CN111072823B - 一种二糖基骨架的聚合微球及其制备方法 - Google Patents

一种二糖基骨架的聚合微球及其制备方法 Download PDF

Info

Publication number
CN111072823B
CN111072823B CN201911250133.3A CN201911250133A CN111072823B CN 111072823 B CN111072823 B CN 111072823B CN 201911250133 A CN201911250133 A CN 201911250133A CN 111072823 B CN111072823 B CN 111072823B
Authority
CN
China
Prior art keywords
disaccharide
allyl
ether
photoinitiator
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911250133.3A
Other languages
English (en)
Other versions
CN111072823A (zh
Inventor
叶国东
赵笑天
黄婉秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Medical University
Original Assignee
Guangzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Medical University filed Critical Guangzhou Medical University
Priority to CN201911250133.3A priority Critical patent/CN111072823B/zh
Publication of CN111072823A publication Critical patent/CN111072823A/zh
Application granted granted Critical
Publication of CN111072823B publication Critical patent/CN111072823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/06Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种二糖基骨架的聚合微球及其制备方法,所述聚合微球由烯丙基二糖醚和光引发剂经光照,得到所述烯丙基二糖醚化学式如式(Ⅰ)或式(Ⅱ)所示,
Figure DDA0002308793690000011
R1,R2,R3,R4,R5,R6,R7,R8是彼此独立的氢或者烯烃基,所述烯烃基为烯丙基和/或甲基烯丙基,所述烯烃基的数量为2~8个,所述光引发剂与所述烯丙基二糖醚的官能团摩尔比为6~46:100。本发明还提供一种二糖基骨架的聚合微球的制备方法。该微球具有优异的生物相容性和分散性的功能特性,该制备方法既绿色环保,又可以在低温下进行,高转化率高,为大批量的工业化生产提供了一种可行性。

Description

一种二糖基骨架的聚合微球及其制备方法
技术领域
本发明涉及有机高分子化合物,更具体地,涉及一种二糖基骨架的聚合微球及其制备方法。
背景技术
现代医学对中晚期肿瘤患者采用介入栓塞方法进行治疗。它具有靶向性好、创伤轻微、并发症低等众多优势。栓塞材料使用的是微球。
中国专利,申请号为201510456136.8的“一种多糖-聚乙烯醇栓塞微球的制备方法”该多糖-聚乙烯醇栓塞微球由聚乙烯醇和多糖类天然高分子共混交联而成的弹性微球。该多糖-聚乙烯醇栓塞微球具有较大的伸缩性和弹性,便于微导管输送使用,且制备方法简单;同时可针对不同肿瘤病症的情况进行栓塞周期的控制,能够有效避免多次栓塞情况的出现,便于临床应用。但用多糖和聚乙烯醇共聚得到栓塞微球,高粘度的聚乙烯醇不仅导致微球的溶解性和分散性低,其变形问题还会引起微球内的聚合反应。因此,聚乙烯醇作为反应性单体在聚合过程中需要更精确的参数控制变形反应。
发明内容
本发明的目的在于克服微球生物相容性差、溶胀性太高的问题,提供一种二糖基骨架的聚合微球,该微球具有优异的生物相容性和溶胀性在1.5~2倍的聚合微球。还提供一种二糖基骨架的聚合微球的制备方法,在水中采用光引发诱导聚合,调节一定的配比,控制反应的时间,在短时间便可以得到微球。
本发明是通过以下技术方案实现的:
本发明提供一种二糖基骨架的聚合微球,主要由烯丙基二糖醚和光引发剂,经光照至少10min制成,所述烯丙基二糖醚的化学式如式(Ⅰ)或式(Ⅱ)所示,
Figure BDA0002308793670000021
R1,R2,R3,R4,R5,R6,R7,R8是彼此独立的氢或者烯烃基,所述烯烃基为烯丙基和/或甲基烯丙基,所述烯烃基的数量为2~8个,所述光引发剂与所述烯丙基二糖醚的官能团摩尔比为6~46:100。
优选的,所述光引发剂与所述烯丙基二糖醚的官能团摩尔比为22:100。在此配方下,烯丙基二糖醚展现出较高的转化率。
优选的,光照时间至少30min。能够使得烯丙基二糖醚与光引发剂充分交联,以便分筛时获得多种不同规格的微球,满足不同类型的肿瘤栓塞要求。
反应原理:光引发剂在光照下产生自由基进攻烯丙基上的双键,双键变为初级自由基,该自由基与烯丙基二糖醚上的烯丙基上的双键反应,引发链增长生成交联聚合物,获得微球。第二种机理为引发剂产生出自由基/三线态,然后提取烯烃基的C-H,然后生成H2C=HC-CH·-O-R自由基,再与H2C=CH-CH2-O-R形成五元环,持续进行提氢-环化两个过程不断交替,最终得到聚合物。光照时间影响聚合微球的交联度,交联度的大小影响聚合微球的溶胀性,聚合微球表面及内部有羟基,与水相互作用形成氢键,故聚合微球吸水膨胀。在一定范围内,当光照时间增加时,聚合微球交联度增加,溶胀性也增加。当烯丙基二糖醚和光引发剂交联度达到一定程度后,很难再进行吸水膨胀,即再延长光照时间,也不会进行新的吸水膨胀。
所述微球以二糖为骨架,在基础代谢酶作用下容易分解为单糖,随着时间的推移而慢慢代谢。因此具有良好的生物相容性。羟基的存在增加了微球的溶胀性,使微球在吸水溶胀后在血管中具有一定的填充,提高栓塞效果。
本发明还提供上述二糖基骨架的聚合微球的制备方法,步骤如下:
将烯丙基二糖醚、光引发剂、稳定剂和水混合得到反应液;将紫外光源照射所述反应液,光照时间至少10min;纯化干燥。
所述纯化干燥的步骤是:将所述反应液离心5~8min,水洗涤2~3次后,静置沉淀,将沉淀物透析并经过冷冻干燥后得到含有二糖基骨架的聚合微球。
上述二糖基骨架的聚合微球的制备方法在室温下进行。
对所得的二糖基骨架的聚合微球分筛过滤,可得到以下5种规格的微球:50~150μm,100~300μm,300~500μm,500~700μm,700~900μm。以满足不同类型肿瘤栓塞的要求。
优选的,所述稳定剂的质量与所述烯丙基二糖醚的质量比值为3~10:100。
本发明在微球的制备过程中加入了稳定剂,配合特定波长范围内的紫外辐射强度和搅拌器转速,进行单体自聚的化学交联。加入稳定剂,使微球之间分散性良好,避免了微球在交联过程中互相粘连在一起,可以在较大范围内调节制备条件得到分散性好,表面光滑,球形度好及尺寸可控的微球。通过化学交联的方式制备微球的粒径大小与稳定剂的含量也是密切相关的,稳定剂的含量越高,溶液中各物质分散性越好,制备的微球粒径也越小。稳定剂的质量与所述烯丙基二糖醚的质量比值大于10%,会造成分散乳化效果增强而无法成球,稳定剂的质量与所述烯丙基二糖醚的质量比值小于3%,制备出的微球有部分团聚现象,也无法分散均匀成球状,选择在3%~10%的含量时以使得制备的微球大部分分布于50~900μm的粒径范围内,符合临床栓塞时对粒径的要求范围。
优选的,所述的紫外光源具体为点光源或中压汞灯;小批量合成时,紫外点光源的辐射强度为20~50mW/cm2。大批量合成时,紫外点光源的辐射强度为30~45mw/cm2
优选的,所述烯丙基二糖醚按照加入反应体系时摩尔含量,包括以下组分:加入1份二糖,2~8份氯丙烯或溴丙烯或甲基氯丙烯或甲基溴丙烯以及水,调节pH为9~13,搅拌混匀后,加入0.01~0.04份的四丁基高氯酸铵或四丁基高溴酸铵,缓慢加热到60~80℃,继续搅拌18~26h,搅拌结束后萃取3~5次,除水,20~50℃减压浓缩后得到粗产品,纯化后得到烯丙基二糖醚,所述烯丙基二糖醚中的烯丙基的数量为2~8个。
所述水用于溶解、均匀分散加入反应体系的物质,具体含量根据实际情况选择。
纯化的方式可经柱层析,得到烯丙基二糖醚。
将溶液的调节pH为9~13之间,目的是利用碱性的环境活化二糖上的羟基,使得氯丙烯或溴丙烯更容易进攻羟基发生取代,四丁基高氯酸铵和四丁基高溴酸铵是作为相转移催化剂,有助于二糖和氯丙烯或溴丙烯两相互溶。
优选的,所述搅拌的速度在500~1500r/min。得到较为均一的微球。搅拌速度的大小与微球的粒径大小成反比。
优选的,所述烯丙基二糖醚按照加入反应体系时摩尔含量,包括以下组分:加入1份二糖,4.5份氯丙烯或溴丙烯或甲基氯丙烯或甲基溴丙烯以及水,调节pH为9~13,搅拌混匀后,加入0.01~0.02份的四丁基高氯酸铵或四丁基高溴酸铵,加入后继续搅拌,缓慢加热到60~80℃,继续搅拌18~26h,搅拌结束后萃取3~5次,除水,20~50℃减压浓缩后得到粗产品,纯化得到烯丙基二糖醚,所述烯丙基的数量为4个。制备出的微球表面光滑,分散性均匀。动物实验组织切片中,栓塞后微球与组织相容性良好。
可以选择乙酸乙酯或者氯仿等作为萃取剂萃取。可以选择无水硫酸钠或无水硫酸镁等作为除水剂除水。稳定剂可以选择十二烷基硫酸钠、聚乙烯吡咯烷酮等。相转移催化剂可以选择常用的四丁基高氯酸铵或四丁基高溴酸铵、苄基三乙基氯化铵(TEBA)、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵(TBAB)、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵等季铵盐类。
优选的,所述二糖为乳糖、蜜二糖、曲二糖、蔗糖、麦芽糖或海藻糖一种或两种以上的组合。
优选的,所述光引发剂为裂解型或提氢型光引发剂中的一种或两种组合。所述光引发剂包括液体光引发剂或固体光引发剂。所述光引发剂包括有2-羟基-2-甲基-1-苯基-1-丙酮(俗称:光引发剂HMPP或1173)、2,4,6-三甲基苯甲酰基苯基膦酸乙酯(俗称:光引发剂TPO-L)、α,α′-乙氧基苯乙酮(俗称:DEAP)、苯甲酰甲酸甲酯(俗称:MBF)、苯甲酰甲酸一缩二乙二酯、1-羟基环己基苯基甲酮(俗称:光引发剂184)、2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮(俗称:光引发剂2959)、1,1'-(亚甲基二-4,1-亚苯基)双[2-羟基-2-甲基-1-丙酮](俗称:光引发剂127)、苯基双(2,4,6-三甲基苯甲酰基)氧化膦(俗称:光引发剂BAPO)、2,4,6-三甲基苯甲酰基-二苯基氧化膦(俗称:光引发剂TPO)、2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮(俗称:907)、2-苯基苄-2-二甲基胺-1-(4-吗啉苄苯基)丁酮(俗称:光引发剂369)、安息香、安息香双甲醚(俗称:光引发剂651)、安息香乙醚、安息香异丙醚、安息香丁醚、邻苯甲酰苯甲酸甲酯、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、(1-[3'-(6'-邻甲苯甲酰基-N-乙基咔唑)]-1-乙酮肟-O-乙酸酯)(俗称:光引发剂OXE-2)、过氧化苯甲酸叔丁酯、香豆素、二苯甲酮、4-苯基二苯甲酮、和硫杂蒽酮、2-异丙基硫杂蒽酮、2-氯硫杂蒽酮、樟脑醌;其中液体引发剂的聚合效率高于固体粉末光引发剂。
与现有技术相比,本发明的有益效果是:
所述微球为二糖通过键合烯丙基或者甲基烯丙基,形成具有分散性良好的生物医用微球。以二糖为骨架,在基础代谢酶作用下容易分解为单糖,随着时间的推移而慢慢代谢。因此具有良好的生物相容性。
羟基的存在增加了微球的溶胀性,使微球在吸水溶胀后在血管中具有一定的填充,提高栓塞效果。但并没有聚乙烯醇的制作的微球溶胀性那么高,溶胀性太大会引起团聚,形变太大,导致微球的球形变化。本发明制备的微球的溶胀性是1.5~2倍之间,足以填充血管,同时微球的球形不会有太大的变化。
采用光引发诱导聚合,相比于传统的热聚合,工艺简单,通过在水中的反应,控制反应的时间,在短时间便可以得到微球。适合大规模批量化生产,有利于产品在工厂应用上提供了潜在价值。同时,利用紫外光照合成微球,大大提高了微球制备的产率,相比于传统的悬浮聚合的工艺,大大简化了工艺流程。
附图说明
图1是实施例1中烯丙基二糖醚与引发剂HMPP聚合后微球的交联结构;
图2是实施例1中烯丙基二糖醚与引发剂HMPP的实时红外实验的检测结果图;
图3是实施例2中烯丙基二糖醚与引发剂127的实时红外实验的检测结果图;
图4(a)是实施例5制备的聚合微球的光学显微镜照片;
图4(b)是实施例5制备的聚合微球的场发射扫描电镜图;
图5(a)是实施例6制备的聚合微球的光学显微镜照片;
图5(b)是实施例6制备的聚合微球的场发射扫描电镜图;
图6(a)是实施例7制备出蔗糖基为骨架的聚合微球的低倍场发射扫描电镜图;
图6(b)是实施例7制备出蔗糖基为骨架的聚合微球的高倍场发射扫描电镜图;
图7(a)是栓塞前正常组织的切片,图7(b)是栓塞后微球与组织的切片。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例1
向盛有25ml纯水的三口烧瓶中加入5g麦芽糖(相当于1份麦芽糖),搅拌分散均匀。再加入5.302g的溴丙烯(相当于3份溴丙烯),调节pH为11,磁力搅拌15min后,将0.050g的四丁基高氯酸铵(相当于0.01份四丁基高氯酸铵)加入反应液中。混合溶液加热升温到75℃,反应继续搅拌24h后,萃取后洗涤干燥,过层析柱纯化后得到烯丙基二糖醚。
分别配制出光引发剂HMPP与烯丙基二糖醚的摩尔配比为7.43%,13.15%,18.98%,21.38%和36.50%的混合物,均匀涂抹在干燥的溴化钾片上,使用傅里叶变换实时红外(RT-IR)获得光聚合的动力学曲线。
图1为烯丙基二糖醚与引发剂HMPP聚合后微球的交联结构,如图2所示,用双键转化率近似模拟烯丙基二糖醚的转化率,其中发现当配比为21.38%时,烯丙基二糖醚展现出较高的转化率。实验发现,二糖:溴丙烯的摩尔比是1:4.5,制得四个烯丙基取代的烯丙基二糖醚,分散性好,成球性好。
实施例2
向盛有15ml纯水的三口烧瓶中加入5g蔗糖(相当于1份蔗糖),搅拌分散均匀。再加入3.535g的溴丙烯(相当于2份溴丙烯),调节pH为9,磁力搅拌15min后,将0.050g的四丁基高氯酸铵(相当于0.01份四丁基高氯酸铵)加入反应液中。混合溶液加热升温到75℃,反应继续搅拌24h后,萃取后洗涤干燥,过层析柱纯化后得到烯丙基二糖醚。
分别配制出光引发剂127与烯丙基二糖醚的摩尔配比为2.96%,4.72%,7.68%,10.49%,14.91%和22.14%的混合物,均匀涂抹在干燥的溴化钾片上,使用傅里叶变换实时红外(RT-IR)获得光聚合的动力学曲线。如图3所示,用双键转化率近似模拟烯丙基二糖醚的转化率,其中发现当配比为22.14%时,可看出烯丙基二糖醚展现出较高的转化率。结合图2和图3,固体引发剂127与液体引发剂HMPP相比,在同种配比下,固体引发剂127的转化率比液体引发剂HMPP低。
实施例3
向盛有25ml纯水的三口烧瓶中加入5g曲二糖(相当于1份曲二糖),搅拌分散均匀。再加入5.291g的甲基氯丙烯(相当于4份甲基氯丙烯),调节pH为9,磁力搅拌15min后,将0.050g的四丁基高氯酸铵(相当于0.02份四丁基高氯酸铵)加入反应液中。混合溶液加热升温到75℃,反应继续搅拌24h后,萃取后洗涤干燥,过层析柱纯化后得到烯丙基二糖醚。
实施例4
向盛有40ml纯水的三口烧瓶中加入5g乳糖(相当于1份乳糖),搅拌分散均匀。再加入10.582g的甲基氯丙烯(相当于8份甲基氯丙烯),调节pH为13,磁力搅拌15min后,将0.200g的四丁基高氯酸铵(相当于0.04份四丁基高氯酸铵)加入反应液中。混合溶液加热升温到75℃,反应继续搅拌24h后,萃取后洗涤干燥,过层析柱纯化后得到烯丙基二糖醚。
实施例5
烯丙基二糖醚单体的制备方法基本与实施例1相同。
将制得的1g烯丙基二糖醚(相当于17份烯丙基二糖醚),0.07g光引发剂HMPP(相当于3.74份光引发剂),依次加入到25g蒸馏水中,搅拌分散均匀后再加入聚乙烯吡咯烷酮0.10g,搅拌5min后,将反应液置于紫外辐射强度30-50mW/cm2的LED的点光源下反应5min、10min、20min、30min、40min、50min、60min,然后收集产物,透析,冷冻干燥后即得到以蔗糖基为骨架的聚合微球。
如图4(a)和图4(b)所示,将反应液在点光源下反应60min制备出的微球表面光滑,分散性均匀。
实施例6
烯丙基二糖醚的制备方法基本与实施例3相同。
将制得的1g烯丙基二糖醚(相当于22份烯丙基二糖醚),0.04g光引发剂TPO(相当于1.32份光引发剂),依次加入到20g蒸馏水中,搅拌分散均匀后再加入十二烷基硫酸钠0.03g,搅拌5min后,将反应液置于紫外辐射强度30-50mW/cm2的LED的点光源下反应5min、10min、20min、30min、40min、50min、60min,然后收集产物,透析冷冻干燥后即得到以蔗糖基为骨架的聚合微球。
如图5(a)和图5(b)所示,将反应液在点光源下反应60min制备出的微球表面光滑,分散性均匀。
实施例7
烯丙基二糖醚的制备方法基本与实施例4相同。
将制得的1g烯丙基二糖醚(相当于6份烯丙基二糖醚),0.38g光引发剂BAPO(相当于2.76份光引发剂),依次加入到30g蒸馏水中,搅拌分散均匀后再加入聚乙烯吡咯烷酮0.06g,搅拌5min后,将反应液置于紫外辐射强度30-50mW/cm2的LED的点光源下反应5min、10min、20min、30min、40min、50min、60min,然后收集产物,透析,冷冻干燥后即得到以蔗糖基为骨架的聚合微球。
如图6(a)和图6(b)所示,将反应液在点光源下反应60min制备出的微球表面光滑,分散性均匀。
吸水倍率测定:将干燥好的微球,分析天平精准测量以后,记录样品各自重量W0,将样品吸水溶胀后分别记录不同时间下的重量W1,具体重量按表所示。吸水率=(W1-W0)/W0,即本发明所提的溶胀性。
光照5min有少量聚合出微球,当光照时间大于30min时,吸收倍数在1.5-2倍最好,体积在原先基础上扩大1.5~2倍,能够堵塞细支毛细管,符合临床要求,溶胀性小于1.5倍不易栓塞,溶胀性大于2倍又容易团聚。
表1实施例5~实施例7吸水率实验结果
Figure BDA0002308793670000081
Figure BDA0002308793670000091
实施例8
将实施列5中制得的聚合微球,经过分筛后得到的100-300μm的微球,紫外灭菌后,与造影剂碘海醇混合,通过肝动脉栓塞化疗术打入兔子的左肾中,其中右肾作为对照组构建肿瘤模型,经过7天后将实验动物解剖,取出肾脏做病理切片。如图7所示,图7(a)是栓塞前正常组织的切片,图7(b)是栓塞后微球与组织的切片,其中图7(b)显示栓塞后微球与组织的相容性良好,兔子术后三天后,正常活动也未表现出不良反应。
对比例1
壳聚糖-聚乙烯醇栓塞微球
步骤一:共混液制备:将聚乙烯醇和壳聚糖天然高分子溶解在水中,采用电动搅拌器搅拌,搅拌速率为500~5000rpm,配制成浓度为10%(w1/w2)的共混液1000ml。其中,壳聚糖和聚乙烯醇质量比(w1/w2)分别为1:0.01、1:0.1、1:3。
步骤二:乳化交联:将步骤一制备得到的壳聚糖-聚乙烯醇共混液500ml加热至90℃,以5000rpm搅拌速率搅拌30min,使之溶解为透明液体,静置去除气泡。将0.01%(w1/w2)的Span80与500ml液体石蜡分散均匀后,然后用注射器将其滴加到液体石蜡中,搅拌60min后,再用注射器加入0.01%(w1/w2)的戊二醛,持续搅拌3h。同时,交联后溶液中将步骤一中剩余未交联共混液注射到交联后溶液中,形成交联与未交联颗粒的共混溶液,其中,乳化交联共混液与未交联乳化共混液的质量比(w1/w2)为1:0.1。
步骤三:洗涤脱水干燥:于步骤二中壳聚糖-聚乙烯醇共混溶液交联溶液滴加1%(v1/v2)的异丙醇,搅拌30min后,沉淀加入500ml的无水乙醇搅拌20min后,静置30min,取下层溶液,重复以上操作3次,用布氏漏斗抽滤,取滤渣,于60℃烘干。洗涤完成后,将沉淀至于50℃下流动空气中干燥得到微球。
步骤四:筛分:将步骤三中干燥的样品进行筛分,制备得到粒径范围分别为50~100μm、300~500μm、500~700μm和700~900μm微球作为最终产品,包装后采用辐照灭菌。
表2对比例1吸水率实验结果
Figure BDA0002308793670000101
对比例2
烯丙基二糖醚的制备方法基本与实施例1相同。唯一区别在于光引发剂与烯丙基二糖醚的官能团摩尔比为4:100。
将制得的1g烯丙基二糖醚(相当于17份烯丙基二糖醚),0.013g光引发剂HMPP(相当于0.68份光引发剂),依次加入到25g蒸馏水中,搅拌分散均匀后再加入聚乙烯吡咯烷酮0.04g,搅拌5min后,将反应液置于紫外辐射强度30-50mW/cm2的LED的点光源下反应5min、10min、20min、30min、40min、50min、60min,然后收集产物,透析,冷冻干燥后即得到以蔗糖基为骨架的聚合微球。
对比例3
烯丙基二糖醚的制备方法基本与实施例3相同。唯一区别在于光引发剂与烯丙基二糖醚的官能团摩尔比为48:100。
将制得的1g烯丙基二糖醚(相当于22份烯丙基二糖醚),0.32g光引发剂TPO(相当于10.56份光引发剂),依次加入到20g蒸馏水中,搅拌分散均匀后再加入十二烷基硫酸钠0.04g,搅拌5min后,将反应液置于紫外辐射强度30-50mW/cm2的LED的点光源下反应5min、10min、20min、30min、40min、50min、60min,然后收集产物,透析冷冻干燥后即得到以蔗糖基为骨架的聚合微球。
表3对比例2~3吸水率实验结果
Figure BDA0002308793670000111
对比例1中微球吸收倍率为10~13倍之间,但实际应用时,溶胀性太大会引起团聚,形变太大,导致微球的形状发生变化。而实施例5~实施例7制备的微球,并没有多糖-聚乙烯醇的制作的微球溶胀性那么高,如图3~图5所示的聚合微球的光学显微镜图和场发射扫描电镜图,溶胀性在1.5~2倍以内,足以填充血管,满足手术需要,同时微球的球形不会有太大的变化。
对比例2中,当光引发剂与烯丙基二糖醚的官能团摩尔比为4:100时,溶胀性太小,仅在1.5以下,不易栓塞,对比例3中,当光引发剂与烯丙基二糖醚的官能团摩尔比为48:100时,溶胀性太大,高达2.2以上,通过对比例3制备的微球在显微镜下开始团聚,这样的微球不适合在下一步体内实验中评价。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (9)

1.一种二糖基骨架的聚合微球,其特征在于,主要由烯丙基二糖醚、光引发剂和稳定剂,经光照至少10min制成,所述烯丙基二糖醚的化学式如式(Ⅰ)或式(Ⅱ)所示,
Figure FDA0003094452340000011
R1,R2,R3,R4,R5,R6,R7,R8是彼此独立的氢或者烯烃基,所述烯烃基为烯丙基和/或甲基烯丙基,所述烯烃基的数量为2~8个,所述光引发剂与所述烯丙基二糖醚的官能团摩尔比为6~46:100;
所述稳定剂的质量与所述烯丙基二糖醚的质量的比值为3~10:100。
2.根据权利要求1所述的二糖基骨架的聚合微球,其特征在于,所述光引发剂与所述烯丙基二糖醚的官能团摩尔比为22:100。
3.根据权利要求2所述的二糖基骨架的聚合微球,其特征在于,光照时间至少30min。
4.一种制备权利要求1所述的二糖基骨架的聚合微球的制备方法,其特征在于,步骤如下:将烯丙基二糖醚、光引发剂、稳定剂和水混合得到反应液;将紫外光源照射所述反应液,光照时间至少10min;然后纯化干燥。
5.根据权利要求4所述的二糖基骨架的聚合微球的制备方法,其特征在于,所述烯丙基二糖醚按照加入反应体系时摩尔含量,包括以下组分:加入1份二糖,2~8份氯丙烯或溴丙烯或甲基氯丙烯或甲基溴丙烯,以及水,调节pH为9~13,搅拌混匀后,加入0.01~0.04份的四丁基高氯酸铵或四丁基高溴酸铵,缓慢加热到60~80℃,继续搅拌18~26h,搅拌结束后萃取3~5次,除水,20~50℃减压浓缩后得到粗产品,纯化后得到烯丙基二糖醚,所述烯丙基二糖醚中的烯丙基的数量为2~8个。
6.根据权利要求5所述的二糖基骨架的聚合微球的制备方法,其特征在于,所述搅拌的速度在500~1500r/min。
7.根据权利要求5所述的二糖基骨架的聚合微球的制备方法,其特征在于,所述烯丙基二糖醚按照加入反应体系时摩尔含量,包括以下组分:加入1份二糖,4.5份氯丙烯或溴丙烯或甲基氯丙烯或甲基溴丙烯,以及水,调节pH为9~13,搅拌混匀后,加入0.01~0.02份的四丁基高氯酸铵或四丁基高溴酸铵,加入后继续搅拌,缓慢加热到60~80℃,继续搅拌18~26h,搅拌结束后萃取3~5次,除水,20~50℃减压浓缩后得到粗产品,纯化得到烯丙基二糖醚,所述烯丙基的数量为4个。
8.根据权利要求4~7任一所述的二糖基骨架的聚合微球的制备方法,其特征在于,所述二糖为乳糖、蜜二糖、曲二糖、蔗糖、麦芽糖或海藻糖一种或两种以上的组合。
9.根据权利要求4所述的二糖基骨架的聚合微球的制备方法,其特征在于,所述光引发剂为裂解型或提氢型光引发剂中的一种或两种组合。
CN201911250133.3A 2019-12-09 2019-12-09 一种二糖基骨架的聚合微球及其制备方法 Active CN111072823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911250133.3A CN111072823B (zh) 2019-12-09 2019-12-09 一种二糖基骨架的聚合微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911250133.3A CN111072823B (zh) 2019-12-09 2019-12-09 一种二糖基骨架的聚合微球及其制备方法

Publications (2)

Publication Number Publication Date
CN111072823A CN111072823A (zh) 2020-04-28
CN111072823B true CN111072823B (zh) 2021-08-06

Family

ID=70313374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911250133.3A Active CN111072823B (zh) 2019-12-09 2019-12-09 一种二糖基骨架的聚合微球及其制备方法

Country Status (1)

Country Link
CN (1) CN111072823B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234185A (zh) * 2021-04-09 2021-08-10 广州医科大学 利用烯丙基单体通过[3+2]环化反应制备环状聚合物的方法及其制备的聚合物和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165563A (en) * 1998-11-12 2000-12-26 National Starch And Chemical Investment Holding Corporation Radiation curable free radically polymerized star-branched polymers
CN103705987A (zh) * 2014-01-02 2014-04-09 东南大学 一种具有ct造影功能的葡聚糖栓塞微球的制备方法
CN106749799A (zh) * 2016-11-23 2017-05-31 广州医科大学 一种可用于微创手术的组合物
CN106822983A (zh) * 2016-12-29 2017-06-13 苏州恒瑞迦俐生生物医药科技有限公司 一种用于微创介入疗法治疗肿瘤疾病的可显影栓塞微球及其制备方法
CN106977634A (zh) * 2017-04-13 2017-07-25 广州医科大学 一种用于微创手术的药物缓释组合物及其制备方法
CN107050501A (zh) * 2016-12-29 2017-08-18 苏州恒瑞迦俐生生物医药科技有限公司 一种可视化多羟基聚合体栓塞微球及其制备方法
CN110115709A (zh) * 2018-02-05 2019-08-13 北京化工大学 一种可以co2及光聚合双交联的壳聚糖微球及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165563A (en) * 1998-11-12 2000-12-26 National Starch And Chemical Investment Holding Corporation Radiation curable free radically polymerized star-branched polymers
CN103705987A (zh) * 2014-01-02 2014-04-09 东南大学 一种具有ct造影功能的葡聚糖栓塞微球的制备方法
CN106749799A (zh) * 2016-11-23 2017-05-31 广州医科大学 一种可用于微创手术的组合物
CN106822983A (zh) * 2016-12-29 2017-06-13 苏州恒瑞迦俐生生物医药科技有限公司 一种用于微创介入疗法治疗肿瘤疾病的可显影栓塞微球及其制备方法
CN107050501A (zh) * 2016-12-29 2017-08-18 苏州恒瑞迦俐生生物医药科技有限公司 一种可视化多羟基聚合体栓塞微球及其制备方法
CN106977634A (zh) * 2017-04-13 2017-07-25 广州医科大学 一种用于微创手术的药物缓释组合物及其制备方法
CN110115709A (zh) * 2018-02-05 2019-08-13 北京化工大学 一种可以co2及光聚合双交联的壳聚糖微球及其制备方法

Also Published As

Publication number Publication date
CN111072823A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN107652452B (zh) 一种主客体超分子水凝胶及其制备方法与应用
Chiellini et al. Ulvan: A versatile platform of biomaterials from renewable resources
CN103524751B (zh) 一种双敏感性环糊精超分子聚集体的制备方法
Bera et al. Carboxymethyl fenugreek galactomannan-gellan gum-calcium silicate composite beads for glimepiride delivery
Nayak Tamarind seed polysaccharide-based multiple-unit systems for sustained drug release
JPH07503943A (ja) 封入及び薬剤放出に有用な架橋性の多糖類、ポリカチオン及び脂質
CN104292475A (zh) 一种温敏光敏双响应聚肽基主客体复合智能水凝胶及其制备方法和应用
Luo et al. Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus
CN104311870A (zh) 一种医用止血多聚糖淀粉微球及其制备方法
CN110204777A (zh) 一种海藻酸复合水凝胶的制备方法
CN111072823B (zh) 一种二糖基骨架的聚合微球及其制备方法
JP2022130665A (ja) ヒアルロン酸ヒドロゲル微粒子の調製方法及び関節軟骨欠損の修復におけるその用途
CN111012947B (zh) 一种可注射和自愈合淀粉基水凝胶及其制备方法和应用
Zhao et al. Effect of altering photocrosslinking conditions on the physical properties of alginate gels and the survival of photoencapsulated cells
CN108578764B (zh) 一种生物玻璃/水凝胶复合材料的快速制备方法
Zhang et al. Characterization of soy protein isolate/Flammulina velutipes polysaccharide hydrogel and its immunostimulatory effects on RAW264. 7 cells
CN114014979A (zh) 一种再生纤维素凝胶微球的制备方法
CN101709103A (zh) 不同波长光源制备含偶氮单体光响应水凝胶的方法
CN114891196A (zh) 可注射凝胶聚羟基脂肪酸酯及其制备方法和用途
Fernando et al. Preparation of microspheres by alginate purified from Sargassum horneri and study of pH-responsive behavior and drug release
Kumari et al. Chemistry, biological activities, and uses of moringa gum
CN105906766A (zh) 基于天然高分子的光/生物双降解高吸水树脂的制备方法
CN109593213A (zh) 一种高强度水凝胶的制备方法
CN114099765B (zh) 一种光引发交联聚乙烯醇载药栓塞微球及其制备方法
CN106084138A (zh) 一种黑色高分子微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant