CN111076900A - 测量平面龙虾眼光学器件聚焦性能真空测试装置和方法 - Google Patents

测量平面龙虾眼光学器件聚焦性能真空测试装置和方法 Download PDF

Info

Publication number
CN111076900A
CN111076900A CN201911279497.4A CN201911279497A CN111076900A CN 111076900 A CN111076900 A CN 111076900A CN 201911279497 A CN201911279497 A CN 201911279497A CN 111076900 A CN111076900 A CN 111076900A
Authority
CN
China
Prior art keywords
optical device
planar
mpo
vacuum
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911279497.4A
Other languages
English (en)
Other versions
CN111076900B (zh
Inventor
黎龙辉
张臣
金戈
袁为民
张双南
顾燕
孙建宁
张振
徐昭
姜博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Astronomical Observatories of CAS
North Night Vision Technology Co Ltd
Original Assignee
National Astronomical Observatories of CAS
North Night Vision Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Astronomical Observatories of CAS, North Night Vision Technology Co Ltd filed Critical National Astronomical Observatories of CAS
Priority to CN201911279497.4A priority Critical patent/CN111076900B/zh
Publication of CN111076900A publication Critical patent/CN111076900A/zh
Application granted granted Critical
Publication of CN111076900B publication Critical patent/CN111076900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation

Abstract

发明公开了一种测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法,该测试装置主要以真空系统为主体,搭载X射线光源、CMOS探测器、平面龙虾眼光学器件(Micro Pore Optic,简记为MPO)、刀口狭缝系统和位移控制系统,利用平面MPO光学器件的点对点聚焦成像特性实现对平面MPO质量的过程检测,检测参数主要包括X射线焦距、焦斑半高宽包围直径(Full Width at Half Maximum,简记为FWHM),角分辨率、均匀性和有效面积等关键技术指标。本发明测量精度高,能够准确获取不同位置处成像信息,可实现对平面MPO光学器件质量的X射线检测,有助于发现质量问题,指导工艺生产,进而提高平面MPO聚焦性能。

Description

测量平面龙虾眼光学器件聚焦性能真空测试装置和方法
技术领域
本发明涉及X射线探测和成像领域,尤其是涉及一种测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法。
背景技术
1979年,J.R.P.Angel根据深海平面龙虾眼眼球方形结构特性,提出了一种新型平面龙虾眼掠入射X射线天文望远镜(Lobster eye optic,简记为LE)。LE成像系统不同于传统的K-B型和Wolter型X射线望远镜,其特殊的正交几何结构,使其在各个方向的聚焦成像能力都相同,理论上视野能达到4π空间角,这是其他掠入射光学系统无法企及的。同时LE系统具备体积小、重量轻等特性,相对于金属材质的Wolter-I型望远镜单位有效面积重量之比高1000倍,符合未来卫星载荷X射线天文探测的发展潮流。由于其具有大视野、高分辨率、聚焦性能好等优点,MPO作为一种新型的X射线光学器件已经被广泛应用于X射线天文、X射线探针、X射线显微镜以及X射线荧光谱仪等多个领域。
在完成拉丝、复丝、排屏、压屏、切片、抛光和腐蚀以后形成的重要中间产品即为平面MPO平片,其X射线特性决定了最终球面MPO光学器件的聚焦性能,而球面MPO 光学器件的聚焦性能是作为X射线探测器和成像系统的核心器件的最重要技术参数。因此对平面MPO平片的进行X射线检测可以实现对拉丝、排屏和压屏等前行工艺过程检测,有利于指导工艺生产和研究,进而提高球面MPO光学器件聚焦性能。截止到目前为止,国内外对平面MPO的检测都是非真空环境下光学测试,但由于平面MPO的几何参数的限制,常规光学检测手段会生干涉和衍射现象而无法准确获得平面MPO的X 射线聚焦传输特性,这难于满足实际生产和指导工艺的要求,检测平面MPO质量最有效的方法是在真空下使用X射线光束进行测试。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供了一种测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法,用于评价平面MPO光学器件的关键指标—聚焦性能,实现对拉丝、排屏和压屏等前行工艺过程检测,指导工艺生产和研究,提高平面MPO光学器件聚焦性能。
本发明的上述目的的通过独立要去的技术特性实现,从属权利要求以另选或有利的方式发展独立权利要求的技术特征。
为实现上述目的,本发明提出了一种测量平面龙虾眼光学器件聚焦性能的真空测试装置,所述真空测试装置以真空系统为主体,搭载X射线光源、CMOS探测器、刀口狭缝系统和位移控制系统,利用平面MPO光学器件的点对点聚焦成像特性实现对平面 MPO光学器件聚焦性能的检测,其中:
所述真空系统用于提供X射线测试所需的真空环境,所述真空系统由三部分组成,分别为光源管路、探测器管路和测试腔体,真空管道的总长度范围为7m~10m,平面 MPO光学器件作为待测试元件设置在测试腔体内部,固定在一多自由度运动平台上,进行和姿态调节,其中测试时真空环境的真空度小于10-3Pa;
所述X射线光源用于通过光源管路朝向平面MPO光学器件发射X射线束;
所述平面MPO光学器件设置于X射线光路中,用于汇聚X射线光源所发出的X 射线束,并且汇聚后的射线束通过探测器管路射向CMOS探测器,所述刀口狭缝系统设置在真空系统的外部并位于平面MPO光学器件与CMOS探测器之间;
所述CMOS探测器放置于平面MPO光学器件的焦距处,用于收集平面MPO光学器件的聚焦X射线焦斑;
所述位移控制系统用于控制多自由度运动平台的运动,使得X射线光源、平面MPO光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;其中X射线光源到平面MPO光学器件的距离S与CMOS探测器到平面MPO光学器件的距离f相等
其中,所述X射线光源的出射X射线光子的能量为0.4keV~10keV。
其中,所述CMOS成像探测器的靶面像素大小为2000×2000个,单个像素大小为 10μm~20μm,同时具备成像和能谱分辨能力,能量分辨率的范围为100eV~ 200eV(@1keV)。
其中,所述平面MPO光学器件的外型为平板状,厚度为1mm~100mm;其内部包括若干根相同的单通道,所述单通道的截面为正方形,所述单通道排布角度一致,所述单通道指向平板平面的垂直方向。
其中,所述平面MPO光学器件包括500万~1000万根单通道,每个单通道的边长尺寸为10μm~1000μm。
其中,所述刀口狭缝系统通过四台直线位移台来控制狭缝开口大小和位置,以便获得不同区域的成像情况,狭缝开口正方形的边长尺寸为1mm~100mm,回程间隙范围为1μm~10μm,重复定位精度范围为1μm~10μm。
其中,所述位移控制系统的角度重复定位精度为1角秒~5角秒,空间重复定位精度范围为1μm~10μm,载重范围为5kg~10kg。
根据本发明还提出一种测量平面龙虾眼光学器件聚焦性能的真空测试方法,包括
(1)依次将所述X射线光源、CMOS探测器、平面MPO光学器件、刀口狭缝系统放置于光轴中心位置处,并进行调节使得X射线光源、平面MPO光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;
(2)关闭所述测试腔体,开启机械泵和分子泵,使得真空系统的真空度小于10- 3Pa;;
(3)开启所述X射线光源和CMOS探测器,通过所述位移控制系统调节平面MPO 光学器件的位置和姿态,保持CMOS探测器位处于平面MPO光学器件的焦距f位置处,使平面MPO光学器件的十字线的线条最细;
(4)移动所述刀口狭缝系统对所述平面MPO光学器件进行全口径扫描,CMOS 记录不同区域的成像数据;
(5)再通过数据处理系统对数据进行分析,得到焦斑半高宽包围直径FWHM,角分辨率、均匀性和有效面积测试结果。
与于现有技术相比,本发明的显著优点在于:
(1)本发明的真空测试系统对平面MPO聚焦性能测试可实现定性和定量分析;
(2)测试精度高,同时操作简单,并能准确获得X射线成像和能谱信息;
(3)有助于发现平面MPO光学器件存在的质量问题,为改进工艺参数提供依据。
上述测量平面龙虾眼光学器件聚焦性能的真空测试装置能够准确获得平面MPO聚焦性能信息,实现对拉丝、排屏和压屏等前行工艺过程检测,指导工艺生产和研究,提高平面MPO光学器件聚焦性能。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明一种测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法的示意图;
图2为本发明平面龙虾眼光学器件方孔通道结构图;
图3为本发明平面龙虾眼光学器件聚焦X射线原理图;
图4为本发明平面龙虾眼光学器件聚焦成像图;
图5为本发明平面龙虾眼光学器件不同区域的成像结果图;
图6是刀口狭缝系统的示意图。
图中,各附图标记的含义如下:
真空系统1、X射线光源2、CMOS探测器3、平面MPO光学器件4、刀口狭缝系统5和位移控制系统6。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
针对平面MPO检测过程复杂,采用普通的光学检测手段无法满足快速测试需求的问题,有必要发明一种测量平面龙虾眼光学器件聚焦性能的真空测试装置,一方面测试精度高,能准确获得平面MPO的X射聚焦成像特性;另一方面,可以实现对拉丝、排屏和压屏等前行工艺过程检测,有利于指导工艺生产和研究,提高平面MPO光学器件聚焦性能。
基于上述基本发明思路,如图1所示,本发明的具体实施例给出了一种测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法,可以用于X射线检测领域。该测试装置和方法以真空系统1为主体,搭载X射线光源2、CMOS探测器3、平面MPO光学器件4、刀口狭缝系统5和位移控制系统6,利用平面MPO光学器件的点对点聚焦成像特性实现对平面MPO光学器件聚焦性能的检测。
平面MPO光学器件4的成像原理为点对点聚焦,进而实现对平面MPO光学器件4的关键性能指标的检测。
X射线光源1到平面MPO光学器件4的距离S,等于CMOS探测器3到平面MPO 光学器件4的距离f。
真空系统用于提供X射线测试所需的真空环境,所述真空系统由三部分组成,分别为光源管路1-1、探测器管路1-2和测试腔体1-3,真空管道的总长度范围为7m~10m。其中测试时真空环境的真空度小于10-3Pa。结合图1,光源管路位于光源与待测试的平面MPO光学器件之间,探测器管路位于待测试的平面MPO光学器件与CMOS探测器之间。
平面MPO光学器件作为待测试元件设置在测试腔体内部,固定在一多自由度运动平台1-4上,进行和姿态调节。多自由度运动平台可以利用现有的基于电动缸的多自由度平台(例如六维调节架),通过位移控制系统6控制平台的移动,实现高度、角度等多姿态调节。
X射线光源用于通过光源管路朝向平面MPO光学器件发射X射线束。
平面MPO光学器件设置于X射线光路中,用于汇聚X射线光源所发出的X射线束,并且汇聚后的射线束通过探测器管路射向CMOS探测器,刀口狭缝系统设置在真空系统的外部并位于平面MPO光学器件与CMOS探测器之间。
优选地,结合图6,刀口狭缝系统通过四台直线位移台来控制狭缝开口大小和位置,以便获得不同区域的成像情况,狭缝开口正方形的边长尺寸为1mm~100mm,回程间隙范围为1μm~10μm,重复定位精度范围为1μm~10μm。
CMOS探测器3放置于平面MPO光学器件的焦距处,用于收集平面MPO光学器件的聚焦X射线焦斑。
位移控制系统6用于控制多自由度运动平台的运动,使得X射线光源、平面MPO 光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;其中X射线光源到平面MPO光学器件的距离S与CMOS探测器到平面MPO光学器件的距离f相等,如图3所示。
其中,X射线光源的出射X射线光子的能量为0.4keV~10keV。
其中,CMOS成像探测器的靶面像素大小为2000×2000个,单个像素大小为10μm~20μm,同时具备成像和能谱分辨能力,能量分辨率的范围为100eV~200eV(@1keV)。
其中,结合图2,平面MPO光学器件的外型为平板状,厚度为1mm~100mm;其内部包括若干根相同的单通道,所述单通道的截面为正方形,单通道排布角度一致。单通道指向平板平面的垂直方向。
其中,平面MPO光学器件包括500万~1000万根单通道,每个单通道的边长尺寸为10μm~1000μm。
为了实现精确的位置调节与控制,本发明使用的位移控制系统的角度重复定位精度为1角秒~5角秒,空间重复定位精度范围为1μm~10μm,载重范围为5kg~10kg。
结合图示,测量平面龙虾眼光学器件聚焦性能的真空测试方法,包括
(1)依次将X射线光源、CMOS探测器、平面MPO光学器件、刀口狭缝系统放置于光轴中心位置处,并进行调节使得X射线光源、平面MPO光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;
(2)关闭所述测试腔体,开启机械泵和分子泵(位于测试腔体下方),使得真空系统的真空度小于10-3Pa;
(3)开启所述X射线光源和CMOS探测器,通过所述位移控制系统调节平面MPO 光学器件的位置和姿态,保持CMOS探测器位处于平面MPO光学器件的焦距f位置处,使平面MPO光学器件的十字线的线条最细(此时平面MPO光学器件聚焦的十字线的线条尺寸最细、焦斑面积最小,聚焦光强最强),实验结果如图4所示;
(4)移动所述刀口狭缝系统对所述平面MPO光学器件进行全口径扫描,CMOS 记录不同区域的成像数据,如图5所示的示例为平面龙虾眼光学器件不同区域的成像示例;
(5)再通过数据处理系统对数据进行分析,得到焦斑半高宽包围直径FWHM,角分辨率、均匀性和有效面积测试结果。
其中,在步骤(4)中,通过移动所述刀口狭缝系统对入射光束进行限束,通过位移控制系统上下左右移动所述平面MPO光学器件对其进行全口径二维扫描,CMOS记录不同区域的成像数据
在确定测试性能指标的过程中,通过提取并统计不同半径范围内的成像强度值和单光子能量计数,通过高斯拟合可得到焦斑半高宽包围的直径FWHM及对应的角分辨率。通过对比两个维度的半高宽FWHM可以得到均匀性,通过计算探测效率可以得到有效面积等关键技术指标。
由此,可准确获得平面MPO的X射聚焦成像特性,实现对拉丝、排屏和压屏等前行工艺过程检测,有利于指导工艺生产和研究,提高平面MPO光学器件聚焦性能。
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合附图和具体实施方法对本发明做进一步的详细说明。
请参考附图1,本发明的一个示例性实施例的测试操作包括:
(1)将平面MPO分别放置于精密的六维调节架(空间定位精度优于5μm)上,使用光学仪器经纬仪调整光学镜片位置与姿态,使Ti靶光源(特征峰能量为4.5keV,微焦斑50μm)、龙虾眼平面MPO以及CMOS探测器(图像分辨率为2048×2040,单个像素为11μm,能量分辨率126eV@1keV)三者中心在同一光轴上;
(2)X射线光源需放置于距离平面MPO平面前端为3500mm位置处。CMOS探测器位于平面MPO后端面后端3500mm位置处,用于收集聚焦X射线;
(3)关闭测试墙体,开启真空系统的机械泵和分子泵使得测试腔体的真空度优于10-3 pa,测试光源的电压为8kV,电流为200μA,CMOS曝光时间为512ms;
(4)调节刀口狭缝系统,使得开口狭缝面积与平面MPO面积一样大;调节平面MPO的聚焦X射线十字焦斑强度随光学镜片与探测器之间的出口距离。当X射线焦斑的强度达到最大时,此时对应的距离即为光学镜片对应的焦距f,记录成像结果如图4所示。采用CMOS探测器的单光子计数模式,得到平面MPO的有效面积。
(5)调节刀口狭缝系统的大小和位置,记录不同位置处的成像结果如图5所示,通过强度和能量进行分析和处理,得到平面MPO不同位置的均匀性测试结果。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于,所述真空测试装置以真空系统为主体,搭载X射线光源、CMOS探测器、刀口狭缝系统和位移控制系统,利用平面MPO光学器件的点对点聚焦成像特性实现对平面MPO光学器件聚焦性能的检测,其中:
所述真空系统用于提供X射线测试所需的真空环境,所述真空系统由三部分组成,分别为光源管路、探测器管路和测试腔体,真空管道的总长度范围为7m~10m,平面MPO光学器件作为待测试元件设置在测试腔体内部,固定在一多自由度运动平台上,进行和姿态调节,其中测试时真空环境的真空度小于10-3Pa;
所述X射线光源用于通过光源管路朝向平面MPO光学器件发射X射线束;
所述平面MPO光学器件设置于X射线光路中,用于汇聚X射线光源所发出的X射线束,并且汇聚后的射线束通过探测器管路射向CMOS探测器,所述刀口狭缝系统设置在真空系统的外部并位于平面MPO光学器件与CMOS探测器之间;
所述CMOS探测器放置于平面MPO光学器件的焦距处,用于收集平面MPO光学器件的聚焦X射线焦斑;
所述位移控制系统用于控制多自由度运动平台的运动,使得X射线光源、平面MPO光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;其中X射线光源到平面MPO光学器件的距离S与CMOS探测器到平面MPO光学器件的距离f相等。
2.根据权利要求1所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于:所述X射线光源的出射X射线光子的能量为0.4keV~10keV。
3.根据权利要求1所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于:所述CMOS成像探测器的靶面像素大小为2000×2000个,单个像素大小为10μm~20μm,同时具备成像和能谱分辨能力,能量分辨率的范围为100eV~200eV(@1keV)。
4.根据权利要求1-3任一项所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于:所述平面MPO光学器件的外型为平板状,厚度为1mm~100mm;其内部包括若干根相同的单通道,所述单通道的截面为正方形,所述单通道排布角度一致,所述单通道指向平板平面的垂直方向。
5.根据权利要求4所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于:所述平面MPO光学器件包括500万~1000万根单通道,每个单通道的边长尺寸为10μm~1000μm。
6.根据权利要求4所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置,其特征在于:所述刀口狭缝系统通过四台直线位移台来控制狭缝开口大小和位置,以便获得不同区域的成像情况,狭缝开口正方形的边长尺寸为1mm~100mm,回程间隙范围为1μm~10μm,重复定位精度范围为1μm~10μm。
7.根据权利要求1所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置的真空测试装置,其特征在于:所述位移控制系统的角度重复定位精度为1角秒~5角秒,空间重复定位精度范围为1μm~10μm,载重范围为5kg~10kg。
8.根据权利要求1所述的测量平面龙虾眼光学器件聚焦性能的真空测试方法,其特征在于:包括
(1)依次将所述X射线光源、CMOS探测器、平面MPO光学器件、刀口狭缝系统放置于光轴中心位置处,并进行调节使得X射线光源、平面MPO光学器件、刀口狭缝系统和CMOS探测器的中心共轴且对应齐平;
(2)关闭所述测试腔体,开启机械泵和分子泵,使得真空系统的真空度小于10-3Pa;;
(3)开启所述X射线光源和CMOS探测器,通过所述位移控制系统调节平面MPO光学器件的位置和姿态,保持CMOS探测器位处于平面MPO光学器件的焦距f位置处,使平面MPO光学器件的十字线的线条最细;
(4)移动所述刀口狭缝系统对所述平面MPO光学器件进行全口径扫描,CMOS记录不同区域的成像数据;
(5)再通过数据处理系统对数据进行分析,得到焦斑半高宽包围直径FWHM,角分辨率、均匀性和有效面积测试结果。
9.根据权利要求8所述的测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法,其特征在于:所述数据处理系统对CMOS探测器收集到得数据进行强度和能量分析过程中,通过提取并统计不同半径范围内的成像强度值和单光子能量计数,定量测试得到焦斑半高宽包围直径FWHM、对应的角分辨率、均匀性和有效面积参数。
CN201911279497.4A 2019-12-13 2019-12-13 测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法 Active CN111076900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911279497.4A CN111076900B (zh) 2019-12-13 2019-12-13 测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911279497.4A CN111076900B (zh) 2019-12-13 2019-12-13 测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法

Publications (2)

Publication Number Publication Date
CN111076900A true CN111076900A (zh) 2020-04-28
CN111076900B CN111076900B (zh) 2021-10-22

Family

ID=70314441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911279497.4A Active CN111076900B (zh) 2019-12-13 2019-12-13 测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法

Country Status (1)

Country Link
CN (1) CN111076900B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461260A (zh) * 2020-11-02 2021-03-09 北方夜视技术股份有限公司 用于mso光学系统的测试装置与测试方法
CN114264448A (zh) * 2021-12-16 2022-04-01 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500965A (zh) * 2016-09-28 2017-03-15 北方夜视技术股份有限公司 基于ccd探测器的龙虾眼x射线光学元件聚焦性能测试装置与方法
CN106768874A (zh) * 2016-11-18 2017-05-31 中国科学院西安光学精密机械研究所 一种x射线聚焦光学聚焦性能测量装置
CN108872277A (zh) * 2018-07-23 2018-11-23 北方夜视技术股份有限公司 基于龙虾眼透镜的x射线无损探伤装置
CN108920869A (zh) * 2018-07-23 2018-11-30 北方夜视技术股份有限公司 基于掠入射x射线光学仿真的mpo聚焦成像性能分析方法
CN109186548A (zh) * 2018-07-23 2019-01-11 北方夜视技术股份有限公司 一种测量龙虾眼透镜方孔通道倾角的装置和方法
CN110036284A (zh) * 2016-11-29 2019-07-19 株式会社理学 X射线反射率测定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500965A (zh) * 2016-09-28 2017-03-15 北方夜视技术股份有限公司 基于ccd探测器的龙虾眼x射线光学元件聚焦性能测试装置与方法
CN106768874A (zh) * 2016-11-18 2017-05-31 中国科学院西安光学精密机械研究所 一种x射线聚焦光学聚焦性能测量装置
CN110036284A (zh) * 2016-11-29 2019-07-19 株式会社理学 X射线反射率测定装置
CN108872277A (zh) * 2018-07-23 2018-11-23 北方夜视技术股份有限公司 基于龙虾眼透镜的x射线无损探伤装置
CN108920869A (zh) * 2018-07-23 2018-11-30 北方夜视技术股份有限公司 基于掠入射x射线光学仿真的mpo聚焦成像性能分析方法
CN109186548A (zh) * 2018-07-23 2019-01-11 北方夜视技术股份有限公司 一种测量龙虾眼透镜方孔通道倾角的装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461260A (zh) * 2020-11-02 2021-03-09 北方夜视技术股份有限公司 用于mso光学系统的测试装置与测试方法
CN114264448A (zh) * 2021-12-16 2022-04-01 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法
CN114264448B (zh) * 2021-12-16 2022-10-04 哈尔滨工业大学 一种复眼单元工作环境模拟及性能评估系统及其使用方法

Also Published As

Publication number Publication date
CN111076900B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN106500965B (zh) 基于ccd探测器的龙虾眼x射线光学元件聚焦性能测试装置与方法
US6548810B2 (en) Scanning confocal electron microscope
CN111076900B (zh) 测量平面龙虾眼光学器件聚焦性能的真空测试装置和方法
CN109186548B (zh) 一种测量龙虾眼透镜方孔通道倾角的装置和方法
CN108920869B (zh) 基于掠入射x射线光学仿真的mpo聚焦成像性能分析方法
CN111257357B (zh) 用于检测龙虾眼光学器件方孔阵列结构缺陷的装置及方法
CN210220974U (zh) 一种激光光斑焦点的自动化检测与定位装置
CN109839397A (zh) 同步辐射共聚焦荧光实验装置中共聚焦微元尺寸测量方法
CN203705371U (zh) 一种测量全元素的x射线谱仪
CN108398450B (zh) 基于组合x射线毛细管的微束x射线荧光分析方法
RU120252U1 (ru) Рентгенофлуоресцентный микроскоп
CN103454290B (zh) 一种x射线探测和成像系统的双镜式探测分析方法
JP2014211367A (ja) 蛍光x線分析装置
CN108459037B (zh) 基于x射线阵列组合折射透镜的微束x射线荧光分析方法
CN111256952A (zh) 龙虾眼光学器件x射线偏置角的测试系统与方法
Poths et al. Experimental assessment of effectively probed volume in confocal XRF spectrometry using microparticles
JP5347559B2 (ja) X線分析装置
CN110954558A (zh) 一种透明材料的差动式暗场显微缺陷检测装置及方法
KR20190113562A (ko) 엑스레이를 이용한 물질두께 측정 장치
JP2015184092A (ja) X線分析装置
CN218036511U (zh) 一种x射线光电子能谱仪
CN103454289B (zh) 用于x射线探测和成像系统的双镜式探测光学部件
US20230252663A1 (en) X-ray digital image correlation
CN108709899B (zh) 基于x射线阵列组合折射透镜的微束x射线荧光分析系统
CN109490336B (zh) 一种同步辐射硬x射线微聚焦实验方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant