CN111073900A - 一种提高猪克隆胚胎发育效率的方法 - Google Patents

一种提高猪克隆胚胎发育效率的方法 Download PDF

Info

Publication number
CN111073900A
CN111073900A CN201911251430.XA CN201911251430A CN111073900A CN 111073900 A CN111073900 A CN 111073900A CN 201911251430 A CN201911251430 A CN 201911251430A CN 111073900 A CN111073900 A CN 111073900A
Authority
CN
China
Prior art keywords
cloned
embryos
histone
mrna
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911251430.XA
Other languages
English (en)
Other versions
CN111073900B (zh
Inventor
吴珍芳
贺晓燕
石俊松
谈成
罗绿花
余婉娴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wens Foodstuff Group Co Ltd
Original Assignee
Wens Foodstuff Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wens Foodstuff Group Co Ltd filed Critical Wens Foodstuff Group Co Ltd
Priority to CN201911251430.XA priority Critical patent/CN111073900B/zh
Publication of CN111073900A publication Critical patent/CN111073900A/zh
Application granted granted Critical
Publication of CN111073900B publication Critical patent/CN111073900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8778Swine embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于动物体细胞克隆方法领域,具体涉及一种提高猪克隆胚胎发育效率的方法。本发明方法主要构思是联合调控克隆早期胚胎的组蛋白泛素化、组蛋白H3第9位赖氨酸上三甲基化(H3K9me3)和组蛋白H3第4位赖氨酸上三甲基化(H3K4me3)修饰程度以提高猪克隆胚胎发育效率的方法;所述联合调控指同时降低组蛋白泛素化、H3K9me3和H3K4me3修饰程度。本发明的方法主要操作方法为:获得猪体细胞克隆胚;获得外源mRNA;将外源mRNA导入克隆胚。本发明的方法同时过表达USP29、KDM4A和KDM5B基因,极显著提高了猪克隆胚胎发育的囊胚率和囊胚内总细胞数,并且使克隆猪的出生效率提高3.82倍。

