CN111077493B - 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法 - Google Patents

一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法 Download PDF

Info

Publication number
CN111077493B
CN111077493B CN201911317407.6A CN201911317407A CN111077493B CN 111077493 B CN111077493 B CN 111077493B CN 201911317407 A CN201911317407 A CN 201911317407A CN 111077493 B CN111077493 B CN 111077493B
Authority
CN
China
Prior art keywords
gamma
beta
updating
vector
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911317407.6A
Other languages
English (en)
Other versions
CN111077493A (zh
Inventor
郭梦雅
戴继生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201911317407.6A priority Critical patent/CN111077493B/zh
Publication of CN111077493A publication Critical patent/CN111077493A/zh
Application granted granted Critical
Publication of CN111077493B publication Critical patent/CN111077493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/143Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/8027By vectorial composition of signals received by plural, differently-oriented transducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法,1:nested阵列接收到远场窄带高斯信号经匹配滤波,得到t时刻包含DOA的数据向量x(t)。2:利用x(t)求得在T快拍数下的接收数据协方差
Figure DDA0002326215840000011
Figure DDA0002326215840000012
向量化,得到一维数据向量
Figure DDA0002326215840000013
3:定义
Figure DDA0002326215840000014
Figure DDA0002326215840000015
左乘
Figure DDA0002326215840000016
Figure DDA0002326215840000017
实值和虚值并将其相加得到
Figure DDA0002326215840000018
4:在
Figure DDA0002326215840000019
内均匀划分
Figure DDA00023262158400000110
个网格点
Figure DDA00023262158400000111
构造测量矩阵
Figure DDA00023262158400000112
5:初始化l、γ、β。6:固定γ、β,更新μ、Σ。7:固定μ、Σ、β,更新γ。8:固定μ、Σ、γ,更新β。9:利用β值更新网格
Figure DDA00023262158400000113
如果
Figure DDA00023262158400000114
Figure DDA00023262158400000115
则更新
Figure DDA00023262158400000116
否则不更新。10:判断l是否达到上限L或γ是否收敛,如果都不满足,则l=l+1,并令β为零,利用
Figure DDA00023262158400000117
更新
Figure DDA00023262158400000118
并返回步骤6。11:对γ进行谱峰搜索,得到K个极大值点对应的角度,即为DOA估计值。

Description

一种基于实值离格变分贝叶斯推理的nested阵列波达方向估 计方法
技术领域
本发明属于阵列信号处理领域,涉及阵列信号的波达方向估计,具体的说是一种基于实值离格变分贝叶斯推理的非均匀nested阵列信号的波达方向估计的方法
背景技术
近年来,与信号的波达方向(Direction of Arrival,DOA)估计相关的阵列信号处理的各种理论和技术得到了极大发展。与传统的均匀线阵相比,在物理天线数相同时,nested阵列能够获得更大的阵列孔径和较多的自由度,因而具有较大的信源处理能力、较强的分辨能力和较高的估计精度,这些优点使得基于nested阵列的DOA估计算法成为了目前的研究热点。例如在文献F.Chen,J.Dai,N.Hu and Z.Ye,Sparse Bayesian learningfor off-grid DOAestimation with nested arrays,Digital Signal Processing,vol.82,pp.187-193,2018中提出了一种基于离格稀疏贝叶斯学习的nested阵列DOA估计方法,然而该方法涉及在复数域中对一个高维矩阵求逆的过程,所以存在计算复杂度较高的问题。
发明内容
针对现有方法的不足,本发明将提出一种基于实值离格变分贝叶斯推理的nested阵列DOA估计方法,该方法将复数域的求逆运算转化为实数域的求逆运算,从而显著降低计算复杂度。
用于实现本发明的技术解决方案包括如下步骤:
步骤1:nested阵列接收到的远场窄带高斯信号经过匹配滤波后,得到在t时刻包含DOA信息的数据向量x(t)。
步骤2:利用步骤1中接收到的数据向量x(t),求得在T快拍数下的接收数据协方差
Figure BDA0002326215820000011
Figure BDA0002326215820000012
向量化,得到一个一维的数据向量
Figure BDA0002326215820000013
步骤3:定义矩阵
Figure BDA0002326215820000014
将步骤2中的一维数据向量
Figure BDA0002326215820000015
左乘
Figure BDA0002326215820000016
分别取
Figure BDA0002326215820000017
实值和虚值并将其相加,从而得到一个一维数据向量
Figure BDA0002326215820000018
步骤4:在
Figure BDA0002326215820000019
的范围内均匀划分出
Figure BDA00023262158200000110
个网格点
Figure BDA00023262158200000111
构造测量矩阵
Figure BDA0002326215820000021
步骤5:设置迭代次数计数变量l=1,初始化信号精度向量γ和角度偏移向量β。
步骤6:固定γ、β,更新μ、Σ。
步骤7:固定μ、Σ、β,更新γ。
步骤8:固定μ、Σ、γ,更新β。
步骤9:利用步骤8中的β值更新网格
Figure BDA0002326215820000022
如果
Figure BDA0002326215820000023
Figure BDA0002326215820000024
的范围中,则更新网格点
Figure BDA0002326215820000025
否则不更新。
步骤10:判断迭代计数变量l是否达到上限L或γ是否收敛,如果都不满足,则迭代计数变量l=l+1,并令β为零,利用更新的网格
Figure BDA0002326215820000026
更新
Figure BDA0002326215820000027
并返回步骤6。
步骤11:对信号精度向量γ进行谱峰搜索,得到K个极大值点对应的角度,即为DOA的最终估计值。
本发明的有益效果:
本发明提出了一种基于实值离格变分贝叶斯推理的nested阵列系统的DOA估计方法,有效的避免了在复数域中进行矩阵求逆的计算,显著降低了计算复杂度。
附图说明
图1是本发明实施流程图。
图2是200次蒙特卡洛实验条件下,信噪比为0dB时,快拍数由100到800变化,检测2个目标时本发明和离格稀疏贝叶斯学习方法估计DOA的均方根误差(Root Mean SquaredError,RMSE)比较。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明的具体实施步骤和方法包括如下:
(1)nested阵列接收到的远场窄带高斯信号经过匹配滤波后,得到在t时刻包含DOA信息的数据向量x(t)=As(t)+n(t),t=1,2,…,T,式中:
Figure BDA0002326215820000028
T表示快拍数,
Figure BDA0002326215820000029
s(t)=[s1(t),s2(t),…,sK(t)]T表示在t时刻发射的K个不相关窄带信号,其中sk(t)满足均值为0,方差为
Figure BDA0002326215820000031
的复高斯分布,(·)T表示转置,
Figure BDA0002326215820000032
A=[a(θ1),a(θ2),...,a(θK)]表示M×K维的阵列流型矩阵,其中M=M1+M2为nested阵列阵元个数,M1和M2分别表示nested阵列内外层阵元个数,内外层阵元间距分别为d和(M1+1)d,令[r1,r2,…,rM]=[0,1,…(M1-1),M1,2(M1+1)-1,M2(M1+1)-1],则第m个阵元的位置可以表示为d·rm,m=1,2,…,M。阵列流型向量
Figure BDA0002326215820000033
θk表示第k个真实的DOA,λ表示电磁波的工作波长,
Figure BDA0002326215820000034
n(t)表示t时刻的一个M维的均值为0,方差为
Figure BDA0002326215820000035
的高斯白噪声。
(2)在T快拍数下,求数据向量x(t)协方差矩阵
Figure BDA0002326215820000036
(·)H表示共轭转置,将
Figure BDA0002326215820000037
向量化得到
Figure BDA0002326215820000038
vec(·)表示向量化操作。
(3)定义矩阵
Figure BDA0002326215820000039
求D逆矩阵的厄米特平方根
Figure BDA00023262158200000310
分别取
Figure BDA00023262158200000311
实值和虚值并将其相加,从而得到
Figure BDA00023262158200000312
Re(·)表示取实值运算,Im(·)表示取虚值运算。
(4)在
Figure BDA00023262158200000313
的范围内均匀划分出
Figure BDA00023262158200000314
个网格点
Figure BDA00023262158200000315
构造测量矩阵
Figure BDA00023262158200000316
式中:
Figure BDA00023262158200000317
Figure BDA00023262158200000318
Figure BDA00023262158200000319
Figure BDA00023262158200000320
Figure BDA00023262158200000321
Figure BDA00023262158200000322
(·)*表示共轭运算,
Figure BDA00023262158200000323
表示Kronecker积,
Figure BDA0002326215820000041
Figure BDA0002326215820000042
(·)′表示一阶导数运算,diag(·)表示取对角运算,
Figure BDA0002326215820000043
Figure BDA0002326215820000044
βi表示网格点
Figure BDA0002326215820000045
上的角度偏移值,
Figure BDA0002326215820000046
Figure BDA0002326215820000047
向量em表示除第m个元素为1,其余均为零。
进一步,将步骤(3)中的数据模型
Figure BDA0002326215820000048
表示为:
Figure BDA0002326215820000049
式中:
Figure BDA00023262158200000410
Figure BDA00023262158200000411
Figure BDA00023262158200000412
Figure BDA00023262158200000413
维向量
Figure BDA00023262158200000414
的非零元素对应于发射信号方差
Figure BDA00023262158200000415
Figure BDA00023262158200000416
Figure BDA00023262158200000417
Figure BDA00023262158200000418
ε是满足均值为零,方差为
Figure BDA00023262158200000419
的复高斯分布。
(5)设置迭代次数计数变量l=1,初始化信号精度向量
Figure BDA00023262158200000420
中各元素为1,同时初始化β为全零向量。
(6)固定γ、β,更新μ,Σ:
Figure BDA00023262158200000421
Figure BDA00023262158200000422
式中:
Figure BDA00023262158200000423
Λ=diag(γ)。
(7)固定μ、Σ、β,更新γ:
Figure BDA00023262158200000424
式中:
Figure BDA00023262158200000425
a=b=0.00001,
Figure BDA0002326215820000051
wi表示w的第i个元素,
Figure BDA0002326215820000052
<·>表示求期望运算。
(8)固定μ、Σ、γ,更新β:
β=P-1v
式中:
Figure BDA0002326215820000053
Figure BDA0002326215820000054
Figure BDA0002326215820000055
Figure BDA0002326215820000056
Figure BDA0002326215820000057
。表示Khatri-Rao积,
Figure BDA0002326215820000058
μ-表示μ的前
Figure BDA0002326215820000059
个元素,
Figure BDA00023262158200000510
Figure BDA00023262158200000511
Figure BDA00023262158200000512
Σ(11:12,c1:c2)表示Σ的第11到12行和c1到c2列组成的子矩阵,
Figure BDA00023262158200000513
Figure BDA00023262158200000514
Figure BDA00023262158200000515
Figure BDA00023262158200000516
Figure BDA00023262158200000517
μ0表示μ的最后一个元素,
Figure BDA00023262158200000518
Figure BDA00023262158200000519
Figure BDA00023262158200000520
Figure BDA00023262158200000521
(9)将网格
Figure BDA00023262158200000522
看作可变参数,利用步骤(8)中求出的β值更新网格
Figure BDA00023262158200000523
如果
Figure BDA00023262158200000524
Figure BDA00023262158200000525
的范围中,则更新网格点
Figure BDA00023262158200000526
否则不更新。
(10)判断迭代计数变量l是否达到上限L=300或γ是否收敛(即当次更新结果与上次更新结果是否相等),如都不满足,则迭代计数变量l=l+1,并令β等于零,利用更新的网格
Figure BDA00023262158200000527
更新
Figure BDA00023262158200000528
并返回步骤(6)。
(11)对信号精度向量γ进行谱峰搜索,得到K个极大值点对应的角度,即为DOA的最终估计值。
下面结合仿真实验对本发明的效果做进一步说明。
为了评估本方法的性能,考虑一nested阵列,阵元个数M=6,其中内外层阵元数M1=M2=3,假设远场有两个相互独立的目标,分别取自范围[-30°,-20°]和[0°,10°]。实验为检测两个目标时,本发明与离格稀疏贝叶斯学习方法估计DOA的RMSE比较。在所有实验中,背景噪声假设为高斯白噪声,蒙特卡洛实验200次。
实验条件
实验1,在信噪比为0dB,快拍数由100到800变化时,本发明与离格稀疏贝叶斯学习方法的DOA估计的RMSE比较,仿真结果如图2所示。
实验分析
从图2可以看出,本发明估计DOA的RMSE随快拍数的增加而降低,与离格稀疏贝叶斯学习方法相比,本发明能够较为精确的估计出目标DOA。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法,其特征在于,包括如下步骤:
步骤1:nested阵列接收到的远场窄带高斯信号经过匹配滤波后,得到在t时刻包含DOA信息的数据向量x(t);
步骤2:利用步骤1中接收到的数据向量x(t),求得在T快拍数下的接收数据协方差
Figure FDA0003583033430000011
Figure FDA0003583033430000012
向量化,得到一个一维的数据向量
Figure FDA0003583033430000013
步骤3:定义矩阵
Figure FDA0003583033430000014
将步骤2中的一维数据向量
Figure FDA0003583033430000015
左乘
Figure FDA0003583033430000016
分别取
Figure FDA0003583033430000017
实值和虚值并将其相加,得到一个一维数据向量
Figure FDA0003583033430000018
步骤4:在
Figure FDA0003583033430000019
的范围内均匀划分出
Figure FDA00035830334300000110
个网格点
Figure FDA00035830334300000111
构造测量矩阵
Figure FDA00035830334300000112
步骤5:设置迭代次数计数变量l=1,初始化信号精度向量γ和角度偏移向量β;
步骤6:固定γ、β,更新μ、Σ;
步骤7:固定μ、Σ、β,更新γ;
步骤8:固定μ、Σ、γ,更新β;
步骤9:利用步骤8中的β值更新网格
Figure FDA00035830334300000113
如果
Figure FDA00035830334300000114
Figure FDA00035830334300000115
的范围中,则更新网格点
Figure FDA00035830334300000116
否则不更新;
步骤10:判断迭代计数变量l是否达到上限L或γ是否收敛,如果都不满足,则迭代计数变量l=l+1,并令β为零,利用更新的网格
Figure FDA00035830334300000117
更新
Figure FDA00035830334300000118
并返回步骤6;
步骤11:对信号精度向量γ进行谱峰搜索,得到K个极大值点对应的角度,即为DOA的最终估计值;
所述步骤1中数据向量x(t)的表达式为:
x(t)=As(t)+n(t),t=1,2,…,T,式中:
T表示快拍数,
s(t)=[s1(t),s2(t),…,sK(t)]T表示在t时刻发射的K个不相关窄带信号,其中sk(t)满足均值为0,方差为
Figure FDA0003583033430000021
的复高斯分布,(·)T表示转置,A=[a(θ1),a(θ2),...,a(θK)]表示M×K维的阵列流型矩阵,其中M=M1+M2为nested阵列阵元个数,M1和M2分别表示nested阵列内外层阵元个数,内外层阵元间距分别为d和(M1+1)d,令[r1,r2,…,rM]=[0,1,…(M1-1),M1,2(M1+1)-1,M2(M1+1)-1],则第m个阵元的位置表示为d·rm,m=1,2,…,M;阵列流型向量
Figure FDA0003583033430000022
θk表示第k个真实的DOA,λ表示电磁波的工作波长,
n(t)表示t时刻的一个M维的均值为0,方差为
Figure FDA0003583033430000023
的高斯白噪声;
所述步骤2中
Figure FDA0003583033430000024
的表达式为:
Figure FDA0003583033430000025
(·)H表示共轭转置;所述
Figure FDA0003583033430000026
的表达式为:
Figure FDA0003583033430000027
vec(·)表示向量化操作;
所述步骤3中
Figure FDA0003583033430000028
的表达式为:
Figure FDA0003583033430000029
Re(·)表示取实值运算,Im(·)表示取虚值运算;
所述步骤4中构造测量矩阵
Figure FDA00035830334300000210
的表达式为:
Figure FDA00035830334300000211
式中:
Figure FDA00035830334300000212
Figure FDA00035830334300000213
Figure FDA00035830334300000214
(·)*表示共轭运算,
Figure FDA00035830334300000215
表示Kronecker积,
Figure FDA0003583033430000031
(·)′表示一阶导数运算,diag(·)表示取对角运算,
Figure FDA0003583033430000032
βi表示网格点
Figure FDA0003583033430000033
上的角度偏移值,
Figure FDA0003583033430000034
向量em表示除第m个元素为1,其余均为零,m=1,2,3,…,M;
将所述步骤3中的一维数据向量
Figure FDA0003583033430000035
的式子利用测量矩阵
Figure FDA0003583033430000036
表示为:
Figure FDA0003583033430000037
式中:
Figure FDA0003583033430000038
Figure FDA0003583033430000039
维向量
Figure FDA00035830334300000310
的非零元素对应于发射信号方差
Figure FDA00035830334300000311
Figure FDA00035830334300000312
ε是满足均值为零,方差为
Figure FDA00035830334300000313
的复高斯分布;
所述步骤6中更新μ、Σ的方法如下:
Figure FDA00035830334300000314
Figure FDA00035830334300000315
式中:Λ=diag(γ);
所述步骤7中更新γ的方法如下:
Figure FDA00035830334300000316
式中:
a=b=0.00001,
wi表示w的第i个元素,
<·>表示求期望运算;
所述步骤8中更新β的方法为:
β=P-1v
式中:
Figure FDA0003583033430000041
Figure FDA0003583033430000042
Figure FDA0003583033430000043
表示Khatri-Rao积,
μ_表示μ的前
Figure FDA0003583033430000044
个元素,
Figure FDA0003583033430000045
Σ(11:12,c1:c2)表示Σ的第11到12行和c1到c2列组成的子矩阵,
Figure FDA0003583033430000046
Figure FDA0003583033430000047
μ0表示μ的最后一个元素,
Figure FDA0003583033430000048
Figure FDA0003583033430000049
CN201911317407.6A 2019-12-19 2019-12-19 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法 Active CN111077493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911317407.6A CN111077493B (zh) 2019-12-19 2019-12-19 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911317407.6A CN111077493B (zh) 2019-12-19 2019-12-19 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法

Publications (2)

Publication Number Publication Date
CN111077493A CN111077493A (zh) 2020-04-28
CN111077493B true CN111077493B (zh) 2022-08-23

Family

ID=70315747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911317407.6A Active CN111077493B (zh) 2019-12-19 2019-12-19 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法

Country Status (1)

Country Link
CN (1) CN111077493B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337199A (zh) * 2018-01-17 2018-07-27 江苏大学 一种基于稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法
CN108459296A (zh) * 2018-01-17 2018-08-28 江苏大学 一种基于离格稀疏贝叶斯学习的nested阵列波达方向估计方法
CN109407046A (zh) * 2018-09-10 2019-03-01 西北工业大学 一种基于变分贝叶斯推断的嵌套阵列波达方向角估计方法
CN109444810A (zh) * 2018-12-24 2019-03-08 哈尔滨工程大学 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN109633634A (zh) * 2019-01-10 2019-04-16 江苏大学 一种基于稀疏贝叶斯学习的mimo雷达波离方向和波达方向联合估计方法
CN109639604A (zh) * 2019-01-10 2019-04-16 江苏大学 一种基于实值稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337199A (zh) * 2018-01-17 2018-07-27 江苏大学 一种基于稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法
CN108459296A (zh) * 2018-01-17 2018-08-28 江苏大学 一种基于离格稀疏贝叶斯学习的nested阵列波达方向估计方法
CN109407046A (zh) * 2018-09-10 2019-03-01 西北工业大学 一种基于变分贝叶斯推断的嵌套阵列波达方向角估计方法
CN109444810A (zh) * 2018-12-24 2019-03-08 哈尔滨工程大学 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN109633634A (zh) * 2019-01-10 2019-04-16 江苏大学 一种基于稀疏贝叶斯学习的mimo雷达波离方向和波达方向联合估计方法
CN109639604A (zh) * 2019-01-10 2019-04-16 江苏大学 一种基于实值稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sparse Bayesian learning for off-grid DOA estimation with nested arrays;Fangfang Chen 等;《Digital Signal Processing》;20180810;全文 *

Also Published As

Publication number Publication date
CN111077493A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN109444810B (zh) 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN110208735B (zh) 一种基于稀疏贝叶斯学习的相干信号doa估计方法
CN110045323B (zh) 一种基于矩阵填充的互质阵稳健自适应波束形成算法
CN109298383B (zh) 一种基于变分贝叶斯推断的互质阵波达方向角估计方法
CN111337893B (zh) 一种基于实值稀疏贝叶斯学习的离格doa估计方法
CN109490819B (zh) 一种基于稀疏贝叶斯学习的离格波达方向估计方法
CN110109050B (zh) 嵌套阵列下基于稀疏贝叶斯的未知互耦的doa估计方法
CN109116293B (zh) 一种基于离格稀疏贝叶斯的波达方向估计方法
CN110244272B (zh) 基于秩一去噪模型的波达方向估计方法
CN111046591B (zh) 传感器幅相误差与目标到达角度的联合估计方法
CN112379327A (zh) 一种基于秩损估计的二维doa估计与互耦校正方法
CN113376569B (zh) 基于最大似然的嵌套阵稀疏表示波达方向估计方法
CN112881972A (zh) 一种阵列模型误差下基于神经网络的波达方向估计方法
Tian et al. Passive localization of mixed sources jointly using MUSIC and sparse signal reconstruction
CN110749855B (zh) 一种基于协方差域零化的均匀线阵波达方向估计方法
CN115236584A (zh) 基于深度学习的米波雷达低仰角估计方法
CN112147589A (zh) 基于卷积神经网络的频率分集阵列的雷达目标定位方法
CN113567913A (zh) 基于迭代重加权可降维的二维平面doa估计方法
CN113219402A (zh) 基于Modified-ALM算法的稀疏阵列DOA估计方法
CN110174657B (zh) 基于秩一降维模型和块矩阵恢复的波达方向估计方法
CN111077493B (zh) 一种基于实值离格变分贝叶斯推理的nested阵列波达方向估计方法
CN109782246B (zh) 波达方向估计方法及装置、雷达、可读存储介质
CN115421098A (zh) 嵌套面阵下降维求根music的二维doa估计方法
CN113050027B (zh) 一种幅相误差情况下基于稀疏重构的波达方向估计方法
CN114648041A (zh) 一种基于平行稀疏阵列的二维欠定doa估计算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant