、1.2MPa、1.3MPa、1.4MPa、1.5MPa、1.6MPa、1.7MPa、1.8MPa、1.9MPa或2MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;温度为20℃以上。
步骤(1)所述膜分离的进气绝对压力与膜分离过程中,膜分离装置所用膜的材质相关。当膜分离装置内的膜材质为有机膜时,膜分离的绝对压力为0.7-2.0MPa,例如可以是0.7MPa、0.8MPa、0.9MPa、1.0MPa、1.1MPa、1.2MPa、1.3MPa、1.4MPa、1.5MPa、1.6MPa、1.7MPa、1.8MPa、1.9MPa或2.0MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;当初级膜分离装置内的膜材质为无机膜时,膜分离的绝对压力为0.3-1.2MPa,例如可以是0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1.0MPa、1.1MPa或1.2MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述吸附分离单元进行氢氦分离纯化时,吸附氢气时的温度为-20℃至30℃,例如可以是-20℃、-15℃、-10℃、0℃、5℃、10℃、15℃、20℃、25℃或30℃,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;解吸氢气时的温度为50-150℃,例如可以是50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃或150℃,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;绝对压力为0.2-2.0MPa,例如可以是0.2MPa、0.5MPa、0.8MPa、1MPa、1.2MPa、1.5MPa、1.8MPa或2.0MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
作为本发明第二方面所述方法的优选技术方案,,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;闪蒸气中氢气和氦气的总浓度为1-15%vol;提浓混合气中氢气和氦气的总浓度为20-99.9%vol;所述膜分离的进气绝对压力为0.3-2MPa,温度为20℃以上;
(2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气,吸附氢气时的温度为-20℃-30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
相对于现有技术,本发明具有以下有益效果:
(1)本发明通过结合膜分离技术与吸附分离技术,提高了BOG中氢气与氦气的分离效果;
(2)本发明通过吸附分离单元中变压吸附装置与氢氦分离纯化装置的灵活设置,使最终所得氢气、氦气以及液氦的纯度灵活可调,降低了分离提纯的成本与能耗。
附图说明
图1为实施例1提供的自BOG中分离氢与氦的系统的结构示意图;
图2为实施例2提供的自BOG中分离氢与氦的系统的结构示意图;
图3为实施例3提供的自BOG中分离氢与氦的系统的结构示意图;
图4为实施例4提供的自BOG中分离氢与氦的系统的结构示意图;
图5为实施例5提供的自BOG中分离氢与氦的系统的结构示意图;
图6为实施例6提供的自BOG中分离氢与氦的系统的结构示意图;
图7为实施例7提供的自BOG中分离氢与氦的系统的结构示意图;
图8为实施例8提供的自BOG中分离氢与氦的系统的结构示意图;
图9为实施例9提供的自BOG中分离氢与氦的系统的结构示意图;
图10为实施例10提供的自BOG中分离氢与氦的系统的结构示意图;
其中:1-1,初级膜分离组件;2-1,第一深度膜分离组件;2-2,第二深度膜分离组件;2-3,第三深度膜分离组件;3-1,第一氢氦分离纯化床;3-2,第二氢氦分离纯化床;4-1,第一变压吸附塔;4-2,第二变压吸附塔;4-3,第一压缩机;5-1,背压阀;5-2,第二压缩机;6,氦气液化装置;7-1,第一颗粒过滤器;7-2,第一油水过滤器;7-3,第三压缩机;7-4,冷干机;7-5,第二油水过滤器;7-6,第二颗粒过滤器;7-7,加热器。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图1所示,包括:依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.4-2.0MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
-20℃至30℃的温度下,氢氦分离纯化单元对第一深度膜分离组件2-1的渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附氢气,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
实施例2
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图2所示,包括:依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.4-2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的温度下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
实施例3
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图3所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.2-1.2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
-20℃至30℃的温度下,氢氦分离纯化单元对第一深度膜分离组件2-1的渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后转换为液氦。
实施例4
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图4所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,同时在吸附氢气的时候分离出氦气。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.2-1.2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气纯度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气纯度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的条件下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为5N以上的氦气可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例5
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图5所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1与第二深度膜分离组件2-2;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立地与吸附单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立的与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透气分别独立地与氢氦分离纯化床连接,渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例6
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图6所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1与第二深度膜分离组件2-2;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立地与吸附单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立的与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透气分别独立地与变压吸附塔连接,渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃条件下对氢气进行吸附,同时流出纯度为5N以上的氦气。第一氢氦分离纯化床塔3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为5N以上氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例7
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图7所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.2-1.2MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与氢氦分离纯化床连接,由第三深度膜分离组件2-3流出的渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮预冷后液氦为液氦。
实施例8
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图8所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.2-1.2MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的与变压吸附塔连接,由第三深度膜分离组件2-3流出的渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的温度下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例9
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图9所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道,所述闪蒸气进气管道上依次连接的第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6以及加热器7-7。
所述第三压缩机7-3用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求,所述加热器7-7用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道上第一颗粒过滤器7-1的前端之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气依次流经第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6与加热器7-7后,流入初级膜分离组件1-1。当闪蒸气流经第三压缩机7-3的压力低于1.4MPa时,启动第三压缩机7-3使压力提高至1.6MPa以上,当压力高于1.4MPa时,第三压缩机7-3不启动。当闪蒸气的温度低于25℃时,启用加热器7-7使气体温度提高至25℃以上;当闪蒸气的温度高于20℃时,加热器7-7不启动。
闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.3-2.0MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与氢氦分离纯化床连接,渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例10
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图10所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道,所述闪蒸气进气管道上依次连接的第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6以及加热器7-7。
所述第三压缩机7-3用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求,所述加热器7-7用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道上第一颗粒过滤器7-1的前端之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气依次流经第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6与加热器7-7后,流入初级膜分离组件1-1。当闪蒸气流经第三压缩机7-3的压力低于1.4MPa时,启动第三压缩机7-3使压力提高至1.6MPa以上,当压力高于1.4MPa时,第三压缩机7-3不启动。当闪蒸气的温度低于25℃时,启用加热器7-7使气体温度提高至25℃以上;当闪蒸气的温度高于20℃时,加热器7-7不启动。
闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.3-2.0MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与变压吸附塔连接,由第三深度膜分离组件2-3的渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对第三深度膜分离组件2-3的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃条件下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附氢气,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
氦气产品可选的进入氦气液化装置6,经过液氮预冷后液化为液氦。
综上所述,本发明通过结合膜分离技术与吸附分离技术,提高了BOG中氢气与氦气的分离效果;本发明通过吸附分离单元中变压吸附装置与氢氦分离纯化床装置的灵活设置,使最终所得氢气、氦气以及液氦的纯度灵活可调,降低了分离提纯的成本与能耗。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (11)