Description

一种提高猪克隆胚胎发育效率的方法
技术领域
本发明属于动物体细胞克隆方法领域,具体涉及一种基于联合调控组蛋白泛素化、组蛋白H3第9位赖氨酸上三甲基化(H3K9me3)和组蛋白H3第4位赖氨酸上三甲基化(H3K4me3)修饰程度以提高猪克隆胚胎发育效率的方法。
背景技术
体细胞克隆又称体细胞核移植,是指将动物体细胞的细胞核注射到去核的卵母细胞中,从而形成重组的克隆胚胎,并使之恢复细胞分裂,在特定的发育时期将克隆的胚胎移植入代孕母体的子宫,完成全期发育后产生与供体细胞基因型完全相同的子代的过程。该技术在复制优良种畜、生产转基因家畜、制备动物疾病模型和分离人的胚胎干细胞等农业和医学应用上都有巨大的应用价值。目前已经成功克隆出羊、牛、小鼠、猪、兔和马等超过20种哺乳动物,但该技术仍存在一些未解决的问题,包括克隆动物的出生效率低下和器官生理异常等。大多数克隆胚胎在妊娠期死亡,只有约1%的克隆胚胎能够完成全期发育,而且出生后的克隆动物也存在大量的异常表型和发育缺陷,主要包括肺部发育不全、免疫缺陷、大舌头和早衰等,克隆效率低下严重阻碍了该技术的应用。
目前认为克隆胚胎发育异常是体细胞基因组在卵母细胞质中经历的去分化、恢复全能性及启动胚胎发育过程中的表观遗传重编程异常造成的。表观遗传修饰是指非基因序列改变导致基因表达水平的变化,这种变化可通过减数分裂或有丝分裂遗传。表观遗传修饰主要包括DNA甲基化、组蛋白修饰和非编码RNA调控。
哺乳动物的体细胞重编程障碍是由多种形式的抑制性染色质调控共同作用的结果。近年来最早在小鼠的克隆技术研究中发现组蛋白赖氨酸甲基化在体细胞克隆植入前胚胎发育的重编程过程中起到重要调控作用。2014年,张毅等通过对供体细胞和2-细胞胚胎进行转录组测序,发现在小鼠供体细胞基因组的异染色质中H3K9me3偏高的染色体区域的基因没有被激活是小鼠克隆胚胎早期发育停滞的主要原因(Matoba et al.,2014)。2016年,高绍荣教授课题组的研究人员发现组蛋白H3K9me3去甲基化酶基因KDM4B和H3K4me3去甲基化酶基因KDM5B表达异常分别对2-细胞和4-细胞期的小鼠克隆胚胎发育阻滞起到关键作用。通过导入外源性的组蛋白甲基化和组蛋白去甲基化相关的酶能一定程度上调节其含量及分布,通过下调异常高水平的组蛋白H3K9me3和H3K4me3能够大幅度地促进小鼠克隆胚胎的合子激活、胚胎发育以及克隆后代的出生效率(Liu et al.,2016),这也为改善其他类型哺乳动物的克隆效率提供了一种有前景的方法。中国科学院广州生物医药与健康研究院赖良学课题组的研究人员发现主动下调克隆胚胎中H3K9me3水平,可以显著地提高猪早期克隆胚胎发育效率,但向猪克隆胚胎中注射H3K9me3去甲基化酶KDM4A来下调H3K9me3水平,并不能像小鼠那样提高克隆效率,反而导致猪克隆胚胎在体内发育能力变低,克隆猪出生效率并未提高,在克隆猪的生产上没有应用价值(Ruan et al.,2018)。
泛素化也是组蛋白翻译后修饰的方式之一,对生物体内的转录调控、染色质重塑和DNA损伤修复等多方面的生理活动均存在调控作用,近年来去泛素化酶被不断发现在基因表达的调控中也发挥着重要的作用。目前已发现十多种组蛋白H2A和H2B的特异性位点的去泛素化酶,研究已表明其中部分种类的去泛素化酶还参与调控组蛋白赖氨酸甲基化以及DNA甲基化水平,因此可能也对克隆胚胎早期发育存在重要的调控作用(Pinto-Fernandezand Kessler,2016),但目前通过调节组蛋白泛素化修饰对猪克隆胚胎发育潜能的影响尚未见相关报道。
发明内容
本发明的发明目的在于克服现有技术的缺陷,提供一种基于联合调控猪克隆胚胎早期发育期间的组蛋白泛素化、H3K9me3和H3K4me3修饰程度以提高其发育效率的方法。
本发明是通过以下技术方案实现的:
本发明的提高猪克隆胚发育效率的方法,包括:联合调控克隆胚胎的组蛋白泛素化、H3K9me3和H3K4me3修饰程度;所述联合调控指同时降低组蛋白泛素化、H3K9me3和H3K4me3修饰程度。
进一步的,所述降低组蛋白泛素化通过过表达去泛素化酶USP29基因实现。
进一步的,所述降低组蛋白H3K9me3和H3K4me3修饰程度,通过过表达组蛋白H3K9me3去甲基化酶KDM4A基因和组蛋白H3K4me3去甲基化酶KDM5B基因实现。
进一步的,所述提高猪克隆胚发育效率的方法,包括以下步骤:
S1、获得克隆胚;
S2、获得外源mRNA,即USP29/KDM4A/KDM5B基因的mRNA;
S3、将外源mRNA(即USP29/KDM4A/KDM5B基因的mRNA)导入克隆胚。
进一步的,所述提高猪克隆胚发育效率的方法,还包括:将导入了外源mRNA的克隆胚移植入受体母猪,使其自然发育。
进一步的,所述S2步骤包括:
分别构建USP29、KDM4A和KDM5B基因的过表达载体;分别体外转录合成USP29、KDM4A和KDM5B基因的mRNA。
进一步的,所述USP29/KDM4A/KDM5B基因的mRNA的5’端均添加有ARCA帽子结构,3’端均添加有poly(A)尾。
进一步的,在S3步骤中,所述外源mRNA浓度为100~1000ng/μl,导入量为每个克隆胚导入10~50pl。猪克隆早期胚胎的体积约500pl,外源mRNA的注射体积一般以胚胎体积的2~10%为宜。
进一步的,在S3步骤中,所述外源mRNA的最佳浓度为500ng/μl。
进一步的,在S3步骤中,所述外源mRNA的最佳导入量为每个克隆胚导入10pl。
进一步的,在S3步骤中,导入时机是在克隆胚胎电融合激活后4~6小时。
进一步的,所述外源mRNA中USP29、KDM4A和KDM5B的mRNA的体积比为1:1:1。
本发明的有益效果:
本发明的目的是建立一种通过联合调控猪早期克隆胚胎中的组蛋白泛素化、H3K9me3和H3K4me3修饰程度以提高猪体细胞克隆胚胎的发育效率的方法。公开了一种在电激活后的猪克隆胚胎中同时过表达去泛素化酶USP29基因、组蛋白H3K9me3去甲基化酶KDM4A基因和组蛋白H3K4me3去甲基化酶KDM5B基因,从而提高猪克隆胚胎的发育效率的方法,将有效提高克隆猪生产应用的经济价值。
具体的,本发明构建了猪的USP29、KDM4A和KDM5B基因的真核过表达载体,然后通过显微注射体外合成的mRNA的方法分别验证了过表达以上3个基因对猪克隆胚胎体外发育的影响。结果发现同时过表达USP29、KDM4A和KDM5B与对照组相比,极显著提高了囊胚率和囊胚内总细胞数;同时过表达KDM4A+KDM5B比同时过表达USP29+KDM4A+KDM5B的克隆胚胎组的囊胚率和囊胚内总细胞数均略低,两组之间无显著差异。通过联合注射KDM4A+KDM5B至克隆胚胎使克隆猪的出生效率提高1.96倍,联合注射USP29+KDM4A+KDM5B使克隆猪的出生效率提高3.82倍。
附图说明
图1质粒及其酶切鉴定的电泳结果;电泳图从左至右依次的样品是pcDNA3.1(+)-USP29质粒、Sall单酶切pcDNA3.1(+)-USP29、DNA Marker DL10000;pcDNA3.1(+)-KDM4A质粒、HindIII和BamHI双酶切pcDNA3.1(+)-KDM4A、DNA Marker DL10000;pcDNA3.1(+)-KDM5B质粒、BamHI和XhoI双酶切pcDNA3.1(+)-KDM5B、DNA Marker DL10000。
图2体外合成mRNA及加poly(A)尾后的琼脂糖电泳结果;琼脂糖电泳图中从左至右依次表示体外转录的USP29 mRNA、转录后加poly(A)尾的USP29 mRNA、体外转录的KDM4AmRNA、转录后加poly(A)尾的KDM4A mRNA、体外转录的KDM5B mRNA、转录后加poly(A)尾的KDM5B mRNA。
具体实施方式
为了更好地说明本发明所解决的问题、所采用的技术方案和所达到的效果,现结合具体实施例和相关资料进一步阐述。需要说明的是,本发明内容包含但不限于以下实施例及其组合实施方式。
本发明实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购等途径获得的常规产品。
制备猪克隆胚胎的操作方法,未注明具体方法的实验,都按照常见的猪体细胞克隆技术所述的方法进行操作。
实施例一 联合调控猪克隆胚胎早期发育期间的组蛋白泛素化、H3K9me3和H3K4me3修饰程度
1.猪体外成熟卵母细胞获取
从屠宰场采集猪卵巢,放至装有生理盐水的保温瓶中运至实验室,用无菌注射器抽吸卵泡液,之后在体视镜下挑选出卵丘细胞严密包裹三层以上,胞质均匀的卵母细胞。在CO2培养箱中培养42~44h后,吸出卵母细胞放入装有200μl透明质酸酶的1.5ml离心管中,然后反复吹打去除其周围的颗粒细胞。在体视显微镜下将极体明显的卵母细胞挑选出来用做核移植受体。
2.猪克隆供体细胞的分离培养
简要无菌操作如下:用消毒酒精清洗猪的耳部边缘,剪取小块耳组织,保存至DMEM中运回实验室分离培养成纤维细胞。具体操作是:在DPBS中反复清洗,将组织块剪碎,加入DMEM后离心去除上清液,然后加入适量胎牛血清,将组织块转移至培养皿,放入37℃、5%CO2和饱和湿度的培养箱中。第二天换成含10%胎牛血清的DMEM,每隔2天换液,待细胞长至90%汇合时用Trypsin-EDTA消化后传代培养。第2~5代内的成纤维细胞适合用作克隆供体细胞。
3.构建和培养克隆胚胎
用固定针将卵母细胞固定,用去核针吸取卵母细胞内的极体及附近少量胞质,用Hoechst33342染色挑选出无细胞核的卵母细胞,将体细胞注入其透明带内。按批次将克隆胚胎放入PZM-3培养液中静置培养1h。之后转移到融合液中平衡2min后用融合液洗涤3遍,然后按每批5~8个放入已铺满融合液的融合槽内,使细胞和受体卵的细胞膜接触面与电极平行,采用100v/mm,100μs,2DC的直流电脉冲诱导融合,接着洗涤3遍后立即转入矿物油覆盖的PZM-3中,置于38.5℃的CO2培养箱中,4h后在体视显微镜下挑选出融入体细胞核的卵母细胞。转移至新的PZM-3中,置于38.5℃的二氧化碳培养箱中培养。
4、构建USP29、KDM4A和KDM5B基因的过表达载体
从Ensembl数据库获取目的基因序列,包括USP29(ENSSSCG00000033319),KDM4A(ENSSSCG00000026449)和KDM5B(ENSSSCG00000010928)的编码序列,分别克隆至真核表达载体pcDNA3.1(+)(购自Thermo Fisher Scientific公司,货号为V79020)。构建的3个载体包括pcDNA3.1(+)-USP29(2636bp,克隆位点AflII和NotI),pcDNA3.1(+)-KDM4A(3219bp,克隆位点HindIII和BamHI)和pcDNA3.1(+)-KDM5B(2331bp,克隆位点BamHI和XhoI)。目的基因序列合成委托至苏州金唯智生物技术有限公司完成。将所需克隆的目的基因序列导入pcDNA3.1(+)质粒里面,并通过酶切和测序验证目的基因序列的准确性,质粒及酶切鉴定的电泳结果见图1。从图中所显示电泳条带可以看出,所构建的3个载体的DNA条带及其酶切后DNA条带大小都是正确的。
5、体外转录合成USP29、KDM4A和KDM5B基因的mRNA
分别将pcDNA3.1(+)-USP29,pcDNA3.1(+)-KDM4A和pcDNA3.1(+)-KDM5B质粒进行线性化处理并纯化回收线性化DNA,之后分别体外合成USP29/KDM4A/KDM5B基因的mRNA,体外转录时在5’端添加了ARCA帽子结构,在3’端添加了50~100个碱基的poly(A)尾。体外转录获得的mRNA用水稀释至500~1000ng/μl,置于-80℃冻存备用。所合成的3个基因的mRNA的电泳结果见图2。从图中所显示电泳条带可以看出,所转录合成的3个基因的mRNA产物以及加poly(A)尾后的mRNA电泳条带清晰整齐,表明所获得的mRNA质量较好,没有出现降解的情况。
体外转录合成mRNA的具体操作方法如下:将质粒进行单酶切使其线性化,使用mMESSAGE
Figure BDA0002309153400000091
T7 Ultra Kit(购自Thermo Fisher Scientific公司,货号为AM1345)进行DNA的体外转录,将2μl RNA polymerase Enzyme Mix,2μl 10X T7 ReactionBuffer,10μl T7 2X NTP/ARCA,1μg线性化DNA混匀,添加无菌水至20μl后在37℃反应1小时。加入1μl TURBO Dnase,37℃反应15min。之后加入20μl 5×E-PAP Buffer,10μl 25mMMnCl2,10μl ATP Solution和36μl无菌水。取出1μl作为加尾后RNA的电泳条带检测对照。加入4μl E-PAP酶,轻柔混匀后37℃孵育30~45min。使用RNA纯化试剂盒MEGAclearTranscription Clean Up Kit(购自Thermo Fisher Scientific公司,货号为AM1908)回收RNA,在上述RNA产物中加入100μl Elution Solution,混匀后加入350μl BindingSolution Concentrate,轻柔地吹吸混匀,加入250μl无水乙醇后再重新混匀。之后转入纯化柱中,10000~15000×g离心15s~60s,弃掉收集管中的废液,在纯化柱中加入500μl洗脱液并离心,之后用50μl Elution Solution离心回收RNA。用核酸浓度仪检测RNA浓度,分装,-80℃保存。
6、注射USP29/KDM4A/KDM5B的mRNA对猪克隆胚胎的体外早期发育的影响
通过在克隆胚胎电融合激活后4~6h显微注射500ng/μl外源性mRNA的方法,使猪克隆胚胎过表达USP29、KDM4A和KDM5B基因,验证它们对克隆胚胎体外发育效率的影响。
使用Eppendorf FemtoJet定量注射仪进行外源RNA注射克隆胚胎的实验,具体操作步骤如下:先准备操作滴,在胚胎操作液中加入5mg/ml细胞松弛素B,盖上矿物油。用Femtotip II显微操作针吸入5~10μl mRNA,随后装在通用持针器上,连接压力管与主机,将电融合后4~6h的克隆胚胎吸入操作滴中。调整主机上的三个螺旋,分别是注射压力、注射时间、平衡压力,直到注射体积符合要求。每个胚胎注射mRNA的体积设置为10pl,之后转移到PZM-3培养液中继续培养。在培养至48h和144h时分别记录卵裂胚胎数和囊胚数。囊胚内总细胞数的检测方法如下:取出发育至第6天的囊胚,在含4%多聚甲醛的DPBS中固定5min,之后转入含10μg/ml Hoechst33342的DPBS中避光室温孵育5min,然后在DPBS-PVA中清洗3次,将胚胎依次排列至载玻片上后压片。置于荧光显微镜下用UV光激发观察和拍照。
实验结果表明单独过表达USP29、KDM4A或KDM5B基因的克隆胚胎的囊胚率均有所提高,但达不到差异显著水平,而囊胚内总细胞数均极显著提高;同时过表达KDM4A+KDM5B基因的克隆胚胎与对照组相比,其囊胚率和囊胚内总细胞数均极显著提高,同时过表达USP29+KDM4A+KDM5B基因的克隆胚胎与对照组相比,其囊胚率和囊胚内总细胞数均极显著提高,且其囊胚率显著高于同时过表达KDM4A+KDM5B基因的克隆胚胎组。上述结果表明联合注射USP29+KDM4A+KDM5B基因的mRNA的克隆胚胎的早期发育效率是最高的,能够帮助克隆部分胚胎克服在合子基因组激活时期发育停滞的障碍,并且显著地提高了囊胚的质量。因为研究中对囊胚等级划分多从轮廓清晰度、以及细胞质的致密均匀程度来加以评估,囊胚内总细胞数多是优质囊胚的一个必备条件。(具体统计分析结果见表1)。
表1显微注射不同mRNA对猪克隆胚胎体外发育的影响
Figure BDA0002309153400000111
注:表中CG=对照组;EG=注射实验组;n代表实验重复次数;统计分析3次重复实验的数据,计算其平均值±标准差。同一列中不同大写字母表示差异极显著(P<0.01)。
7、注射USP29/KDM4A/KDM5B mRNA对克隆猪出生效率的影响
三个实验处理组分别在克隆胚胎电融合激活后4~6h内注射500ng/μl KDM4A、联合注射500ng/μl KDM4A和500ng/μl KDM5B按1:1体积混合后的RNA以及联合注射500ng/μlUSP29、500ng/μl KDM4A和500ng/μl KDM5B按1:1:1体积混合后的RNA,每个胚胎的RNA注射量为10pl。采用手术法将实验处理组和对照组克隆胚胎分别移植到不同的受体母猪的子宫内,对母猪进行全身静脉麻醉,手术部位选择在倒数第二对乳头中间部位,清洗消毒后沿腹中线切开皮肤和皮下肌肉,然后分离皮下脂肪和腹膜,牵引出子宫和输卵管,将装有胚胎的吸胚管从输卵管伞口插入后将胚胎移入母猪体内,恢复子宫和输卵管至腹腔后进行手术缝合。之后记录母猪的返情、流产情况、分娩的总仔数以及健仔数。
注射KDM4A、联合注射KDM4A+KDM5B、联合注射USP29+KDM4A+KDM5B和对照组克隆胚胎分别移植入5、15、15和17头受体母猪,之后统计受体母猪的分娩率及产仔情况。对照组的胚胎移植了17头受体母猪,分娩率仅11.76%,平均每头受体得到的总仔和健仔数(21天断奶后仍然存活的仔猪称为健仔)分别是0.59和0.41头;注射KDM4A mRNA的胚胎移植的5头受体母猪全部返情,最终克隆效率为0;联合注射KDM4A+KDM5B的胚胎移植了15头受体母猪,其分娩率是40%,平均每头受体得到的总仔和健仔数分别达到1.73和0.87头,联合注射USP29+KDM4A+KDM5B的胚胎移植了15头受体母猪,其分娩率是66.67%,平均每头受体得到的总仔和健仔数分别达到2.93和1.60头。以克隆动物出生效率等于出生活仔/移植克隆胚胎数的比例来计算,联合注射KDM4A+KDM5B使克隆猪的出生效率提高了1.96倍(0.83%/0.28%-1),联合注射USP29+KDM4A+KDM5B使克隆猪的出生效率提高了3.82倍(1.35%/0.28%-1)。(具体统计分析结果见表2)。
表2过表达外源mRNA的克隆胚胎与对照组的全期发育效率比较
Figure BDA0002309153400000131
注:同一列百分比数据右上角标注不同大写字母表示差异极显著(P<0.01)。克隆猪出生效率=出生活仔/(受体猪数×平均胚数)。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种提高猪克隆胚胎发育效率的方法,其特征在于,所述方法包括:联合调控猪克隆胚胎的组蛋白泛素化和组蛋白H3第9位赖氨酸上三甲基化(H3K9me3)和组蛋白H3第4位赖氨酸上三甲基化(H3K4me3)的修饰程度;所述联合调控指同时降低组蛋白泛素化、H3K9me3和H3K4me3的修饰程度。
2.根据权利要求1所述的提高猪克隆胚胎发育效率的方法,其特征在于,所述降低组蛋白泛素化修饰程度通过过表达去泛素化酶USP29基因实现;所述降低组蛋白H3K9me3和H3K4me3修饰程度,通过过表达组蛋白H3K9me3去甲基化酶KDM4A基因和组蛋白H3K4me3去甲基化酶KDM5B基因实现。
3.根据权利要求1所述的提高猪克隆胚胎发育效率的方法,其特征在于,所述方法的操作包括以下步骤:
S1、获得克隆胚;
S2、获得外源mRNA;所述外源mRNA指USP29基因的mRNA、KDM4A基因的mRNA和KDM5B基因的mRNA;
S3、将外源mRNA导入克隆胚。
4.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于,所述提高猪克隆胚发育效率的方法还包括:将导入了外源mRNA的克隆胚移植入受体母猪,使其自然发育。
5.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于,所述S2步骤的方法包括:分别构建USP29、KDM4A和KDM5B基因的过表达载体;分别体外转录合成USP29、KDM4A和KDM5B基因的mRNA。
6.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于:在S3步骤中,所述外源mRNA浓度为100~1000ng/μl,导入量为每个克隆胚导入10~50pl。
7.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于:在S3步骤中,所述外源mRNA的浓度为500ng/μl。
8.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于:在S3步骤中,所述外源mRNA的导入量为每个克隆胚导入10pl。
9.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于:在S3步骤中,外源mRNA导入时机是在克隆胚胎电融合激活后4~6小时。
10.根据权利要求3所述的提高猪克隆胚胎发育效率的方法,其特征在于,所述外源mRNA中USP29、KDM4A和KDM5B基因的mRNA的体积比为1:1:1。
CN201911251430.XA 2019-12-09 2019-12-09 一种提高猪克隆胚胎发育效率的方法 Active CN111073900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911251430.XA CN111073900B (zh) 2019-12-09 2019-12-09 一种提高猪克隆胚胎发育效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911251430.XA CN111073900B (zh) 2019-12-09 2019-12-09 一种提高猪克隆胚胎发育效率的方法

Publications (2)

Publication Number Publication Date
CN111073900A true CN111073900A (zh) 2020-04-28
CN111073900B CN111073900B (zh) 2023-05-02

Family

ID=70313583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911251430.XA Active CN111073900B (zh) 2019-12-09 2019-12-09 一种提高猪克隆胚胎发育效率的方法

Country Status (1)

Country Link
CN (1) CN111073900B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789966A (zh) * 2020-06-29 2020-10-20 华南农业大学 组蛋白甲基化H3K4me3在小鼠卵巢发育中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011767A1 (en) * 2009-07-24 2011-01-27 Sigma-Aldrich Co. Method for genome editing
CN105524940A (zh) * 2015-12-31 2016-04-27 西北农林科技大学 一种基于组蛋白甲基化水平的修饰提高牛克隆效率的载体、细胞及方法
CN105543230A (zh) * 2016-03-02 2016-05-04 华南农业大学 一种基于抑制H3K9me3甲基化的提高猪克隆效率的方法
AU2018200876A1 (en) * 2012-10-02 2018-02-22 Gilead Sciences, Inc. Inhibitors of histone demethylases
WO2019140730A1 (zh) * 2018-01-17 2019-07-25 中国科学院上海生命科学研究院 非人灵长类的体细胞克隆动物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011767A1 (en) * 2009-07-24 2011-01-27 Sigma-Aldrich Co. Method for genome editing
AU2018200876A1 (en) * 2012-10-02 2018-02-22 Gilead Sciences, Inc. Inhibitors of histone demethylases
CN105524940A (zh) * 2015-12-31 2016-04-27 西北农林科技大学 一种基于组蛋白甲基化水平的修饰提高牛克隆效率的载体、细胞及方法
CN105543230A (zh) * 2016-03-02 2016-05-04 华南农业大学 一种基于抑制H3K9me3甲基化的提高猪克隆效率的方法
WO2019140730A1 (zh) * 2018-01-17 2019-07-25 中国科学院上海生命科学研究院 非人灵长类的体细胞克隆动物的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
RENATA SIMÕES ET AL.: "Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer" *
吴霄 等: "过表达H3K9me3去甲基化酶对猪克隆胚胎体外发育效率的影响" *
宋春雷;刘红林;: "组蛋白的泛素化与去泛素化修饰" *
石俊松;罗绿花;周荣;麦然标;纪红美;余婉娴;吴珍芳;蔡更元;: "延迟激活对猪克隆胚胎体外、体内发育效率的影响" *
许卫华;吴珍芳;石俊松;: "提高哺乳动物克隆效率的研究进展" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789966A (zh) * 2020-06-29 2020-10-20 华南农业大学 组蛋白甲基化H3K4me3在小鼠卵巢发育中的应用
CN111789966B (zh) * 2020-06-29 2021-05-28 华南农业大学 组蛋白甲基化H3K4me3在小鼠卵巢发育中的应用

Also Published As

Publication number Publication date
CN111073900B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Heyman et al. Novel approaches and hurdles to somatic cloning in cattle
RU2216592C2 (ru) Способ получения эмбрионов животных и способ выращивания животного из эмбрионов
CN111808887B (zh) 一种制备与自然突变比利时蓝牛类似的双肌臀肉牛的方法
YAMANAKA et al. DNA methylation analysis on satellite I region in blastocysts obtained from somatic cell cloned cattle
Yao et al. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells
CN112094868B (zh) 一种利用单碱基编辑器SpRY-BE4制备CD163基因编辑猪的方法
Navarro-Serna et al. Generation of Calpain-3 knock-out porcine embryos by CRISPR-Cas9 electroporation and intracytoplasmic microinjection of oocytes before insemination
US20220369608A1 (en) Method for establishing diabetes disease model dog
CN107182940B (zh) 一种抗寒及瘦肉型转基因猪及其制备方法
CN111073900B (zh) 一种提高猪克隆胚胎发育效率的方法
KR101890978B1 (ko) 알츠하이머 질환 모델용 형질전환 돼지 및 이의 용도
CN107988257B (zh) 基于供体细胞dna甲基化水平的修饰提高山羊克隆效率的载体、细胞及方法
CN109735542A (zh) RNAi干扰片段、干扰载体及其制备方法和应用
CN115786343A (zh) 一种猪Zfy基因的RNA干扰片段、表达载体及其应用
Zhu et al. Generation of transgenic‐cloned Huanjiang Xiang pigs systemically expressing enhanced green fluorescent protein
JP7199741B2 (ja) 非ヒト霊長類の体細胞クローン動物の製造方法
CN103145824B (zh) 一种突变型隐色素基因1和突变型隐色素基因1的转基因猪
CN113801851A (zh) 一种体细胞核移植方法及其应用
KR20060057528A (ko) 동물에서 체세포 핵 전이와 연관된 유사분열 방추 결함을교정하는 방법
WO2015163711A1 (ko) 마이오스타틴 유전자를 표적으로 하는 talen 및 이를 이용한 마이오스타틴 유전자가 녹아웃된 동물을 제조하는 방법
CN113186189A (zh) 一种用于敲除猪NPHS2基因的gRNA及其相关应用
WO2016074503A1 (zh) 一种y染色体修饰方法及其应用
CN113913435B (zh) 基于p53基因获得小型猪肿瘤疾病模型的方法
EP4130244A1 (en) Temporary treatment medium, treatment kit, embryo developmental arrest inhibitor, method for inhibiting embryo developmental arrest, method for producing developmental engineering product, transfer method, therapeutic method, and developmental engineering product
US20230234906A1 (en) Use of 2-pentanone and specific receptor thereof in manufacture of products regulating cell functions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant