WO2021143093A1 - 一种自bog中分离纯化氢与氦的系统与方法 - Google Patents

一种自bog中分离纯化氢与氦的系统与方法 Download PDF

Info

Publication number
WO2021143093A1
WO2021143093A1 PCT/CN2020/104763 CN2020104763W WO2021143093A1 WO 2021143093 A1 WO2021143093 A1 WO 2021143093A1 CN 2020104763 W CN2020104763 W CN 2020104763W WO 2021143093 A1 WO2021143093 A1 WO 2021143093A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
helium
membrane separation
adsorption
separation
Prior art date
Application number
PCT/CN2020/104763
Other languages
English (en)
French (fr)
Inventor
王志高
高颖
吴海雷
马传龙
Original Assignee
苏州睿分电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州睿分电子科技有限公司 filed Critical 苏州睿分电子科技有限公司
Publication of WO2021143093A1 publication Critical patent/WO2021143093A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0042Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids

Definitions

  • This application relates to the field of chemical technology, and relates to a system and method for separation and purification, for example, to a system and method for separating hydrogen and helium from BOG.
  • the raw material natural gas mainly contains CH 4 (methane), and is often accompanied by C 2 H 6 (ethane), C 3 H 8 (propane), C 4 H 10 (n-butane, isobutane) and heavier C X H Y (X>4) and other hydrocarbons, which also contain H 2 O (water), H 2 (hydrogen), N 2 (nitrogen), He (helium) and acid gases, such as CO 2 (carbon dioxide), H 2 S (hydrogen sulfide) and C 2 H 5 SH (mercaptan).
  • the natural gas When the natural gas is cooled to -150°C to -162°C (depending on the specific raw material composition and pressure), the natural gas is liquefied into liquefied natural gas (LNG), and the unliquefied part is called flash steam (BOG). ), for example: gases with a boiling point lower than CH 4 , such as N 2 , H 2 and He, have not been liquefied.
  • LNG liquefied natural gas
  • BOG flash steam
  • the concentration of the above non-condensable gas relative to their respective proportions in the raw natural gas has been greatly increased.
  • the above non-liquefied non-condensable gas has been concentrated dozens of times, or even 100 times, which is worthy of attention.
  • the content of He in the enriched BOG has reached or exceeded the content in overseas helium-rich gas fields.
  • the technical point of the cryogenic solution is to control the balance between the cooling capacity and the cooling capacity through strict calculations.
  • the cooling capacity control in the system does not match, the system will have the problem of sudden temperature rise and drop.
  • the temperature is too high , The helium cannot be extracted; when the temperature is too low, the energy consumption increases significantly, and even the liquid enters the compressor to cause damage to the compressor. Therefore, in addition to high energy consumption, the cryogenic solution has poor system stability.
  • membrane separation method has great advantages due to its modularity and energy saving, membrane separation can only obtain helium with a concentration of 99% (maximum 99.9%); the PSA method is very mature, but for the purification of low-concentration helium There is a problem that the yield is very low.
  • the liquefaction method can achieve a good separation of helium and hydrogen, because the liquefaction points of helium and hydrogen are very close, it is nothing more than a thorough separation of helium and hydrogen, and the energy consumption is very high.
  • the most conventional method of treating helium and hydrogen is to add excess oxygen to oxidize hydrogen to water through catalytic oxidation, and then remove the water and excess oxygen respectively, and finally purify hydrogen from helium.
  • the above scheme has complicated processes and wastes hydrogen.
  • Helium is a rare gas and cannot be regenerated. Helium has many special physical and chemical properties. It is widely used in nuclear magnetic resonance, pan-semiconductor, leak detection, airships, as well as cutting-edge scientific research and military industry. At the same time, helium or liquid Helium is irreplaceable in the above-mentioned industries, and the domestic helium or liquid helium is almost entirely from overseas.
  • Hydrogen is a widely used bulk gas, among which ultra-pure hydrogen (99.999%, 5N) or more, is widely used in pan-semiconductor, instrument analysis and mixed gas industries. At the same time, high-purity hydrogen is an indispensable raw material for hydrogen fuel cell vehicles. Currently, hydrogen is already a resource.
  • the purpose of this application is to provide a system and method for separating hydrogen and helium from BOG.
  • the system can combine membrane separation and adsorption separation technologies to improve the separation effect of hydrogen and helium in flash gas, and the system can be based on For the purity of the obtained hydrogen and helium, the adsorption and separation unit can be flexibly arranged, which reduces the energy consumption and cost of separating and purifying hydrogen and helium.
  • the present application provides a system for separating hydrogen and helium from BOG.
  • the system for separating hydrogen and helium from BOG includes a flash gas inlet unit, a membrane separation unit, and an adsorption separation unit connected in sequence.
  • the flash gas inlet unit includes a flash gas inlet pipe.
  • the membrane separation unit includes a primary membrane separation device and a deep membrane separation device connected in sequence.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in series.
  • This application pioneered a scheme that combines membrane separation and adsorption separation technologies to achieve high-efficiency extraction and separation of helium and hydrogen from BOG. Compared with the prior art, this application greatly reduces energy consumption and shortens the system process, and while purifying helium gas, it can obtain ultra-pure hydrogen as a by-product.
  • the deep membrane separation device described in the present application includes at least one set of deep membrane separation modules; when the deep membrane separation device includes at least two sets of deep membrane separation modules, the deep membrane separation modules are connected in series and/or in parallel.
  • This application flexibly adjusts the positions of the pressure swing adsorption unit and the hydrogen-helium separation and purification unit according to the requirements for the purity of hydrogen and helium, that is, according to the different needs of the product, the membrane separation unit and the pressure swing adsorption unit or the hydrogen-helium separation and purification unit Unit connection.
  • the application flexibly adjusts the connection relationship of the adsorption unit according to the different requirements of the product, and reduces the production cost and investment of hydrogen and helium.
  • the membrane used in the deep membrane separation module is a polymer separation membrane.
  • the pressure swing adsorption unit is used for pressure swing adsorption of impurity gases in the flash gas, thereby improving the purity of helium and/or hydrogen.
  • the hydrogen-helium separation and purification unit is used to adsorb and desorb hydrogen, so as to achieve high-efficiency separation of hydrogen and helium.
  • the pressure swing adsorption unit includes at least two sets of pressure swing adsorption devices connected in parallel, and optionally at least two sets of pressure swing adsorption towers connected in parallel.
  • the pressure swing adsorption unit is a pressure swing adsorption tower connected in parallel, and according to the number of pressure swing adsorption towers, it is operated in a method of one opening with multiple preparations or multiple openings with multiple preparations.
  • the adsorption and regeneration process of each tower is determined by the adsorption , Pressure equalization and pressure reduction, sequential discharge, reverse discharge, flushing, equalization and pressure increase, and hydrogen pressure increase, thereby improving the operating efficiency of the system for separating hydrogen and helium from BOG and ensuring that the self-BOG Continuous and stable operation of the hydrogen and helium separation system in the
  • the pressure swing adsorption unit further includes a supercharging device arranged at the inlet of the pressure swing adsorption device.
  • the supercharging device is a first compressor.
  • a compressor is installed before the inlet of the pressure swing adsorption unit, and the pressure swing adsorption device is opened and closed according to the pressure of the gas entering the pressure swing adsorption device to ensure the effect of the pressure swing adsorption.
  • the hydrogen-helium separation and purification unit includes at least two sets of hydrogen-helium separation and purification devices connected in parallel; further optionally, the hydrogen-helium separation and purification device is a hydrogen-helium separation and purification bed, and the hydrogen-helium separation and purification bed Through the adsorption and desorption of hydrogen, the separation of hydrogen and helium is realized and the hydrogen of electronic grade purity is obtained.
  • the hydrogen-helium mixture enters one of the hydrogen-helium separation and purification beds, and the hydrogen is adsorbed to separate helium.
  • the separation and purification bed absorbs hydrogen to the rated value, switch to another hydrogen-helium separation and purification bed to absorb hydrogen and separate helium.
  • the hydrogen-helium separation and purification bed after adsorbing hydrogen desorbs hydrogen, and the above two hydrogen-helium separation and purification beds repeatedly operate alternately , Thereby perfectly separating high-purity hydrogen and helium respectively, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the material of the filler used for adsorbing hydrogen in the hydrogen-helium separation and purification bed is an alloy material, including any of titanium-manganese alloys, titanium-manganese-zirconium-based alloys, magnesium-based alloys, magnesium-aluminum-based alloys, or lanthanum-nickel-based alloys
  • an alloy material including any of titanium-manganese alloys, titanium-manganese-zirconium-based alloys, magnesium-based alloys, magnesium-aluminum-based alloys, or lanthanum-nickel-based alloys
  • One or a combination of at least two can be selected as titanium-manganese alloy and/or titanium-manganese-zirconium alloy.
  • the system for separating hydrogen and helium from BOG further includes a helium liquefaction device arranged after the adsorption separation unit, and the helium liquefaction device is used to liquefy purified helium into liquid helium.
  • the helium liquefaction device described in this application is a helium liquefaction device commonly used by those skilled in the art, and the application is not limited here too much.
  • the flash gas intake unit further includes a first particle filter, a first oil-water filter, a compressor, a refrigeration dryer, a second oil-water filter, and a first particle filter, a first oil-water filter, a compressor, a refrigeration dryer, a second oil-water filter, and a 2. Particulate filter and heater.
  • the compressor is named the third compressor.
  • the first particle filter, the first oil-water filter, the refrigeration dryer, the second oil-water filter, and the second particle filter are installed to remove water vapor, oil, and solid particles in the flash vapor.
  • the third compressor is used to pressurize the flash gas, so that the pressure of the flash gas entering the membrane separation unit meets the process requirements.
  • the heater is used to heat the flash gas so that the temperature of the flash gas entering the membrane separation unit meets the process requirements.
  • system described in the present application further includes a buffer tank disposed before the first particle filter, and BOG first flows into the buffer tank, and then enters the first particle filter.
  • the system for separating hydrogen and helium from BOG further includes a circulation pipe arranged between the membrane separation unit and the flash gas inlet unit.
  • a back pressure valve and a pressure boosting device are provided on the circulation pipeline.
  • the setting of the back pressure valve and the booster device is used to mix the penetration gas and/or the permeate gas and the flash gas in the membrane separation unit and circulate for separation and purification; optionally, the booster device is a second compressor.
  • the present application provides a method for separating hydrogen and helium in BOG using the system for separating hydrogen and helium from BOG as described in the first aspect, and the method includes the following steps:
  • the total concentration of hydrogen and helium in the flash gas in step (1) is 1-15% vol, for example, it can be 1% vol, 2% vol, 3% vol, 4% vol, 5% vol, 6% vol, 7% vol, 8% vol, 9% vol, 10% vol, 11% vol, 12% vol, 13% vol, 14% vol or 15% vol, but not limited to the numerical values listed, the numerical range Other values not listed in the same apply.
  • the total concentration of hydrogen and helium in the enriched gas mixture in step (1) is 20-99.9% vol, for example, 20% vol, 30% vol, 40% vol, 50% vol, 60% vol, 70% vol, 80% vol, 90% vol, or 99.9%, but not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the absolute pressure of the inlet gas of the membrane separation in step (1) is 0.3-2 MPa, for example, it can be 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa, 0.9 MPa, 1 MPa, 1.1 MPa , 1.2 MPa, 1.3 MPa, 1.4 MPa, 1.5 MPa, 1.6 MPa, 1.7 MPa, 1.8 MPa, 1.9 MPa or 2 MPa, but not limited to the listed values, other unlisted values within the numerical range are also applicable; the temperature is 20°C above.
  • the absolute pressure of the inlet air of the membrane separation in step (1) is related to the material of the membrane used in the membrane separation device during the membrane separation process.
  • the absolute pressure of membrane separation is 0.7-2.0MPa, for example, it can be 0.7MPa, 0.8MPa, 0.9MPa, 1.0MPa, 1.1MPa, 1.2MPa, 1.3MPa, 1.4MPa , 1.5MPa, 1.6MPa, 1.7MPa, 1.8MPa, 1.9MPa or 2.0MPa, but not limited to the listed values, other unlisted values within the numerical range are also applicable; when the membrane material in the primary membrane separation device is inorganic membrane When the absolute pressure of the membrane separation is 0.3-1.2MPa, for example, it can be 0.3MPa, 0.4MPa, 0.5MPa, 0.6MPa, 0.7MPa, 0.8MPa, 0.9MPa, 1.0MPa, 1.1MPa or 1.2MPa, but not limited to all The listed values and other un
  • the temperature during hydrogen adsorption is -20°C to 30°C, for example, -20°C, -15°C, -10°C, 0°C , 5°C, 10°C, 15°C, 20°C, 25°C or 30°C, but not limited to the listed values, other unlisted values within the numerical range are also applicable;
  • the temperature for desorption of hydrogen is 50-150°C, for example It can be 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C or 150°C, but it is not limited to the listed values, and other values are not listed within the range of values.
  • the absolute pressure is 0.2-2.0 MPa, for example, it can be 0.2 MPa, 0.5 MPa, 0.8 MPa, 1 MPa, 1.2 MPa, 1.5 MPa, 1.8 MPa or 2.0 MPa, but not limited to the listed values, other values within the range Values not listed also apply.
  • the method includes the following steps:
  • This application improves the separation effect of hydrogen and helium in BOG by combining membrane separation technology and adsorption separation technology;
  • the pressure swing adsorption device and the hydrogen-helium separation and purification device in the adsorption separation unit are flexibly set, so that the purity of the final hydrogen, helium, and liquid helium can be flexibly adjusted, and the cost and energy consumption of separation and purification are reduced.
  • Figure 1 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Example 1;
  • Example 2 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Example 2;
  • Example 3 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Example 3;
  • FIG. 4 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Embodiment 4;
  • FIG. 5 is a schematic diagram of the structure of the system for separating hydrogen and helium from BOG provided in Embodiment 5;
  • Example 6 is a schematic diagram of the structure of a system for separating hydrogen and helium from BOG provided in Example 6;
  • Fig. 7 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in embodiment 7;
  • Embodiment 8 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Embodiment 8;
  • Example 9 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Example 9;
  • FIG. 10 is a schematic structural diagram of a system for separating hydrogen and helium from BOG provided in Embodiment 10;
  • 1-1 the primary membrane separation module; 2-1, the first deep membrane separation module; 2-2, the second deep membrane separation module; 2-3, the third deep membrane separation module; 3-1, the first Hydrogen-helium separation and purification bed; 3-2, the second hydrogen-helium separation and purification bed; 4-1, the first pressure swing adsorption tower; 4-2, the second pressure swing adsorption tower; 4-3, the first compressor; 5 -1, back pressure valve; 5-2, second compressor; 6, helium liquefaction device; 7-1, first particle filter; 7-2, first oil-water filter; 7-3, third compression Machine; 7-4, cold dryer; 7-5, second oil-water filter; 7-6, second particle filter; 7-7, heater.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 1 and includes: a flash gas inlet unit, a membrane separation unit, and an adsorption separation unit connected in sequence.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a first depth membrane separation module 2-1 that are connected in sequence, the penetrating side of the primary membrane separation module 1-1 is discharged as exhaust gas; the first depth membrane A circulation pipe is arranged between the penetration side of the separation module 2-1 and the flash gas inlet pipe, and a back pressure valve 5-1 and a second compressor 5-2 are arranged in sequence on the circulation pipe; the first deep membrane separation module 2 The permeate side of -1 is connected to the adsorption separation unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the first deep membrane separation module 2-1 is connected to an air inlet of the hydrogen-helium separation and purification unit.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process. Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2.0 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the primary membrane separation module 1-1.
  • the primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 for separation and purification, and further hydrogen and helium
  • the total concentration of gas is purified to more than 99%vol.
  • the penetration gas flows through the back pressure valve 5-1 and the second compressor 5-2 in sequence, and then is mixed with the flash gas.
  • the absolute pressure range of the back pressure valve 5-1 is 0.4 -2.0MPa, the second compressor 5-2 raises the pressure of the blow-through gas to no less than the pressure of the flash gas.
  • the hydrogen-helium separation and purification unit adsorbs hydrogen in the permeate gas of the first deep membrane separation module 2-1, and at the same time flows out helium gas of more than 99% vol.
  • the first hydrogen-helium separation and purification bed 3-1 and the hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation and purification bed 3 is used -2 to adsorb hydrogen, and desorb the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption, switch To the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa Adjustable electronic grade hydrogen products.
  • Helium with a purity of more than 99% vol can optionally enter the pressure swing adsorption tower, so that the purity of the helium can reach more than 5N, and an electronic grade helium product can be obtained.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation. When the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 for adsorption At the same time, the first pressure swing adsorption tower 4-1 is desorbed; in the same way, when the second pressure swing adsorption tower 4-2 is saturated with adsorption, switch to the first pressure swing adsorption tower 4-1 after desorption for adsorption , And desorb the second pressure swing adsorption tower 4-2 at the same time.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 2 and includes: a flash gas inlet unit, a membrane separation unit, and an adsorption separation unit connected in sequence.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a first depth membrane separation module 2-1 that are connected in sequence, the penetrating side of the primary membrane separation module 1-1 is discharged as exhaust gas; the first depth membrane A circulation pipe is arranged between the penetration side of the separation module 2-1 and the flash gas inlet pipe, and a back pressure valve 5-1 and a second compressor 5-2 are arranged in sequence on the circulation pipe; the first deep membrane separation module 2 The permeate side of -1 is connected to the adsorption separation unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the first deep membrane separation module 2-1 is connected to the air inlet of the pressure swing adsorption unit.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of steps of equalization and decompression, sequential discharge, reverse discharge, flushing, equalization and pressure increase, and hydrogen pressure increase.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cycle switching of hydrogen adsorption and desorption, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2 MPa, containing
  • the flash vapor with a ratio of 1-15% vol of helium and hydrogen enters the primary membrane separation module 1-1, and a mixture of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the primary The penetration side of the membrane separation module 1-1 is discharged.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 for separation and purification, and further hydrogen and helium
  • the total concentration of gas is purified to more than 99%vol.
  • the penetration gas flows through the back pressure valve 5-1 and the second compressor 5-2 in sequence, and then is mixed with the flash gas.
  • the absolute pressure range of the back pressure valve 5-1 is 0.4 -2MPa, the second compressor 5-2 raises the pressure of the blow-through gas to not less than the pressure of the flash gas.
  • the pressure swing adsorption tower adsorbs the impurity gas in the permeate gas of the first deep membrane separation module 2-1 to obtain a mixed gas with a total concentration of hydrogen and helium gas of 5N or more.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower consists of adsorption, pressure equalization, pressure reduction, sequential discharge, reverse discharge, flushing, and pressure equalization.
  • Steps such as pressure increase and hydrogen pressure increase; when the first pressure swing adsorption tower 4-1 is saturated, switch to the second pressure swing adsorption tower 4-2 for adsorption, and at the same time perform the first pressure swing adsorption tower 4-1 Desorption treatment; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption treatment for adsorption, and at the same time perform the adsorption on the second PSA tower 4-2 Desorption.
  • the mixed gas flow of hydrogen and helium with a total concentration of 5N or more enters the hydrogen-helium separation and purification bed, and the hydrogen is adsorbed at a temperature of -20°C to 30°C, and helium with a purity of 5N or more flows out.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium separation is used Purification bed 3-2 performs hydrogen adsorption, and desorbs the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption, switch to The first hydrogen-helium separation and purification bed 3-1 performs adsorption, and the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 is desorbed at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa. Adjusted electronic grade hydrogen products.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 3, including: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a first depth membrane separation module 2-1 that are connected in sequence, the penetrating side of the primary membrane separation module 1-1 is discharged as exhaust gas; the first depth membrane A circulation pipe is arranged between the penetration side of the separation module 2-1 and the flash gas inlet pipe, and a back pressure valve 5-1 and a second compressor 5-2 are arranged in sequence on the circulation pipe; the first deep membrane separation module 2 The permeate side of -1 is connected to the adsorption separation unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the first deep membrane separation module 2-1 is connected to an air inlet of the hydrogen-helium separation and purification unit.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process. Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an inorganic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.3-1.2 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the The primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 for separation and purification, and further hydrogen and helium
  • the total concentration of gas is purified to more than 99%vol.
  • the penetration gas flows through the back pressure valve 5-1 and the second compressor 5-2 in sequence, and then is mixed with the flash gas.
  • the absolute pressure range of the back pressure valve 5-1 is 0.2 -1.2MPa, the second compressor 5-2 raises the pressure of the blow-through gas to not less than the pressure of the flash gas.
  • the hydrogen-helium separation and purification unit adsorbs hydrogen in the permeate gas of the first deep membrane separation module 2-1, and at the same time flows out helium gas of more than 99% vol.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the first hydrogen-helium separation and purification bed 3-1 When the first hydrogen-helium separation and purification bed 3-1 is saturated with adsorption, use the second hydrogen-helium separation and purification
  • the bed 3-2 is adsorbed, and the first hydrogen-helium separation and purification bed 3-1 is desorbed at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption, switch to the first
  • the hydrogen-helium separation and purification bed 3-1 performs adsorption, and the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 is desorbed at 50-150°C; thereby obtaining a purity of 6N and an adjustable absolute pressure of 0.2-2MPa Electronic grade hydrogen products.
  • Helium with a purity of more than 99% vol can optionally enter the pressure swing adsorption tower, so that the purity of the helium can reach more than 5N, and an electronic grade helium product can be obtained.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation. When the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 for adsorption At the same time, the first pressure swing adsorption tower 4-1 is desorbed; in the same way, when the second pressure swing adsorption tower 4-2 is saturated with adsorption, switch to the first pressure swing adsorption tower 4-1 after desorption for adsorption , And desorb the second pressure swing adsorption tower 4-2 at the same time.
  • the electronic grade helium product can optionally enter the helium liquefaction device 6, and be converted into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in Figure 4, including: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a first depth membrane separation module 2-1 that are connected in sequence, the penetrating side of the primary membrane separation module 1-1 is discharged as exhaust gas; the first depth membrane A circulation pipe is arranged between the penetration side of the separation module 2-1 and the flash gas inlet pipe, and a back pressure valve 5-1 and a second compressor 5-2 are arranged in sequence on the circulation pipe; the first deep membrane separation module 2 The permeate side of -1 is connected to the adsorption separation unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the first deep membrane separation module 2-1 is connected to the air inlet of the pressure swing adsorption unit.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 cyclically switches between adsorption and desorption of hydrogen, and at the same time, helium is separated when hydrogen is adsorbed.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an inorganic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.3-1.2 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the primary membrane separation module 1-1.
  • the primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 for separation and purification, and further hydrogen and helium
  • the total concentration of gas is purified to more than 99%vol.
  • the penetration gas flows through the back pressure valve 5-1 and the second compressor 5-2 in sequence, and then is mixed with the flash gas.
  • the absolute pressure range of the back pressure valve 5-1 is 0.2 -1.2MPa, the second compressor 5-2 raises the pressure of the blow-through gas to not less than the pressure of the flash gas.
  • the pressure swing adsorption tower adsorbs the impurity gas in the permeate gas of the first deep membrane separation module 2-1 to obtain a mixed gas of hydrogen and helium with a purity of 5N or more.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower consists of adsorption, pressure equalization, pressure reduction, sequential discharge, reverse discharge, flushing, and pressure equalization.
  • Steps such as pressure increase and hydrogen pressure increase; when the first pressure swing adsorption tower 4-1 is saturated, switch to the second pressure swing adsorption tower 4-2 for adsorption, and at the same time perform the first pressure swing adsorption tower 4-1 Desorption treatment; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption treatment for adsorption, and at the same time perform the adsorption on the second PSA tower 4-2 Desorption.
  • the mixed gas flow of hydrogen and helium with a purity of 5N or more enters the hydrogen-helium separation and purification bed, the hydrogen is adsorbed under the condition of -20°C to 30°C, and helium with a purity of 5N or more flows out.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the first hydrogen-helium separation and purification bed 3-1 When the first hydrogen-helium separation and purification bed 3-1 is saturated with adsorption, use the second hydrogen-helium separation and purification
  • the bed 3-2 is adsorbed, and the first hydrogen-helium separation and purification bed 3-1 is desorbed at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption, switch to the first
  • the hydrogen-helium separation and purification bed 3-1 performs adsorption, and the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 is desorbed at 50-150°C; thereby obtaining a purity of 6N and an adjustable absolute pressure of 0.2-2MPa Electronic grade hydrogen products.
  • Helium with a purity of 5N or more enters the helium liquefaction device 6 optionally, and is liquefied into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 5, including: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1 and a second deep membrane separation module 2-2; the permeate gas flow of the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, and the first deep membrane separation module 2-1 The penetrating air of the deep membrane separation module 2-1 enters the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas; the first deep membrane separation module 2-1 and The permeate side of the second deep membrane separation module 2-2 is independently connected to the adsorption unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence.
  • the permeation sides of the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 are independently connected to the hydrogen and helium.
  • the air inlet of the separation and purification unit is connected.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process. Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2.0 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the primary membrane separation module 1-1.
  • the primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 are separately connected to the hydrogen-helium separation and purification bed, and the hydrogen in the permeate gas
  • the total concentration of helium and helium is more than 99% vol.
  • the hydrogen-helium separation and purification bed adsorbs hydrogen in the permeate gas, and at the same time flows out helium gas of more than 99% vol.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium separation is used Purification bed 3-2 performs hydrogen adsorption, and desorbs the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption Switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa adjustable electronic grade hydrogen product.
  • Helium with a purity of more than 99% vol can optionally enter the pressure swing adsorption tower, so that the purity of the helium can reach more than 5N, and an electronic grade helium product can be obtained.
  • the adsorption of the first PSA tower 4-1 When the adsorption of the first PSA tower 4-1 is saturated, switch to the second PSA tower 4-2 for adsorption, and at the same time perform desorption treatment on the first PSA tower 4-1; in the same way, when the second PSA When the pressure adsorption tower 4-2 is saturated with adsorption, it is switched to the first pressure swing adsorption tower 4-1 after the desorption treatment to perform adsorption, and at the same time, the second pressure swing adsorption tower 4-2 is desorbed.
  • the electronic grade helium product can optionally enter the helium liquefaction device 6, and is liquefied into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 6, including: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1 and a second deep membrane separation module 2-2; the permeate gas flow of the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, and the first deep membrane separation module 2-1 The penetrating air of the deep membrane separation module 2-1 enters the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas; the first deep membrane separation module 2-1 and The permeate side of the second deep membrane separation module 2-2 is independently connected to the adsorption unit.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence.
  • the permeation sides of the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 are independent of the pressure swing
  • the air inlet of the adsorption unit is connected.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2.0 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the primary membrane separation module 1-1.
  • the primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 are connected to the pressure swing adsorption tower independently, and the hydrogen and hydrogen in the permeated gas
  • the total concentration of helium gas is 99% vol or more.
  • the pressure swing adsorption tower adsorbs the impurity gas in the permeate gas to obtain a mixed gas with a total concentration of hydrogen and helium gas of 5N or more.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower consists of adsorption, pressure equalization, pressure reduction, sequential discharge, reverse discharge, flushing, and pressure equalization.
  • Steps such as pressure increase and hydrogen pressure increase; when the first pressure swing adsorption tower 4-1 is saturated, switch to the second pressure swing adsorption tower 4-2 for adsorption, and at the same time perform the first pressure swing adsorption tower 4-1 Desorption treatment; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption treatment for adsorption, and at the same time perform the adsorption on the second PSA tower 4-2 Desorption.
  • the mixed gas flow of hydrogen and helium with a total concentration of 5N or more enters the hydrogen-helium separation and purification bed, and the hydrogen is adsorbed at -20°C to 30°C, and helium with a purity of 5N or more flows out.
  • the first hydrogen-helium separation and purification bed tower 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium is used
  • the separation and purification bed 3-2 performs hydrogen adsorption, and the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 is desorbed at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is adsorbed
  • When saturated switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and absolute pressure It is a 0.2-2MPa adjustable electronic grade hydrogen product.
  • the helium product with a purity of 5N or more can optionally enter the helium liquefaction device 6, and is liquefied into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 7 and includes: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1, a second deep membrane separation module 2-2, and a third deep membrane separation module 2-3; the permeate gas flow of the primary membrane separation module 1-1 flows into the first In the deep membrane separation module 2-1, the penetrating air of the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas;
  • the permeate gas flow from the first deep membrane separation module 2-1 flows into the third deep membrane separation module 2-3; the permeate side of the second deep membrane separation module 2-2 and the penetration side of the third deep membrane separation module 2-3 are connected with each other Circulation pipes are separately arranged between the flash gas intake pipes, and a back pressure valve 5-1 and a second compressor 5-2 are arranged on the circulation pipes.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the third deep membrane separation module 2-3 is connected to the air inlet of the hydrogen-helium separation and purification unit.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an inorganic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.3-1.2 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the The primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 enters the third deep membrane separation module 2-3; the permeate gas of the second deep membrane separation module 2-2 and the first
  • the penetration gas of the three-depth membrane separation module 2-3 separately flows through the back pressure valve 5-1 and the second compressor 5-2, and then is mixed with the flash gas.
  • the pressure range of the back pressure valve 5-1 is 0.2 absolute. -1.2MPa, the second compressor 5-2 raises the pressure of
  • the permeate side of the third deep membrane separation module 2-3 is connected to the hydrogen-helium separation and purification bed, and the total concentration of hydrogen and helium in the permeate gas flowing out of the third deep membrane separation module 2-3 is more than 99% vol.
  • the hydrogen-helium separation and purification bed adsorbs hydrogen in the permeate gas, and at the same time flows out helium gas of more than 99% vol.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium separation is used Purification bed 3-2 performs hydrogen adsorption, and desorbs the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption Switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa adjustable electronic grade hydrogen product.
  • Helium with a purity of more than 99%vol can optionally enter the pressure swing adsorption tower to make the purity of the helium reach 5N or more to obtain electronic grade helium products.
  • switch to The second PSA tower 4-2 performs adsorption and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the desorption process.
  • the first pressure swing adsorption tower 4-1 performs adsorption
  • the second pressure swing adsorption tower 4-2 performs desorption.
  • the electronic grade helium product can optionally enter the helium liquefaction device 6, and the liquid helium becomes liquid helium after being pre-cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 8 and includes: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1, a second deep membrane separation module 2-2, and a third deep membrane separation module 2-3; the permeate gas flow of the primary membrane separation module 1-1 flows into the first In the deep membrane separation module 2-1, the penetrating air of the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas;
  • the permeate gas flow from the first deep membrane separation module 2-1 flows into the third deep membrane separation module 2-3; the permeate side of the second deep membrane separation module 2-2 and the penetration side of the third deep membrane separation module 2-3 are connected with each other Circulation pipes are separately arranged between the flash gas intake pipes, and a back pressure valve 5-1 and a second compressor 5-2 are arranged on the circulation pipes.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the third deep membrane separation module 2-3 is connected to the air inlet of the pressure swing adsorption unit.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2, and the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower It consists of adsorption, pressure equalization and pressure reduction, sequential discharge, reverse discharge, flushing, pressure equalization and pressure increase, and hydrogen pressure increase; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 is adsorbed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower after the desorption process 4-1 is adsorbed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an inorganic membrane
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.3-1.2 MPa
  • the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and a mixed gas of hydrogen and helium is obtained from the permeation side of the primary membrane separation module 1-1.
  • the impurity gas is used as tail gas in the The primary membrane separation module 1-1 is discharged from the penetration side.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 enters the third deep membrane separation module 2-3; the permeate gas of the second deep membrane separation module 2-2 and the first
  • the penetration gas of the three-depth membrane separation module 2-3 separately flows through the back pressure valve 5-1 and the second compressor 5-2, and then is mixed with the flash gas.
  • the pressure range of the back pressure valve 5-1 is 0.2 absolute. -1.2MPa, the second compressor 5-2 raises the pressure of
  • the third deep membrane separation module 2-3 is connected to the pressure swing adsorption tower, and the total concentration of hydrogen and helium in the permeate flowing from the third deep membrane separation module 2-3 is more than 99% vol.
  • the pressure swing adsorption tower adsorbs the impurity gas in the permeate gas of the first deep membrane separation module 2-1 to obtain a mixed gas with a total concentration of hydrogen and helium gas of 5N or more.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower consists of adsorption, pressure equalization, pressure reduction, sequential discharge, reverse discharge, flushing, and pressure equalization.
  • Steps such as pressure increase and hydrogen pressure increase; when the first pressure swing adsorption tower 4-1 is saturated, switch to the second pressure swing adsorption tower 4-2 for adsorption, and at the same time perform the first pressure swing adsorption tower 4-1 Desorption treatment; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption treatment for adsorption, and at the same time perform the adsorption on the second PSA tower 4-2 Desorption.
  • the mixed gas flow of hydrogen and helium with a total concentration of 5N or more enters the hydrogen-helium separation and purification bed, and the hydrogen is adsorbed at a temperature of -20°C to 30°C, and helium with a purity of 5N or more flows out.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium separation is used Purification bed 3-2 performs hydrogen adsorption, and desorbs the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption Switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa adjustable electronic grade hydrogen product.
  • the helium product optionally enters the helium liquefaction device 6, and is liquefied into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 9 and includes: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit, and a first particle filter 7-1, a first oil-water filter 7-2, and a first particle filter 7-1, a first oil-water filter 7-2, and a first particle filter 7-1, a first oil-water filter 7-2, and a Three compressors 7-3, refrigeration and dryer 7-4, second oil-water filter 7-5, second particle filter 7-6 and heater 7-7.
  • the third compressor 7-3 is used to pressurize the flash vapor so that the pressure of the flash vapor entering the membrane separation unit meets the process requirements
  • the heater 7-7 is used to heat the flash vapor so that the vapor entering the membrane separation unit The temperature of the flash gas meets the process requirements.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1, a second deep membrane separation module 2-2, and a third deep membrane separation module 2-3; the permeate gas flow of the primary membrane separation module 1-1 flows into the first In the deep membrane separation module 2-1, the penetrating air of the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas; The permeate gas flow from the first deep membrane separation module 2-1 flows into the third deep membrane separation module 2-3; the permeate side of the second deep membrane separation module 2-2 and the penetration side of the third deep membrane separation module 2-3 are connected with each other On the flash gas intake pipe, a circulation pipe is independently arranged between the front ends of the first particulate filter 7-1, and the circulation pipe is provided with a back pressure valve 5-1 and a second compressor 5-2.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the third deep membrane separation module 2-3 is connected to the air inlet of the hydrogen-helium separation and purification unit.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is arranged before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the flash vapor flows through the first particle filter 7-1 and the first oil-water filter in sequence
  • the third compressor 7-3, the refrigeration dryer 7-4, the second oil-water filter 7-5, the second particle filter 7-6 and the heater 7-7 flow into the primary membrane separation module 1 -1.
  • the third compressor 7-3 is started to increase the pressure to above 1.6 MPa, and when the pressure is higher than 1.4 MPa, the third compressor 7- 3 does not start.
  • the heater 7-7 is activated to increase the gas temperature to above 25°C; when the temperature of the flash gas is higher than 20°C, the heater 7-7 does not start.
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2.0 MPa, and the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and the primary membrane separation module 1- A mixed gas of hydrogen and helium is obtained on the permeate side of 1, while the impurity gas is discharged as tail gas on the permeate side of the primary membrane separation module 1-1.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 enters the third deep membrane separation module 2-3; the permeate gas of the second deep membrane separation module 2-2 and the first
  • the penetration gas of the three-depth membrane separation module 2-3 separately flows through the back pressure valve 5-1 and the second compressor 5-2, and then is mixed with the flash gas.
  • the pressure range of the back pressure valve 5-1 is 0.3 absolute. -2.0MPa, the second compressor 5-2 raises the pressure of
  • the permeate side of the third deep membrane separation module 2-3 is connected to the hydrogen-helium separation and purification bed, and the total concentration of hydrogen and helium in the permeate is more than 99% vol.
  • the hydrogen-helium separation and purification bed adsorbs hydrogen in the permeate gas, and at the same time flows out helium gas of more than 99% vol.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the second hydrogen-helium separation When the first hydrogen-helium separation and purification bed 3-1 is saturated with hydrogen adsorption, the second hydrogen-helium separation is used Purification bed 3-2 performs hydrogen adsorption, and desorbs the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption Switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2-2MPa adjustable electronic grade hydrogen product.
  • Helium with a purity of more than 99% vol can optionally enter the pressure swing adsorption tower, so that the purity of the helium can reach more than 5N, and an electronic grade helium product can be obtained.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation. When the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 for adsorption At the same time, the first pressure swing adsorption tower 4-1 is desorbed; in the same way, when the second pressure swing adsorption tower 4-2 is saturated with adsorption, switch to the first pressure swing adsorption tower 4-1 after desorption for adsorption , And desorb the second pressure swing adsorption tower 4-2 at the same time.
  • the electronic grade helium product can optionally enter the helium liquefaction device 6, and is liquefied into liquid helium after being cooled by liquid nitrogen.
  • This embodiment provides a system for separating hydrogen and helium from BOG.
  • the schematic structural diagram of the system is shown in FIG. 10, including: a flash gas inlet unit, a membrane separation unit, an adsorption separation unit, and helium connected in sequence. Liquefaction device 6.
  • the flash gas inlet unit is a flash gas inlet pipe connected to the membrane separation unit, and a first particle filter 7-1, a first oil-water filter 7-2, and a first particle filter 7-1, a first oil-water filter 7-2, and a first particle filter 7-1, a first oil-water filter 7-2, and a Three compressors 7-3, refrigeration and dryer 7-4, second oil-water filter 7-5, second particle filter 7-6 and heater 7-7.
  • the third compressor 7-3 is used to pressurize the flash vapor so that the pressure of the flash vapor entering the membrane separation unit meets the process requirements
  • the heater 7-7 is used to heat the flash vapor so that the vapor entering the membrane separation unit The temperature of the flash gas meets the process requirements.
  • the membrane separation unit includes a primary membrane separation module 1-1 and a deep membrane separation module, the permeation side of the primary membrane separation module 1-1 is discharged as tail gas, and the permeate gas of the primary membrane separation module 1-1 is deep Intake of membrane separation module.
  • the deep membrane separation module includes a first deep membrane separation module 2-1, a second deep membrane separation module 2-2, and a third deep membrane separation module 2-3; the permeate gas flow of the primary membrane separation module 1-1 flows into the first In the deep membrane separation module 2-1, the penetrating air of the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the penetrating gas of the second deep membrane separation module 2-2 is discharged as tail gas; The permeate gas flow from the first deep membrane separation module 2-1 flows into the third deep membrane separation module 2-3; the permeate side of the second deep membrane separation module 2-2 and the penetration side of the third deep membrane separation module 2-3 are connected with each other On the flash gas intake pipe, a circulation pipe is independently arranged between the front ends of the first particulate filter 7-1, and the circulation pipe is provided with a back pressure valve 5-1 and a second compressor 5-2.
  • the adsorption separation unit includes a pressure swing adsorption unit and a hydrogen-helium separation and purification unit connected in sequence, and the permeation side of the third deep membrane separation module 2-3 is connected to the air inlet of the pressure swing adsorption unit.
  • the pressure swing adsorption unit includes a first pressure swing adsorption tower 4-1 and a second pressure swing adsorption tower 4-2 connected in parallel, the first pressure swing adsorption tower 4-1 and the second pressure swing adsorption tower 4-
  • the first compressor 4-3 is provided before the air inlet of 2 and the adsorption and regeneration process of each of the first PSA column 4-1 and the second PSA column 4-2 consists of adsorption, It is composed of equalizing pressure reduction, sequential discharge, reverse discharge, flushing, equalizing pressure boosting and hydrogen pressure boosting; when the first PSA tower 4-1 is saturated with adsorption, switch to the second PSA tower 4-2 Adsorption is performed, and the first PSA tower 4-1 is desorbed at the same time; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption process Adsorption is performed, and the second pressure swing adsorption tower 4-2 is desorbed at the same time.
  • the hydrogen helium separation and purification unit includes a first hydrogen helium separation and purification bed 3-1 and a second hydrogen helium separation and purification bed 3-2 connected in parallel, and the first hydrogen helium separation and purification bed 3-1 and the second hydrogen helium separation and purification bed 3-1 are connected in parallel.
  • the separation and purification bed 3-2 realizes the cyclic switching of adsorption and desorption of hydrogen, thereby ensuring the continuous and stable operation of the system for separating hydrogen and helium from BOG.
  • the system provided in this embodiment is used to separate hydrogen and helium in flash vapor.
  • the membrane of the primary membrane separation module 1-1 is an organic membrane
  • the flash vapor flows through the first particle filter 7-1 and the first oil-water filter in sequence
  • the third compressor 7-3, the refrigeration dryer 7-4, the second oil-water filter 7-5, the second particle filter 7-6 and the heater 7-7 flow into the primary membrane separation module 1 -1.
  • the third compressor 7-3 is started to increase the pressure to above 1.6 MPa, and when the pressure is higher than 1.4 MPa, the third compressor 7- 3 does not start.
  • the heater 7-7 is activated to increase the gas temperature to above 25°C; when the temperature of the flash gas is higher than 20°C, the heater 7-7 does not start.
  • the absolute pressure of the flash vapor entering the primary membrane separation module 1-1 is 0.7-2.0 MPa, and the flash vapor containing helium and hydrogen at a ratio of 1-15% vol enters the primary membrane separation module 1-1, and the primary membrane separation module 1- A mixed gas of hydrogen and helium is obtained on the permeate side of 1, while the impurity gas is discharged as tail gas on the permeate side of the primary membrane separation module 1-1.
  • the total concentration of hydrogen and helium in the mixed gas obtained from the permeate side of the primary membrane separation module 1-1 is 20-70% vol, and then enters the first deep membrane separation module 2-1 and the second deep membrane separation module 2-2 For separation and purification.
  • the permeated gas flow from the primary membrane separation module 1-1 flows into the first deep membrane separation module 2-1, the permeated gas flow from the first deep membrane separation module 2-1 flows into the second deep membrane separation module 2-2, and the second deep membrane separation module 2-2
  • the permeated gas of module 2-2 is discharged as tail gas; the permeate gas of the first deep membrane separation module 2-1 enters the third deep membrane separation module 2-3; the permeate gas of the second deep membrane separation module 2-2 and the first
  • the penetration gas of the three-depth membrane separation module 2-3 separately flows through the back pressure valve 5-1 and the second compressor 5-2, and then is mixed with the flash gas.
  • the pressure range of the back pressure valve 5-1 is 0.3 absolute. -2.0MPa, the second compressor 5-2 raises the pressure of
  • the permeate side of the third deep membrane separation module 2-3 is connected to the pressure swing adsorption tower, and the total concentration of hydrogen and helium in the permeate gas from the third deep membrane separation module 2-3 is more than 99% vol.
  • the pressure swing adsorption tower adsorbs the impurity gas in the permeate gas of the third deep membrane separation module 2-3 to obtain a mixed gas with a total concentration of hydrogen and helium of 5N or more.
  • the first PSA tower 4-1 and the second PSA tower 4-2 cyclically switch operation.
  • the adsorption and regeneration process of each tower consists of adsorption, pressure equalization, pressure reduction, sequential discharge, reverse discharge, flushing, and pressure equalization.
  • Steps such as pressure increase and hydrogen pressure increase; when the first pressure swing adsorption tower 4-1 is saturated, switch to the second pressure swing adsorption tower 4-2 for adsorption, and at the same time perform the first pressure swing adsorption tower 4-1 Desorption treatment; in the same way, when the second PSA tower 4-2 is saturated with adsorption, switch to the first PSA tower 4-1 after the desorption treatment for adsorption, and at the same time perform the adsorption on the second PSA tower 4-2 Desorption.
  • the mixed gas flow of hydrogen and helium with a total concentration of 5N or more enters the hydrogen-helium separation and purification bed, and the hydrogen is adsorbed at -20°C to 30°C, and helium with a purity of 5N or more flows out.
  • the first hydrogen-helium separation and purification bed 3-1 and the second hydrogen-helium separation and purification bed 3-2 cyclically switch the adsorption and desorption of hydrogen.
  • the bed 3-2 adsorbs hydrogen, and desorbs the hydrogen adsorbed in the first hydrogen-helium separation and purification bed 3-1 at 50-150°C; in the same way, when the second hydrogen-helium separation and purification bed 3-2 is saturated with adsorption , Switch to the first hydrogen-helium separation and purification bed 3-1 for adsorption, and desorb the hydrogen adsorbed in the second hydrogen-helium separation and purification bed 3-2 at 50-150°C; thereby obtaining a purity of 6N and an absolute pressure of 0.2 -2MPa adjustable electronic grade hydrogen product.
  • the helium product optionally enters the helium liquefaction device 6, and is liquefied into liquid helium after being pre-cooled by liquid nitrogen.
  • this application improves the separation effect of hydrogen and helium in BOG by combining membrane separation technology and adsorption separation technology; this application uses the flexible setting of the pressure swing adsorption device and the hydrogen-helium separation purification bed device in the adsorption separation unit , So that the purity of the final hydrogen, helium and liquid helium can be flexibly adjusted, reducing the cost and energy consumption of separation and purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本文公开了一种自BOG中分离纯化氢与氦的系统及方法,所述系统包括依次连接的膜分离单元与吸附分离单元;所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置;所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元。

Description

一种自BOG中分离纯化氢与氦的系统与方法 技术领域
本申请涉及化工技术领域,涉及一种分离提纯的系统与方法,例如涉及一种自BOG中分离氢与氦的系统与方法。
背景技术
原料天然气中主要含有CH 4(甲烷),同时往往伴生有C 2H 6(乙烷)、C 3H 8(丙烷)、C 4H 10(正丁烷、异丁烷)和较重的C XH Y(X>4)等烃类,同时含有H 2O(水)、H 2(氢气)、N 2(氮气)、He(氦气)和酸性气体,诸如CO 2(二氧化碳)、H 2S(硫化氢)与C 2H 5SH(硫醇)。当天然气被冷却到-150℃至-162℃(视具体原料组分和压力而定)时,天然气被液化为液化天然气(LNG),同时未被液化的称为闪蒸气(boiled off gas,BOG),例如:沸点低于CH 4的气体,如N 2、H 2和He等尚未被液化。
经过一次或者多次闪蒸,以上不凝气的浓度相对在原料天然气中的各自比例被大幅提高了,基本上以上未被液化的不凝气体被浓缩了几十倍,甚至100倍,值得关注的是被浓缩后的BOG中He含量已经达到或者超过海外富氦气田中的含量。
国内外针对BOG中提取氦气出现了多种可行的方案,部分已经获得了工业化实施,例如:深冷法、液化法、变压吸附(PSA)法、膜分离,以及以上两种或多种方法的结合。
深冷方案的技术要点是要通过严格的计算来控制制冷量与消耗冷量之间的平衡,当系统中冷量控制不匹配,系统会产生温度骤升骤降的问题,当温度过高时,氦气无法被提取;当温度过低时,能耗大幅增加,甚至液体进入压缩机导致压缩机损坏。故深冷方案除能耗过高外,系统稳定性不良。
膜分离法虽然以其模块化和节能性具有很大的优势,但是膜分离只能获得浓度99%(最高不超过99.9%)的氦气;PSA方法非常成熟,但是对于低浓度的氦气提纯存在收率很低的问题。
虽然以上方法都得到了工业化应用,尚无法处理氦气和氢气的分离。液化法虽然可以实现较好的氦气和氢气分离,但是由于氦气和氢气的液化点很接近,无非彻底分离氦气和氢气,同时能耗非常高。
目前最常规的处理氦气和氢气的方法是通过加入过量氧气,通过催化氧化的方法将氢气氧化为水,然后分别除去水和过量的氧气,最终实现从氦气中净化掉氢气。但是,上述方案存在流程复杂,同时浪费了氢气。
氦气是一种稀有气体,且不可再生,氦气具有很多特殊的物理和化学性质,被广泛应用于核磁共振、泛半导体、检漏、飞艇,以及尖端科研和军事工业, 同时氦气或者液氦在上述行业中具有不可替代性,而且国内的氦气或者液氦几乎完全来自海外。
氢气是一种应用广泛的大宗气体,其中超纯的氢气(99.999%,5N)以上,被广泛用于泛半导体、仪器分析和混合气等行业。同时,高纯氢气又是氢燃料电池汽车不可或缺的原料,当前氢气已然是一种资源。
发明内容
本申请的目的在于提供一种自BOG中分离氢与氦的系统与方法,所述系统能够结合膜分离与吸附分离技术,提高闪蒸气中氢气与氦气的分离效果,而且所述系统能够根据对所得氢气、氦气纯度的需要,灵活设置吸附分离单元,减少了分离提纯氢与氦的能耗与成本。
为达到此申请目的,本申请采用以下技术方案:
第一方面,本申请提供了一种自BOG中分离氢与氦的系统,所述自BOG中分离氢与氦的系统包括依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元包括闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置。
所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元。
本申请开创性地发明了结合了膜分离与吸附分离等技术的方案,实现了氦气和氢气从BOG中高效提取分离。相对于现有技术,本申请大幅减少了能耗、缩短了系统流程,而且在实现氦气提纯的同时,能够获得超纯氢气作为副产品。
不同纯度的氦气、不同纯度的氢气、液氦具有不同的应用价值和领域。本申请实现了完全的模块化配置,可以根据所需产品的要求,获得不同纯度的氦气、液氦与氢气,而且压力可调,通过模块化的配置,大幅减少了分离提纯氢气、氦气与液氦的能耗和投资。
本申请所述深度膜分离装置包括至少一组深度膜分离组件;当深度膜分离装置包括至少两组深度膜分离组件时,所述深度膜分离组件串联连接和/或并联连接。
本申请所述“初级膜分离装置”以及“深度膜分离装置”中的“初级”与“深度”对应膜分离的不同阶段。本领域技术人员可以根据膜分离的实际需要,对初级膜分离装置以及深度膜分离装置中所用膜的型号进行合理地选择。
本申请根据对氢气、氦气纯度的要求,灵活的调整变压吸附单元与氢氦分离纯化单元的位置,即根据对产品的不同需求,使膜分离单元与变压吸附单元或氢氦分离纯化单元连接。本申请通过模块化的设计,根据产品的不同需求灵活的调节吸附单元的连接关系,减少了氢气与氦气的生产成本与投资。
可选地,所述深度膜分离组件所用膜为高分子分离膜。
所述变压吸附单元用于变压吸附闪蒸气中的杂质气体,从而提高氦气和/或氢气的纯度。所述氢氦分离纯化单元用于吸附和解吸附氢气,从而实现氢气与氦气的高效分离。
可选地,所述变压吸附单元包括至少两组并联连接的变压吸附装置,可选为至少两组并联连接的变压吸附塔。
本申请通过使变压吸附单元为并联连接的变压吸附塔,根据变压吸附塔的数量,采用一开多备或多开多备的方法运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成,从而提高了所述自BOG中分离氢与氦的系统的运行效率,保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
可选地,所述变压吸附单元还包括设置于变压吸附装置入口处的增压装置。
可选地,所述增压装置为第一压缩机。本申请通过在变压吸附单元的入口前设置压缩机,并根据进入变压吸附装置的气体压力大小进行启闭,保证了变压吸附的效果。
可选地,所述氢氦分离纯化单元包括至少两组并联连接的氢氦分离纯化装置;进一步可选地,所述氢氦分离纯化装置为氢氦分离纯化床,所述氢氦分离纯化床通过氢气的吸附与解吸,实现氢气与氦气的分离并得到电子级纯度的氢气。
本申请通过设置至少两组并联连接的氢氦分离纯化床,根据氢氦分离纯化单元的工作原理,氢氦混合气进入其中一个氢氦分离纯化床,氢气被吸附分离出氦气,当氢氦分离纯化床吸附氢气到额定值时,切换到另一个氢氦分离纯化床吸附氢气分离氦气,同时吸附氢气后的氢氦分离纯化床解吸出氢气,以上两个氢氦分离纯化床重复交替运行,从而完美的分别分离出高纯氢气和氦气,进而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
可选地,所述氢氦分离纯化床中吸附氢气所用填料的材料为合金材料,包括钛锰系合金、钛锰锆系合金、镁系合金、镁铝系合金或镧镍系合金中的任意一种或至少两种的组合,可选为钛锰系合金和/或钛锰锆系合金。
可选地,所述自BOG中分离氢与氦的系统还包括设置于吸附分离单元后的氦气液化装置,所述氦气液化装置用于将提纯后的氦气液化为液氦。
本申请所述氦气液化装置为本领域技术人员惯用的氦气液化装置,本申请在此不再过多限定。
可选地,所述闪蒸气进气单元还包括设置于闪蒸气进气管道上依次连接的第一颗粒过滤器、第一油水过滤器、压缩机、冷干机、第二油水过滤器、第二颗粒过滤器以及加热器。为了区分第一压缩机,所述压缩机命名为第三压缩机。
本申请通过设置第一颗粒过滤器、第一油水过滤器、冷干机、第二油水过 滤器以及第二颗粒过滤器使闪蒸气内的水蒸气、油类以及固体颗粒物得以去除。所述第三压缩机用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求。所述加热器用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
可选地,本申请所述系统还包括设置于第一颗粒过滤器之前的缓冲罐,BOG首先流入缓冲罐,然后再进入第一颗粒过滤器。
可选地,所述自BOG中分离氢与氦的系统还包括设置于膜分离单元与闪蒸气进气单元之间的循环管道。
可选地,所述循环管道上设置有背压阀与增压装置。
所述背压阀与增压装置的设置,用于使膜分离单元中的穿透气和/或渗透气与闪蒸气混合,循环进行分离提纯;可选地,所述增压装置为第二压缩机。
第二方面,本申请提供了一种应用如第一方面所述的自BOG中分离氢与氦的系统分离BOG中氢与氦的方法,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;
(2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气。
可选地,步骤(1)所述闪蒸气中氢气和氦气的总浓度为1-15%vol,例如可以是1%vol、2%vol、3%vol、4%vol、5%vol、6%vol、7%vol、8%vol、9%vol、10%vol、11%vol、12%vol、13%vol、14%vol或15%vol,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述提浓混合气中氢气和氦气的总浓度为20-99.9%vol,例如可以是20%vol、30%vol、40%vol、50%vol、60%vol、70%vol、80%vol、90%vol或99.9%,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述膜分离的进气绝对压力为0.3-2MPa,例如可以是0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1MPa、1.1MPa、1.2MPa、1.3MPa、1.4MPa、1.5MPa、1.6MPa、1.7MPa、1.8MPa、1.9MPa或2MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;温度为20℃以上。
步骤(1)所述膜分离的进气绝对压力与膜分离过程中,膜分离装置所用膜的材质相关。当膜分离装置内的膜材质为有机膜时,膜分离的绝对压力为0.7-2.0MPa,例如可以是0.7MPa、0.8MPa、0.9MPa、1.0MPa、1.1MPa、1.2MPa、1.3MPa、1.4MPa、1.5MPa、1.6MPa、1.7MPa、1.8MPa、1.9MPa或2.0MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;当初级膜分离装置内的膜材质为无机膜时,膜分离的绝对压力为0.3-1.2MPa,例如可以是 0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa、1.0MPa、1.1MPa或1.2MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述吸附分离单元进行氢氦分离纯化时,吸附氢气时的温度为-20℃至30℃,例如可以是-20℃、-15℃、-10℃、0℃、5℃、10℃、15℃、20℃、25℃或30℃,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;解吸氢气时的温度为50-150℃,例如可以是50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃或150℃,但不限于所列举的数值,数值范围内其他未列举的数值同样适用;绝对压力为0.2-2.0MPa,例如可以是0.2MPa、0.5MPa、0.8MPa、1MPa、1.2MPa、1.5MPa、1.8MPa或2.0MPa,但不限于所列举的数值,数值范围内其他未列举的数值同样适用。
作为本申请第二方面所述方法的可选技术方案,所述方法包括如下步骤:
(1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;闪蒸气中氢气和氦气的总浓度为1-15%vol;提浓混合气中氢气和氦气的总浓度为20-99.9%vol;所述膜分离的进气绝对压力为0.3-2MPa,温度为20℃以上;
(2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气,吸附氢气时的温度为-20℃-30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
相对于现有技术,本申请具有以下有益效果:
(1)本申请通过结合膜分离技术与吸附分离技术,提高了BOG中氢气与氦气的分离效果;
(2)本申请通过吸附分离单元中变压吸附装置与氢氦分离纯化装置的灵活设置,使最终所得氢气、氦气以及液氦的纯度灵活可调,降低了分离提纯的成本与能耗。
附图说明
图1为实施例1提供的自BOG中分离氢与氦的系统的结构示意图;
图2为实施例2提供的自BOG中分离氢与氦的系统的结构示意图;
图3为实施例3提供的自BOG中分离氢与氦的系统的结构示意图;
图4为实施例4提供的自BOG中分离氢与氦的系统的结构示意图;
图5为实施例5提供的自BOG中分离氢与氦的系统的结构示意图;
图6为实施例6提供的自BOG中分离氢与氦的系统的结构示意图;
图7为实施例7提供的自BOG中分离氢与氦的系统的结构示意图;
图8为实施例8提供的自BOG中分离氢与氦的系统的结构示意图;
图9为实施例9提供的自BOG中分离氢与氦的系统的结构示意图;
图10为实施例10提供的自BOG中分离氢与氦的系统的结构示意图;
其中:1-1,初级膜分离组件;2-1,第一深度膜分离组件;2-2,第二深度 膜分离组件;2-3,第三深度膜分离组件;3-1,第一氢氦分离纯化床;3-2,第二氢氦分离纯化床;4-1,第一变压吸附塔;4-2,第二变压吸附塔;4-3,第一压缩机;5-1,背压阀;5-2,第二压缩机;6,氦气液化装置;7-1,第一颗粒过滤器;7-2,第一油水过滤器;7-3,第三压缩机;7-4,冷干机;7-5,第二油水过滤器;7-6,第二颗粒过滤器;7-7,加热器。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图1所示,包括:依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分 离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.4-2.0MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
-20℃至30℃的温度下,氢氦分离纯化单元对第一深度膜分离组件2-1的渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附氢气,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
实施例2
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图2所示,包括:依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等 步骤组成。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.4-2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的温度下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
实施例3
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图3所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.2-1.2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
-20℃至30℃的温度下,氢氦分离纯化单元对第一深度膜分离组件2-1的渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化 床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后转换为液氦。
实施例4
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图4所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括依次连接的初级膜分离组件1-1与第一深度膜分离组件2-1,所述初级膜分离组件1-1的穿透侧出气作为尾气外排;第一深度膜分离组件2-1的穿透侧与闪蒸气进气管道之间设置有循环管道,循环管道上依次设置有背压阀5-1与第二压缩机5-2;第一深度膜分离组件2-1的渗透侧与所述吸附分离单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,同时在吸附氢气的时候分离出氦气。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离 组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1处进行分离提纯,进一步将氢气和氦气的总浓度提纯至99%vol以上,穿透气依次流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的绝对压力范围为0.2-1.2MPa,第二压缩机5-2使穿透气的压力提升至不低于闪蒸气的压力。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气纯度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气纯度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的条件下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附,并在50-150℃下对第一氢氦分离纯化床3-1进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为5N以上的氦气可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例5
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图5所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1与第二深度膜分离组件2-2;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的 穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立地与吸附单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立的与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透气分别独立地与氢氦分离纯化床连接,渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床 3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例6
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图6所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1与第二深度膜分离组件2-2;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立地与吸附单元连接。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透侧分别独立的与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统 的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1与第二深度膜分离组件2-2的渗透气分别独立地与变压吸附塔连接,渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃条件下对氢气进行吸附,同时流出纯度为5N以上的氦气。第一氢氦分离纯化床塔3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为5N以上氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例7
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图7所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的 穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.2-1.2MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与氢氦分离纯化床连接,由第三深度膜分离组件2-3流出的渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮预冷后液氦为液氦。
实施例8
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图8所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所 述第三深度膜分离组件2-3的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为无机膜时,闪蒸气进入初级膜分离组件1-1的绝对压力为0.3-1.2MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.2-1.2MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的与变压吸附塔连接,由第三深度膜分离组件2-3流出的渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对第一深度膜分离组件2-1的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压 吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃的温度下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例9
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图9所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道,所述闪蒸气进气管道上依次连接的第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6以及加热器7-7。
所述第三压缩机7-3用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求,所述加热器7-7用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道上第一颗粒过滤器7-1的前端之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与氢氦分离纯化单元的进气口连接。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统 的连续、稳定运行。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气依次流经第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6与加热器7-7后,流入初级膜分离组件1-1。当闪蒸气流经第三压缩机7-3的压力低于1.4MPa时,启动第三压缩机7-3使压力提高至1.6MPa以上,当压力高于1.4MPa时,第三压缩机7-3不启动。当闪蒸气的温度低于25℃时,启用加热器7-7使气体温度提高至25℃以上;当闪蒸气的温度高于20℃时,加热器7-7不启动。
闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.3-2.0MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与氢氦分离纯化床连接,渗透气中氢气和氦气的总浓度为99%vol以上。
-20℃至30℃的温度下,氢氦分离纯化床对渗透气中的氢气进行吸附,同时流出99%vol以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1氢气吸附饱和时,使用第二氢氦分离纯化床3-2进行氢气吸附,并在50-150℃下对第一氢氦分离纯化床 3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
纯度为99%vol以上的氦气可选的进入变压吸附塔,使氦气的纯度达到5N以上,得到电子级氦气产品。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
电子级氦气产品可选的进入氦气液化装置6,经过液氮冷却后液化为液氦。
实施例10
本实施例提供了一种自BOG中分离氢和氦的系统,所述系统的结构示意图如图10所示,包括:依次连接的闪蒸气进气单元、膜分离单元、吸附分离单元与氦气液化装置6。
所述闪蒸气进气单元为与膜分离单元连接的闪蒸气进气管道,所述闪蒸气进气管道上依次连接的第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6以及加热器7-7。
所述第三压缩机7-3用于为闪蒸气加压,使进入膜分离单元的闪蒸气的压力满足工艺要求,所述加热器7-7用于加热闪蒸气,使进入膜分离单元的闪蒸气的温度满足工艺要求。
所述膜分离单元包括初级膜分离组件1-1与深度膜分离组件,所述初级膜分离组件1-1的穿透侧出气作为尾气外排,初级膜分离组件1-1的渗透气为深度膜分离组件的进气。
所述深度膜分离组件包括第一深度膜分离组件2-1、第二深度膜分离组件2-2与第三深度膜分离组件2-3;初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透侧与第三深度膜分离组件2-3的穿透侧与闪蒸气进气管道上第一颗粒过滤器7-1的前端之间分别独立地设置有循环管道,所述循环管道上设置有背压阀5-1与第二压缩机5-2。
所述吸附分离单元包括依次连接的变压吸附单元与氢氦分离纯化单元,所述第三深度膜分离组件2-3的渗透侧与变压吸附单元的进气口连接。
所述变压吸附单元包括并联连接的第一变压吸附塔4-1与第二变压吸附塔4-2,所述第一变压吸附塔4-1与第二变压吸附塔4-2的进气口之前设置有第一 压缩机4-3,所述第一变压吸附塔4-1与第二变压吸附塔4-2的每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
所述氢氦分离纯化单元包括并联连接的第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2,所述第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2实现吸附和解吸附氢气的循环切换,从而保证了所述自BOG中分离氢与氦的系统的连续、稳定运行。
应用本实施例提供的系统分离闪蒸气中的氢与氦,当初级膜分离组件1-1的膜为有机膜时,闪蒸气依次流经第一颗粒过滤器7-1、第一油水过滤器7-2、第三压缩机7-3、冷干机7-4、第二油水过滤器7-5、第二颗粒过滤器7-6与加热器7-7后,流入初级膜分离组件1-1。当闪蒸气流经第三压缩机7-3的压力低于1.4MPa时,启动第三压缩机7-3使压力提高至1.6MPa以上,当压力高于1.4MPa时,第三压缩机7-3不启动。当闪蒸气的温度低于25℃时,启用加热器7-7使气体温度提高至25℃以上;当闪蒸气的温度高于20℃时,加热器7-7不启动。
闪蒸气进入初级膜分离组件1-1的绝对压力为0.7-2.0MPa,含氦气和氢气比例为1-15%vol的闪蒸气进入初级膜分离组件1-1,由初级膜分离组件1-1的渗透侧得到氢气和氦气的混合气,同时杂质气体作为尾气在初级膜分离组件1-1的穿透侧排出。
由初级膜分离组件1-1渗透侧得到的混合气中氢气和氦气的总浓度为20-70%vol,然后进入第一深度膜分离组件2-1与第二深度膜分离组件2-2进行分离提纯。初级膜分离组件1-1的渗透气流入第一深度膜分离组件2-1,第一深度膜分离组件2-1的穿透气流入第二深度膜分离组件2-2,第二深度膜分离组件2-2的穿透气作为尾气外排;第一深度膜分离组件2-1的渗透气流入第三深度膜分离组件2-3;第二深度膜分离组件2-2的渗透气与第三深度膜分离组件2-3的穿透气分别独立地流经背压阀5-1与第二压缩机5-2,然后与闪蒸气混合,背压阀5-1的压力范围为绝对0.3-2.0MPa,第二压缩机5-2使气体的压力提升至不低于闪蒸气的压力。
第三深度膜分离组件2-3的渗透侧与变压吸附塔连接,由第三深度膜分离组件2-3的渗透气中氢气和氦气的总浓度为99%vol以上。
变压吸附塔对第三深度膜分离组件2-3的渗透气中的杂质气体进行吸附,得到氢气与氦气总浓度为5N以上的混合气。第一变压吸附塔4-1与第二变压吸附塔4-2循环切换运行,每个塔的吸附和再生工艺过程由吸附、均压降压、顺放、 逆放、冲洗、均压升压和氢气升压等步骤组成;当第一变压吸附塔4-1吸附饱和时,切换至第二变压吸附塔4-2进行吸附,同时对第一变压吸附塔4-1进行解吸处理;同理,当第二变压吸附塔4-2吸附饱和时,切换至解吸处理后的第一变压吸附塔4-1进行吸附,同时对第二变压吸附塔4-2进行解吸。
氢气与氦气总浓度为5N以上的混合气流入氢氦分离纯化床,-20℃至30℃条件下对氢气进行吸附,流出纯度为5N以上的氦气。第一氢氦分离纯化床3-1与第二氢氦分离纯化床3-2吸附和解吸附氢气循环切换,当第一氢氦分离纯化床3-1吸附饱和时,使用第二氢氦分离纯化床3-2进行吸附氢气,并在50-150℃下对第一氢氦分离纯化床3-1内吸附的氢气进行解吸;同理,当第二氢氦分离纯化床3-2吸附饱和时,切换至第一氢氦分离纯化床3-1进行吸附,并在50-150℃下对第二氢氦分离纯化床3-2内吸附的氢气进行解吸;从而得到纯度6N、绝对压力为0.2-2MPa可调的电子级氢气产品。
氦气产品可选的进入氦气液化装置6,经过液氮预冷后液化为液氦。
综上所述,本申请通过结合膜分离技术与吸附分离技术,提高了BOG中氢气与氦气的分离效果;本申请通过吸附分离单元中变压吸附装置与氢氦分离纯化床装置的灵活设置,使最终所得氢气、氦气以及液氦的纯度灵活可调,降低了分离提纯的成本与能耗。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。

Claims (10)

  1. 一种自BOG中分离纯化氢与氦的系统,其包括依次连接的闪蒸气进气单元、膜分离单元与吸附分离单元;
    其中所述闪蒸气进气单元包括闪蒸气进气管道;
    所述膜分离单元包括依次连接的初级膜分离装置与深度膜分离装置;且
    所述吸附分离单元包括串联连接的变压吸附单元与氢氦分离纯化单元。
  2. 根据权利要求1所述的自BOG中分离纯化氢与氦的系统,其中,所述变压吸附单元包括至少两组并联连接的变压吸附装置。
  3. 根据权利要求1或2任一项所述的自BOG中分离纯化氢与氦的系统,其中,所述氢氦分离纯化单元包括至少两组并联连接的氢氦分离纯化装置,所述氢氦分离纯化装置通过氢气的吸附与解吸,实现氢气与氦气的分离并得到电子级纯度的氢气。
  4. 根据权利要求1-3所述的自BOG中分离纯化氢与氦的系统,其中,所述变压吸附单元还包括设置于变压吸附装置入口处的增压装置。
  5. 根据权利要求1-4任一项所述的自BOG中分离纯化氢与氦的系统,其中,所述自BOG中分离纯化氢与氦的系统还包括设置于吸附分离单元后的氦气液化装置,所述氦气液化装置用于将提纯后的氦气液化为液氦。
  6. 根据权利要求1-5任一项所述的自BOG中分离纯化氢与氦的系统,其中,所述闪蒸气进气单元还包括设置于闪蒸气进气管道上依次连接的第一颗粒过滤器、第一油水过滤器、压缩机、冷干机、第二油水过滤器、第二颗粒过滤器以及加热器。
  7. 根据权利要求1-6任一项所述的自BOG中分离纯化氢与氦的系统,其中,所述自BOG中分离纯化氢与氦的系统还包括设置于膜分离单元与闪蒸气进气单元之间的循环管道;
    可选地,所述循环管道上设置有背压阀与增压装置。
  8. 一种应用如权利要求1-7任一项所述的自BOG中分离纯化氢与氦的系统分离BOG中氢与氦的方法,其中,所述方法包括如下步骤:
    (1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;
    (2)利用吸附分离单元分离纯化氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气。
  9. 根据权利要求8所述的方法,其中,步骤(1)所述闪蒸气中氢气和氦气的总浓度为1-15%vol;
    可选地,步骤(1)所述提浓混合气中氢气和氦气的总浓度为20-99.9%vol;
    可选地,步骤(1)所述膜分离的进气绝对压力为0.3-2MPa,温度为20℃以上;
    可选地,步骤(2)所述吸附分离单元进行氢氦分离纯化时,吸附氢气时的温度为-20℃至30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
  10. 根据权利要求8或9所述的方法,其中,所述方法包括如下步骤:
    (1)通过膜分离提高闪蒸气内氢气和氦气的总浓度,得到提浓混合气;闪蒸气中氢气和氦气的总浓度为1-15%vol;提浓混合气中氢气和氦气的总浓度为20-99.9%vol;所述膜分离的进气绝对压力为0.3-2.0MPa,温度为20℃以上;
    (2)利用吸附分离单元分离氦气与氢气,得到纯度为2N以上的氦气以及纯度为6N以上的氢气,吸附氢气时的温度为-20℃至30℃;解吸氢气时的温度为50-150℃、绝对压力为0.2-2.0MPa。
PCT/CN2020/104763 2020-01-14 2020-07-27 一种自bog中分离纯化氢与氦的系统与方法 WO2021143093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010038470.2 2020-01-14
CN202010038470.2A CN111086974B (zh) 2020-01-14 2020-01-14 一种自bog中分离纯化氢与氦的系统与方法

Publications (1)

Publication Number Publication Date
WO2021143093A1 true WO2021143093A1 (zh) 2021-07-22

Family

ID=70399390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104763 WO2021143093A1 (zh) 2020-01-14 2020-07-27 一种自bog中分离纯化氢与氦的系统与方法

Country Status (2)

Country Link
CN (1) CN111086974B (zh)
WO (1) WO2021143093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003202A (zh) * 2023-06-13 2023-11-07 上海汉兴能源科技股份有限公司 一种psa提纯氢气的工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086974B (zh) * 2020-01-14 2024-07-19 苏州睿分气体技术有限公司 一种自bog中分离纯化氢与氦的系统与方法
CN113697785A (zh) * 2020-05-22 2021-11-26 中国石油化工股份有限公司 氧化法结合膜分离制备氦气的方法
CN111573643A (zh) * 2020-06-09 2020-08-25 安徽中科皖能科技有限公司 一种氦气回收提纯装置和方法
CN111715028B (zh) * 2020-06-24 2022-08-02 大连理工大学 一种产品多元化的氦气高收率分离提纯耦合工艺
CN115869739A (zh) * 2021-09-26 2023-03-31 中国石油化工股份有限公司 膜分离耦合两级脱氢提纯氦气的方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
JPH08108046A (ja) * 1994-10-07 1996-04-30 Japan Atom Energy Res Inst 水素同位体とヘリウムの分離方法及び装置
US6179900B1 (en) * 1997-10-09 2001-01-30 Gkss Forschungszentrum Geesthacht Gmbh Process for the separation/recovery of gases
CN104340959A (zh) * 2014-11-05 2015-02-11 中国工程物理研究院核物理与化学研究所 一种氢氦混合气体分离与回收装置
CN107804826A (zh) * 2016-09-08 2018-03-16 中国石油天然气集团公司 一种炼厂气中氢气回收系统、方法
CN208932983U (zh) * 2018-08-20 2019-06-04 王帆宇 一种从含氢粗氦中提取氦气的装置
CN111086974A (zh) * 2020-01-14 2020-05-01 苏州睿分电子科技有限公司 一种自bog中分离纯化氢与氦的系统与方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749699B (zh) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 一种全温程变压吸附气体分离提纯与净化的方法
CN205939932U (zh) * 2016-08-24 2017-02-08 四川空分设备(集团)有限责任公司 液化天然气闪蒸气提取高纯氦系统
EP3513863A1 (de) * 2018-01-22 2019-07-24 Linde Aktiengesellschaft Verfahren und anlage zur gewinnung von reinhelium
CN108394878B (zh) * 2018-04-09 2019-03-05 西安保埃罗环保科技有限公司 一种含氢的氦尾气提纯氦气工艺
CN211946255U (zh) * 2020-01-14 2020-11-17 苏州睿分电子科技有限公司 一种自bog中分离纯化氢与氦的系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
JPH08108046A (ja) * 1994-10-07 1996-04-30 Japan Atom Energy Res Inst 水素同位体とヘリウムの分離方法及び装置
US6179900B1 (en) * 1997-10-09 2001-01-30 Gkss Forschungszentrum Geesthacht Gmbh Process for the separation/recovery of gases
CN104340959A (zh) * 2014-11-05 2015-02-11 中国工程物理研究院核物理与化学研究所 一种氢氦混合气体分离与回收装置
CN107804826A (zh) * 2016-09-08 2018-03-16 中国石油天然气集团公司 一种炼厂气中氢气回收系统、方法
CN208932983U (zh) * 2018-08-20 2019-06-04 王帆宇 一种从含氢粗氦中提取氦气的装置
CN111086974A (zh) * 2020-01-14 2020-05-01 苏州睿分电子科技有限公司 一种自bog中分离纯化氢与氦的系统与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117003202A (zh) * 2023-06-13 2023-11-07 上海汉兴能源科技股份有限公司 一种psa提纯氢气的工艺

Also Published As

Publication number Publication date
CN111086974B (zh) 2024-07-19
CN111086974A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2021143093A1 (zh) 一种自bog中分离纯化氢与氦的系统与方法
CN107789949B (zh) 一种负压变压吸附的气体分离方法
AU2016395665B2 (en) Ammonia production method
JPH02281096A (ja) 富メタン混合ガスの炭酸ガス及び水分を除去する装置
CN210340328U (zh) 一种一体式连续制氧制氮装置
US9944575B2 (en) Methane gas concentration method
CN210014211U (zh) 一种液化天然气的闪蒸气回收装置
US4444572A (en) Process and installation for purification of the helium contained in a mixture of gas
US9272963B2 (en) Final biogas purification process
WO2014148503A1 (ja) ガス精製方法
CN113184850B (zh) 一种高纯度二氧化碳气体提纯方法及其装置
CN107774095A (zh) 一种天然气同时脱水脱烃的全温程变压吸附净化方法
CN211946255U (zh) 一种自bog中分离纯化氢与氦的系统
CN113353901B (zh) 一种富集天然气中氦气系统和工艺
CN217148577U (zh) 一种从低含氦bog中提取高纯氦气的系统
JP5736916B2 (ja) 混合ガスからの二酸化炭素の回収・液化方法
CN215161044U (zh) 一种高纯度二氧化碳气体提纯装置
RU2802214C1 (ru) Система и способ разделения и очистки водорода и гелия из отпарного газа
CN115155257A (zh) 一种从低含氦bog中提取高纯氦气的方法
CN112744789A (zh) 一种基于耦合分离技术的制氧方法及其装置
CN115676786B (zh) 常温下基于银分子筛吸附的氦氖分离工艺
CN114674115B (zh) 一种液化天然气bog闪蒸气提取高纯氦的系统与方法
CN217746431U (zh) 一种低浓度氢气吸附提纯系统
CN220026552U (zh) 水煤浆变换气psa脱碳及co2回收装置
CN217732686U (zh) 一种高效变压吸附氢气提纯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913424

Country of ref document: EP

Kind code of ref document: A1