1.一种自BOG中分离纯化氢与氦的系统,其特征在于,所述自BOG中分离纯化氢与氦的系统包括依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元;
所述闪蒸气进气单元包括闪蒸气进气管道;
所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置;
所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元;
所述深度膜分离组件所用膜为高分子分离膜;
所述膜分离单元与变压吸附单元连接;或所述膜分离单元与氢氦分离纯化单元连接;
所述氢氦分离纯化单元包括至少两组并联连接的氢氦分离纯化装置,所述氢氦分离纯化装置通过氢气的吸附与解吸,实现氢气与氦气的分离并得到电子级纯度的氢气;
所述氢氦分离纯化装置为氢氦分离纯化床。
2.根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述变压吸附单元包括至少两组并联连接的变压吸附装置。
3.根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述变压吸附单元还包括设置于变压吸附装置入口处的增压装置。
4.根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述自BOG中分离纯化氢与氦的系统还包括设置于吸附分离单元后的氦气液化装置,所述氦气液化装置用于将提纯后的氦气液化为液氦。
5.根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述闪蒸气进气单元还包括设置于闪蒸气进气管道上依次连接的第一颗粒过滤器、第一油水过滤器、压缩机、冷干机、第二油水过滤器、第二颗粒过滤器以及加热器。
6.根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述自BOG中分离纯化氢与氦的系统还包括设置于膜分离单元与闪蒸气进气单元之间的循环管道。
7.根据权利要求6所述的自BOG中分离纯化氢与氦的系统,其特征在于,所述循环管道上设置有背压阀与增压装置。
8.一种应用如权利要求1-7任一项所述的自BOG中分离纯化氢与氦的系统分离BOG中氢与氦的方法,其特征在于,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;
(2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气;
步骤(1)所述闪蒸气中氢气和氦气的总浓度为1-15%vol;
步骤(1)所述提浓混合气中氢气和氦气的总浓度为20-99.9%vol。
9.根据权利要求8所述的方法,其特征在于,步骤(1)所述膜分离的进气绝对压力为0.3-2MPa,温度为20℃以上。
10.根据权利要求8所述的方法,其特征在于,步骤(2)所述吸附分离单元进行氢氦分离纯化时,吸附氢气时的温度为-20℃至30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
11.根据权利要求8所述的方法,其特征在于,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;闪蒸气中氢气和氦气的总浓度为1-15%vol;提浓混合气中氢气和氦气的总浓度为20-99.9%vol;所述膜分离的进气绝对压力为0.3-2.0MPa,温度为20℃以上;
(2)利用吸附分离单元分离氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气,吸附氢气时的温度为-20℃至30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
CN202010038470.2A 2020-01-14 2020-01-14 一种自bog中分离纯化氢与氦的系统与方法 Active CN111086974B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010038470.2A CN111086974B (zh) 2020-01-14 2020-01-14 一种自bog中分离纯化氢与氦的系统与方法
PCT/CN2020/104763 WO2021143093A1 (zh) 2020-01-14 2020-07-27 一种自bog中分离纯化氢与氦的系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010038470.2A CN111086974B (zh) 2020-01-14 2020-01-14 一种自bog中分离纯化氢与氦的系统与方法

Publications (2)

Publication Number Publication Date
CN111086974A CN111086974A (zh) 2020-05-01
CN111086974B true CN111086974B (zh) 2024-07-19

Family

ID=70399390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010038470.2A Active CN111086974B (zh) 2020-01-14 2020-01-14 一种自bog中分离纯化氢与氦的系统与方法

Country Status (2)

Country Link
CN (1) CN111086974B (zh)
WO (1) WO2021143093A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086974B (zh) * 2020-01-14 2024-07-19 苏州睿分气体技术有限公司 一种自bog中分离纯化氢与氦的系统与方法
CN113697785A (zh) * 2020-05-22 2021-11-26 中国石油化工股份有限公司 氧化法结合膜分离制备氦气的方法
CN111573643A (zh) * 2020-06-09 2020-08-25 安徽中科皖能科技有限公司 一种氦气回收提纯装置和方法
CN111715028B (zh) * 2020-06-24 2022-08-02 大连理工大学 一种产品多元化的氦气高收率分离提纯耦合工艺
CN113694705A (zh) * 2021-08-11 2021-11-26 宁夏天利丰能源利用有限公司 一种bog气体提取纯氦气体的工艺方法及设备
CN115869739A (zh) * 2021-09-26 2023-03-31 中国石油化工股份有限公司 膜分离耦合两级脱氢提纯氦气的方法和系统
CN114264116A (zh) * 2021-12-17 2022-04-01 清华大学 一种bog提氦系统及提氦方法
CN117003202A (zh) * 2023-06-13 2023-11-07 上海汉兴能源科技股份有限公司 一种psa提纯氢气的工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340959A (zh) * 2014-11-05 2015-02-11 中国工程物理研究院核物理与化学研究所 一种氢氦混合气体分离与回收装置
CN208932983U (zh) * 2018-08-20 2019-06-04 王帆宇 一种从含氢粗氦中提取氦气的装置
CN211946255U (zh) * 2020-01-14 2020-11-17 苏州睿分电子科技有限公司 一种自bog中分离纯化氢与氦的系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
JP3210812B2 (ja) * 1994-10-07 2001-09-25 日本原子力研究所 水素同位体とヘリウムの分離方法及び装置
US6179900B1 (en) * 1997-10-09 2001-01-30 Gkss Forschungszentrum Geesthacht Gmbh Process for the separation/recovery of gases
CN105749699B (zh) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 一种全温程变压吸附气体分离提纯与净化的方法
CN205939932U (zh) * 2016-08-24 2017-02-08 四川空分设备(集团)有限责任公司 液化天然气闪蒸气提取高纯氦系统
CN107804826A (zh) * 2016-09-08 2018-03-16 中国石油天然气集团公司 一种炼厂气中氢气回收系统、方法
EP3513863A1 (de) * 2018-01-22 2019-07-24 Linde Aktiengesellschaft Verfahren und anlage zur gewinnung von reinhelium
CN108394878B (zh) * 2018-04-09 2019-03-05 西安保埃罗环保科技有限公司 一种含氢的氦尾气提纯氦气工艺
CN111086974B (zh) * 2020-01-14 2024-07-19 苏州睿分气体技术有限公司 一种自bog中分离纯化氢与氦的系统与方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340959A (zh) * 2014-11-05 2015-02-11 中国工程物理研究院核物理与化学研究所 一种氢氦混合气体分离与回收装置
CN208932983U (zh) * 2018-08-20 2019-06-04 王帆宇 一种从含氢粗氦中提取氦气的装置
CN211946255U (zh) * 2020-01-14 2020-11-17 苏州睿分电子科技有限公司 一种自bog中分离纯化氢与氦的系统

Also Published As

Publication number Publication date
WO2021143093A1 (zh) 2021-07-22
CN111086974A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
CN111086974B (zh) 一种自bog中分离纯化氢与氦的系统与方法
CN107789949B (zh) 一种负压变压吸附的气体分离方法
TWI421345B (zh) 高爐氣體之分離方法及裝置
CN102245500B (zh) 由重整气体生产氢并同时捕捉共产生的co2
CN107433107B (zh) 从炼厂干气中回收c2+的二段分浓度psa方法
CN110697655B (zh) 一种膜分离浓缩回收氢气的方法及系统装置
CN101691320B (zh) 从填埋气中提纯回收甲烷和二氧化碳的装置
CN103521033B (zh) 一种火驱采油中次生气的净化回收方法
CN101596391A (zh) 一种低浓度瓦斯变压吸附分级浓缩的方法
CN110455038B (zh) 一种氦提取单元、氦提取装置和联产氦气的系统
CN211946255U (zh) 一种自bog中分离纯化氢与氦的系统
CN113144821A (zh) 一种富氦天然气液化尾气生产高纯氦气的多技术集成分离工艺
CN108339369B (zh) 一种pvc装置尾气组分分离与回收的装置及方法
CN111232924A (zh) 一种从含氢燃料气中提纯回收氢气的装置及方法及应用
CN113148967A (zh) 一种从管道天然气中回收氦气的方法和装置
CN113184850B (zh) 一种高纯度二氧化碳气体提纯方法及其装置
CN217148577U (zh) 一种从低含氦bog中提取高纯氦气的系统
JP5736916B2 (ja) 混合ガスからの二酸化炭素の回収・液化方法
CN115155257B (zh) 一种从低含氦bog中提取高纯氦气的方法
CN215161044U (zh) 一种高纯度二氧化碳气体提纯装置
CN114887463A (zh) 富氦气体分离提纯装置及分离提纯方法
RU2802214C1 (ru) Система и способ разделения и очистки водорода и гелия из отпарного газа
CN114712984A (zh) 一种天然气smb制氢中胺吸收脱碳的全温程变压吸附回收co2替代工艺
CN106390679A (zh) 变压吸附净化餐厨垃圾厌氧发酵制氢的方法
CN217746431U (zh) 一种低浓度氢气吸附提纯系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 215000 Workshop 7 Ganglang Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province

Applicant after: Suzhou Ruifen Gas Technology Co.,Ltd.

Address before: 215123 Room 214, 23 Complex Building, Zhongbei District, Suzhou Industrial Park, Suzhou City, Jiangsu Province, 99 Jinjihu Avenue

Applicant before: Suzhou Ruifen Electronic Technology Co.,Ltd.

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Zhigao

Inventor after: Wu Hailei

Inventor before: Wang Zhigao

Inventor before: Gao Ying

Inventor before: Wu Hailei

Inventor before: Ma Chuanlong

GR01 Patent grant
GR01 Patent grant