CN111081871A - 一种新型相变材料Cr-SbTe的干法刻蚀方法 - Google Patents

一种新型相变材料Cr-SbTe的干法刻蚀方法 Download PDF

Info

Publication number
CN111081871A
CN111081871A CN201911291575.2A CN201911291575A CN111081871A CN 111081871 A CN111081871 A CN 111081871A CN 201911291575 A CN201911291575 A CN 201911291575A CN 111081871 A CN111081871 A CN 111081871A
Authority
CN
China
Prior art keywords
sbte
phase change
film
etching method
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911291575.2A
Other languages
English (en)
Inventor
张楷亮
黄金荣
王芳
李宇翔
王路广
胡凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201911291575.2A priority Critical patent/CN111081871A/zh
Publication of CN111081871A publication Critical patent/CN111081871A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种新型相变材料Cr‑SbTe的干法刻蚀方法,用于相变存储器限域结构的制备,属于半导体存储器中的工艺领域。该方法主要包括以下步骤:a、在氧化硅衬底上采用磁控溅射生长Cr‑SbTe合金薄膜;b、利用紫外光刻技术在薄膜表面形成2um宽度条形光刻胶掩膜;c、采用混合气体对合金薄膜进行刻蚀;d、刻蚀后样品置于丙酮中去除光刻胶,用于测试和表征。该刻蚀方法采用SF6+O2+Ar的气体组合刻蚀Cr‑SbTe相变薄膜材料,其工艺简便,刻蚀后最优条件下Cr‑SbTe薄膜对光刻胶选择比最大可达1.34,刻蚀沟槽侧壁角度倾斜度小,刻蚀后薄膜表面粗糙度小,为后续器件的制备提供了工艺基础。

Description

一种新型相变材料Cr-SbTe的干法刻蚀方法
技术领域
本发明涉及一种新型相变材料Cr-SbTe合金的干法刻蚀方法,用于相变存储器限域结构的制备,属于半导体存储器中的工艺领域。
背景技术
相变存储器以其高速、高密度、低功耗等显著优势,成为了最具商业化推广价值之一的下一代新型存储器。其通过电流施加在器件上产生的热效应来控制相变层材料的晶态与非晶态之间的可逆变换进行信息的存储,因此,相变层材料的优化以及通过限域结构对热量进行集中的刻蚀工艺都是相变器件研究过程中不可或缺的部分。
相变存储器的概念最早是在20世纪60年代末由美国科学家Ovshinsky提出,由于工艺技术有限,相变存储器沉寂了将近40年的历史,直到21世纪才进入了迅速发展的阶段。相变存储器中最为核心的是以硫系化合物为基础的相变材料,作为相变存储器的存储介质,相变材料的优劣直接关系到器件的性能。其中GST相变材料是目前使用和研究最为广泛的相变材料,但是,由于该材料体系的结晶温度在120℃左右,热稳定性较差,因此,大量研究指向具备更高热稳定性、更快速的新型相变材料。2015年中科院上海微系统与技术研究所Yangyang Xia等人研究了Cr掺杂Sb3Te1薄膜作为相变存储器存储介质的器件的性能(Journal of Non-Crystalline Solids 422(2015)46-50)。同年10月Qing Wang等人研究了Cr掺杂Sb2Te3薄膜作为相变存储器介质的器件的性能,研究发现该掺杂合金材料具有超过200℃的结晶温度,具备更高的热稳定性(phys.Status Solidi RRL 9,No.8,470-474(2015))。Cr掺杂Sb-Te系相变材料具有优异的性能,具有十分重要的研究价值。然而,该材料体系的刻蚀工艺的研究目前几乎没有,主要研究材料体系集中在GST材料体系,2007年Gaoming Feng等人研究了CHF3/O2刻蚀Ge2Sb2Te5过程中相关参数对刻蚀的速率、侧壁等的影响,文中提及的刻蚀选择比较小(Electrochemical and Solid-State Letters,2007,10(5):D47-D50)。E.A.Josepht等人比较了Ar、Ar/CHF3,Ar/CHF3/Cl2三种气体环境下对N掺杂Ge2Sb2Te5进行刻蚀的情况,但是选择比依然是一个值得研究的问题(2008IEEEInternationaln Symposium on VLSI Technology,Systems and Applications(VLSI-TSA),2008:142-143)。
本文针对上述问题提出一种新型相变材料Cr-SbTe的干法刻蚀方法,以紫外光刻胶作为刻蚀的掩蔽层,采用SF6+O2+Ar的气体组合刻蚀Cr-SbTe相变薄膜,通过大量实验结果分析证明,通过合理控制SF6+O2+Ar混合气体的组分比例,使得化学刻蚀占刻蚀主导作用,由于其与光刻胶反应作用小,物理轰击过程不强烈,使得刻蚀过程中Cr-SbTe对光刻胶的选择比大,十分有效的解决了上述问题。又因SF6气体中富含F离子,其与Sb、Te形成气态产物直接挥发掉,形成的SbF3、TeF4、CrF3等难挥发物质通过物理轰击过程去除了,使得刻蚀后薄膜表面粗糙度小,为后续器件的制备提供了工艺基础。
发明内容
本发明的目的是为了提供一种Cr-SbTe的干法刻蚀方法,得到大的选择比、陡直的侧壁,光滑的刻蚀后表面,为后续加工步骤提供工艺基础。
为了达到上述目的,本发明采用如下技术方案:一种新型相变材料Cr-SbTe的干法刻蚀方法,采用反应离子刻蚀,该方法包括以下步骤:
步骤一,在氧化硅衬底上磁控溅射生长Cr-SbTe合金材料的薄膜;
步骤二,利用紫外光刻技术在薄膜表面形成图形化(2umX20um长方形)光刻胶掩模;
步骤三:利用六氟化硫与氩气和氧气混合气体进行刻蚀,调整射频功率范围为100W-200W,工作压强范围为10mTorr-30mTorr,刻蚀时间范围为60s-360s;
步骤四,将刻蚀后的样品在丙酮中去除光刻胶,用于测试与表征。
本发明刻蚀过程主要参数限定在一定范围内,从而达到良好的刻蚀效果,即混合气体中,六氟化硫占总气体体积比为50%~80%,氩气占总气体体积比为10%~40%,氧气占总气体体积比为10%;工作压强要求在10~30mTorr之间;射频功率要求在100~200W之间。其中举例能得到很好效果的参数组合:SF6/Ar/O2=70%/20%/10%,工作压强15mTorr,射频功率200W。
本发明采用反应离子刻蚀技术,通过氟基等离子气体中的氟离子与铬锑碲合金材料中的元素反应,生成易挥发的氟化产物,从而达到刻蚀效果。刻蚀过程主要使用氟元素比例相对较高的SF6气体以及Ar,O2等辅助气体进行,其中SF6为化学反应过程提供充足的氟离子,Ar在刻蚀过程中促进物理轰击作用,O2调节氟自由基的浓度,并有利于降低刻蚀后表面粗糙度。通过控制气体的组分比例,射频功率,工作压强等参数,优化得到最优的刻蚀条件,即陡直的侧壁,光滑的刻蚀后表面以及理想的刻蚀速率。
附图说明
图1为本发明流程示意图。
图中:(1)为光刻胶;(2)为Cr-SbTe薄膜;(3)为SiO2衬底;(4)为掩膜板。
图2为本发明为Cr-SbTe对光刻胶的选择比图。
图3为本发明可供选择的参数及实验结果图。
图4为本发明刻蚀结果的SEM图。
图5为本发明刻蚀薄膜样品表面的AFM图。
具体实施方式:
实施例1:
本发明的实施过程如下:一种新型相变材料Cr-SbTe合金的干法刻蚀方法,采用反应离子刻蚀,该方法包括以下步骤:
步骤一,在氧化硅衬底上磁控溅射生长铬锑碲合金材料的薄膜;铬锑碲三种元素的最佳原子百分比为Cr10.5Sb40.7Te48.8,薄膜厚度约300nm。
步骤二,利用紫外光刻技术在薄膜表面形成图形化光刻胶掩模;图形为线宽2μm的线条结构。
以上步骤一和步骤二参见附图1的a-c,其中图1a为旋涂有光刻胶的Cr-SbTe薄膜;图1b为采用掩膜板对其进行紫外光刻过程;图1c为紫外光刻之后实现图形转移过程。
步骤三,参见附图1d,图1d为采用混合气体对薄膜进行刻蚀过程。利用六氟化硫气体与氩气、氧气混合气体进行刻蚀,调整射频功率范围为100W-200W,工作压强范围为10mTorr-30mTorr;
步骤四,参见附图1e,薄膜刻蚀过程完成后,将刻蚀后的样品在丙酮中去除光刻胶,用于测试与表征。
混合气体中,SF6占总气体体积比为70%,Ar占总气体体积比为20%,O2占总气体体积比为10%。此时最佳的射频功率为200W,工作压强为15mTorr。
图2为Cr-SbTe对光刻胶的选择比,当SF6/Ar+O2比例持续增加时,选择比呈现增大的趋势,最大选择比可达1.32。
图3为可供选择的参数及实验结果,最后条件用虚线标注。由图3可知,刻蚀速率在混合气体SF6/(SF6+O2+Ar)比例为70%时到达最大速率:132nm/min。
图4为最后刻蚀条件下混合气体SF6/(SF6+O2+Ar)比例为70%,刻蚀压强在15mTorr,射频功率200W时刻蚀结果的SEM(扫描电子显微镜)图像。
图5为采用混合气体刻蚀薄膜样品表面的AFM图。粗糙度最小为:0.85nm。
上述实施例仅列示性说明本发明的原理及功效,而非用于限制本发明。任何熟悉此项技术的人员均可在不违背本发明的精神及范围下,对上述实施例进行修改。因此,本发明的权利保护范围,应如权利要求书所列。

Claims (5)

1.一种新型相变材料Cr-SbTe的干法刻蚀方法,采用反应离子刻蚀技术,包括以下步骤:
步骤一:在氧化硅衬底上磁控溅射生长Cr-SbTe合金材料薄膜;
步骤二:利用紫外光刻技术在薄膜表面形成图形化光刻胶掩膜;
步骤三:利用六氟化硫与氩气和氧气混合气体进行刻蚀,调整射频功率范围为50W-200W,工作压强范围为10mTorr-30mTorr;
步骤四:将刻蚀后的样品在丙酮中去除光刻胶,用于测试与表征。
2.根据权利要求书1所述的新型相变材料Cr-SbTe的干法刻蚀方法,其特征在于,材料包含三种元素的原子百分比为:Cr:Sb:Te=10.5%:40.7%:48.8%。
3.根据权利要求1所述的新型相变材料Cr-SbTe的干法刻蚀方法,其特征在于,在步骤三中所述混合气体中六氟化硫占总气体体积比为50%~80%。
4.根据权利要求1所述的新型相变材料Cr-SbTe的干法刻蚀方法,其特征在于,在步骤三中所述混合气体中氩气占总气体体积比为10%-40%。
5.根据权利要求1所述的新型相变材料Cr-SbTe的干法刻蚀方法,其特征在于,在步骤三中所述混合气体中氧气占总气体体积比为10%。
CN201911291575.2A 2019-12-16 2019-12-16 一种新型相变材料Cr-SbTe的干法刻蚀方法 Pending CN111081871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911291575.2A CN111081871A (zh) 2019-12-16 2019-12-16 一种新型相变材料Cr-SbTe的干法刻蚀方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911291575.2A CN111081871A (zh) 2019-12-16 2019-12-16 一种新型相变材料Cr-SbTe的干法刻蚀方法

Publications (1)

Publication Number Publication Date
CN111081871A true CN111081871A (zh) 2020-04-28

Family

ID=70314683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911291575.2A Pending CN111081871A (zh) 2019-12-16 2019-12-16 一种新型相变材料Cr-SbTe的干法刻蚀方法

Country Status (1)

Country Link
CN (1) CN111081871A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591707A (zh) * 2020-12-15 2021-04-02 南方科技大学 一种纳米锥形阵列结构及其制备方法
CN112599669A (zh) * 2020-12-17 2021-04-02 华中科技大学 一种相变材料刻蚀方法及三维堆叠相变存储器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922124A (ja) * 1995-07-06 1997-01-21 Dainippon Printing Co Ltd パターン形成方法およびパターン形成装置
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
CN102136548A (zh) * 2010-12-31 2011-07-27 中国科学院上海微系统与信息技术研究所 一种相变材料的干法刻蚀方法
US20110306215A1 (en) * 2010-06-14 2011-12-15 Applied Materials, Inc. Methods of processing substrates having metal materials
US20120032165A1 (en) * 2010-08-06 2012-02-09 Korea Advanced Institute Of Science And Technology Aqueous solution composition for fluorine doped metal oxide semiconductor and thin film transistor including the same
KR20130053121A (ko) * 2011-11-15 2013-05-23 (재)한국나노기술원 고품위 질화물 반도체 성장방법 및 이를 이용한 질화물 반도체 발광소자의 제조방법
CN104851782A (zh) * 2015-04-09 2015-08-19 电子科技大学 一种4H-SiC UMOSFET栅槽的制作方法
JP2016207753A (ja) * 2015-04-17 2016-12-08 株式会社日立ハイテクノロジーズ プラズマエッチング方法
US20180223437A1 (en) * 2017-02-09 2018-08-09 The Regents Of The University Of Colorado, A Body Corporate Atomic layer etching processes using sequential, self-limiting thermal reactions comprising oxidation and fluorination

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922124A (ja) * 1995-07-06 1997-01-21 Dainippon Printing Co Ltd パターン形成方法およびパターン形成装置
US20070158632A1 (en) * 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US20110306215A1 (en) * 2010-06-14 2011-12-15 Applied Materials, Inc. Methods of processing substrates having metal materials
US20120032165A1 (en) * 2010-08-06 2012-02-09 Korea Advanced Institute Of Science And Technology Aqueous solution composition for fluorine doped metal oxide semiconductor and thin film transistor including the same
CN102136548A (zh) * 2010-12-31 2011-07-27 中国科学院上海微系统与信息技术研究所 一种相变材料的干法刻蚀方法
KR20130053121A (ko) * 2011-11-15 2013-05-23 (재)한국나노기술원 고품위 질화물 반도체 성장방법 및 이를 이용한 질화물 반도체 발광소자의 제조방법
CN104851782A (zh) * 2015-04-09 2015-08-19 电子科技大学 一种4H-SiC UMOSFET栅槽的制作方法
JP2016207753A (ja) * 2015-04-17 2016-12-08 株式会社日立ハイテクノロジーズ プラズマエッチング方法
US20180223437A1 (en) * 2017-02-09 2018-08-09 The Regents Of The University Of Colorado, A Body Corporate Atomic layer etching processes using sequential, self-limiting thermal reactions comprising oxidation and fluorination

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUGUANG WANG ET AL.: "Reactive-ion etching of Cr-doped Sb2Te3 thin film in Sf6/O2 plasma for non-volatile phase-change memories" *
LUGUANG WANG, FANG WANG*, YUXIANG LI, JINRONG HUANG, WEI LI, KAILIANG ZHANG*: "REACTIVE-ION ETCHING OF CR-DOPED SB2TE3 THIN FILM IN SF6/O2 PLASMA FOR NON-VOLATILE PHASE-CHANGE MEMORIES" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591707A (zh) * 2020-12-15 2021-04-02 南方科技大学 一种纳米锥形阵列结构及其制备方法
CN112591707B (zh) * 2020-12-15 2024-05-31 南方科技大学 一种纳米锥形阵列结构及其制备方法
CN112599669A (zh) * 2020-12-17 2021-04-02 华中科技大学 一种相变材料刻蚀方法及三维堆叠相变存储器

Similar Documents

Publication Publication Date Title
CN111081871A (zh) 一种新型相变材料Cr-SbTe的干法刻蚀方法
WO2013086686A1 (zh) 一种高速低功耗相变存储器的制备方法
CN110989301B (zh) 基于干式显影和金属掺杂Sb2Te光刻胶的光刻方法
KR102073050B1 (ko) 구리 박막의 건식 식각방법
Aziz et al. High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient
KR100741941B1 (ko) 스퍼터 증착의 실버 셀레나이드 막 화학양론 및 형상 제어
Xi et al. Phase change material Ge2Sb1. 5Bi0. 5Te5 possessed of both positive and negative photoresist characteristics
Zhang et al. Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis
JP2009161405A (ja) 微細周期構造を有する炭化ケイ素モールド及びその製造方法
CN110556297A (zh) 一种10纳米以下硅基鳍式场效应晶体管的制备方法
Feng et al. Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories
CN102214567A (zh) 沟槽的形成方法
CN111367146B (zh) 一种相变-热分解型复合光刻胶的纳米光刻方法
CN115036417A (zh) 一种低功耗相变存储器的制备方法
Zhang et al. Etching of new phase change material Ti0. 5Sb2Te3 by Cl2/Ar and CF4/Ar inductively coupled plasmas
Xu et al. Reactive-ion etching of Sn-doped Ge2Sb2Te5 in CHF3/O2 plasma for non-volatile phase-change memory device
Zhou et al. Inductively coupled plasma etching for phase-change material with superlattice-like structure in phase change memory device
Li et al. Reactive ion etching of Cr-doped Sb2Te3 phase change materials in CHF3/O2 gas
JP2004146500A (ja) 薄膜の加工方法
CN102509732B (zh) 微控制器用低功耗嵌入式相变存储器及其相变存储材料与制备方法
CN112599669A (zh) 一种相变材料刻蚀方法及三维堆叠相变存储器
KR100805844B1 (ko) 상변화 물질(Ge_xSb_yTe_z)에 대한 건식 식각방법
KR100780404B1 (ko) 상변화 물질 (GexSbyTez)에 대한 건식 식각 방법
US20090246964A1 (en) Etching process for phase-change films
CN110010760B (zh) 一种In-Bi-Sb相变薄膜材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200428

RJ01 Rejection of invention patent application after publication