CN111072011B - 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用 - Google Patents

一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用 Download PDF

Info

Publication number
CN111072011B
CN111072011B CN202010042425.4A CN202010042425A CN111072011B CN 111072011 B CN111072011 B CN 111072011B CN 202010042425 A CN202010042425 A CN 202010042425A CN 111072011 B CN111072011 B CN 111072011B
Authority
CN
China
Prior art keywords
carbon
cells
mitochondria
nucleolus
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010042425.4A
Other languages
English (en)
Other versions
CN111072011A (zh
Inventor
李朝辉
孙远强
郭硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202010042425.4A priority Critical patent/CN111072011B/zh
Publication of CN111072011A publication Critical patent/CN111072011A/zh
Application granted granted Critical
Publication of CN111072011B publication Critical patent/CN111072011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种线粒体‑核仁可逆迁移荧光碳点的制备及其在监测细胞活性中的应用,荧光碳点在细胞状态良好时聚集在线粒体内,在细胞凋亡的过程中部分迁移至核仁,细胞状态恢复时又返还至线粒体内;所述荧光碳点的制备步骤如下:将无水柠檬酸加入到水中充分溶解,之后加入N,N‑二甲基苯胺,混合液移入微波管中,在160℃下反应1‑4h,反应液经柱层析分离,得到荧光碳点。本发明能够通过碳点在核仁和线粒体的空间分布比率来判断细胞所处的状态,碳点在细胞内的分布位置随着细胞活性的动态可逆变化而可逆变化,因此可实现实时监测细胞活性的功能。

Description

一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活 性中的应用
技术领域
本发明涉及荧光碳点和生物传感技术领域,具体涉及一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用。
背景技术
细胞活性在生物学、病理学、医学等研究领域有着非常重要的作用,例如,监测细胞活性可用于评估药物疗效、药物筛选、探究生物试剂(如抗生素、纳米颗粒、荧光分子探针)毒性等,迄今为止,已有很多工具用于监测细胞活性,如透射电子显微镜,扫描电子显微镜等,但是通过显微镜下的细胞形态只能粗略的估计细胞所处的状态,为了更准确的定量监测细胞活性,一些有机试剂被应用于细胞活性的检测,如MTT (3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐),WST-8 (2-(2-甲氧基-4-硝苯基)-3-(4-硝苯基)-5-(2,4-二磺基苯)-2H-四唑单钠盐)等,他们在电子耦合试剂存在的情况下,可以被线粒体内的一些脱氢酶还原生成橙黄色的甲臜染料。细胞增殖越多越快,则橙黄色越深,因此可通过比色法来判断细胞活性。与比色探针相比,荧光探针具有灵敏度高、可实现原位实时观察等优点,此外,荧光成像技术易于操作、对生物样品损伤小、比较适合应用于生物研究。据我们所知,仅有为数不多的几篇文献报道的荧光探针可用于细胞活性的可逆监测,荧光探针在细胞状态良好时靶向线粒体,在细胞凋亡的过程中迁移到核仁内,在细胞状态恢复时又回到线粒体内。但是这些荧光探针的合成步骤较为复杂,合成成本较高等缺点严重限制了他们在细胞成像领域的应用,因此,开发出一种易于合成,成本低廉的新型荧光材料用于细胞活性的监测是很有必要的。
碳点作为碳家族一种新型的纳米材料,因其原材料资源丰富、廉价易得、水溶性好、生物相容性好等优点,引起了人们的广泛关注。目前,已有许多碳点应用于生物标记、药物靶向、细胞成像等众多领域。据我们所知,目前尚未有碳点被报道应用于细胞活性的动态可逆化监测,在此项工作中,我们通过微波辅助法合成了一种橙色荧光碳点用于细胞活性的动态可逆监测。
发明内容
本发明提出了一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用,所述荧光碳点在细胞状态良好时聚集在线粒体内,在凋亡过程中部分迁移至核仁,在细胞状态恢复时又回到线粒体内,因此可通过碳点在核仁和线粒体的空间分布比率来判断细胞所处状态。此方法可有效的避免因荧光碳点浓度和检测仪器参数差异等外部因素带来的误差。值得一提的是,经优化可得此碳点的孵育时间为40分钟,如此短的孵育时间可有效的避免在实际应用中试剂与生物样本的反应。此外,此荧光碳点的荧光强度随粘度增大而增强,因此在用于细胞成像时可实现免洗的功能,可有效的简化操作步骤,提高工作效率。
实现本发明的技术方案是:
一种线粒体-核仁可逆迁移荧光碳点在监测细胞活性中的应用,所述荧光碳点在细胞状态良好时聚集在线粒体内,在凋亡过程中部分迁移至核仁,在细胞状态恢复时又回到线粒体内,在固定细胞中碳点则聚集在核仁内,因此可通过碳点在核仁和线粒体的空间分布比率来判断细胞所处状态。
荧光碳点的制备方法为:将无水柠檬酸加入到水中,溶解后加入N,N-二甲基苯胺,混合液移入微波管中,在160 ℃下反应1-4小时,反应液经柱层析分离,得到荧光碳点。
经测试可得,该碳点的激发波长和发射波长分别为488 nm和585nm,并且具有一定的激发依赖性;在pH 3-12范围内荧光强度无明显变化,在各种生物分子的存在下荧光强度无明显变化,说明其适用于细胞成像。此外,碳点在应用于细胞成像时可免除洗涤的操作步骤,此结果可归因于碳点的荧光强度随着粘度的增大而增强的性质。
用碳点母液孵育固定细胞和活细胞,并用共聚焦显微镜,以激发波长为488 nm光源激发,观察细胞成像图,具体步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h;然后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次,之后加入50 nM的商业化线粒体染料(MitoTrackerTM Deep Red)孵育25min,之后再用PBS清洗两次,加入1毫升无色DMEM培养基后共聚焦成像;
(2)用4 %的多聚甲醛孵育细胞10min,PBS清洗两次后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次,之后加入商业化染料Propidium Iodode,Propidium Iodode可染色凋亡或坏死细胞中的细胞核,孵育15min后共聚焦成像。
用碳点母液孵育细胞,PBS清洗三次后以激发波长为488 nm光源激发,观察细胞成像图,再加入羰基氰-3-氯苯腙刺激线粒体膜电位降低,以激发波长为488 nm光源激发,观察细胞成像图,之后用PBS洗去羰基氰-3-氯苯腙,促使线粒体膜电位恢复,以激发波长为488 nm光源激发,观察细胞成像图,具体步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次后成像;
(2)加入20 µM的羰基氰-3-氯苯腙,促使线粒体膜电位降低,拍下碳点在细胞内的成像图;
(3)移除含有羰基氰-3-氯苯腙的培养基后,用PBS清洗细胞三次,之后加入新鲜的培养基并拍下此时碳点在细胞内的荧光分布图。
用碳点母液孵育细胞,PBS清洗两次后以激发波长为488 nm光源激发,观察细胞成像图;之后加入过氧化氢诱导细胞凋亡,以激发波长为488 nm光源激发,观察细胞成像图;随后洗去过氧化氢并加入抗坏血酸,促进细胞状态恢复,并用共聚焦显微镜,以激发波长为488 nm光源激发,观察细胞成像图,具体步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次后成像;
(2)然后加入过氧化氢,诱导细胞凋亡,拍下细胞在碳点在细胞内的荧光成像图;
(3)将细胞用PBS清洗三次并加入抗坏血酸,促使细胞状态恢复,拍下碳点在细胞内的荧光成像图。
所述的荧光碳点在监测细胞活性中的应用,包括以下步骤:
(1)称取荧光碳点,用超纯水溶解,准确配制10 mg/mL的碳点储存液;
(2)向比色皿中加入1990 µL的PBS缓冲溶液后,加入8 µL 10 mg/mL的碳点储存液,以488 nm进行激发,探针具有很强的荧光发射;
(3)通过共聚焦显微镜对孵育荧光碳点的活细胞和固定的细胞进行荧光成像;
(4)通过共聚焦显微镜对碳点在羰基氰-3-氯苯腙刺激下的活细胞内进行荧光成像。
(5)通过共聚焦显微镜对碳点在过氧化氢和抗坏血酸顺序刺激的活细胞进行荧光成像。
利用N,N-二甲基苯胺和无水柠檬酸制备荧光碳点的合成路线如下:
Figure 457653DEST_PATH_IMAGE002
本发明的有益效果是:(1)碳点合成步骤简单,便于操作;(2)在固定细胞中碳点聚集在核仁内,在活细胞中碳点在线粒体内聚集;(3)荧光碳点在细胞状态良好时聚集在线粒体内,在凋亡过程中部分迁移至核仁,在细胞状态恢复时又返回至线粒体内,因此可通过碳点在核仁和线粒体的空间分布比率来判断细胞所处状态,碳点在细胞内的靶向位置随着细胞活性动态可逆变化而可逆变化,因此可实现实时监测细胞活性的功能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1碳点的透射电镜图。
图2为碳点的吸收、激发、发射图谱。
图3为碳点在活细胞和固定细胞中的荧光成像图,以488 nm激发波长,收集540-610 nm的波长。
图4为羰基氰-3-氯苯腙刺激线粒体膜电位可逆变化过程中碳点在细胞内的荧光成像图。
图5为过氧化氢和抗坏血酸依次刺激HeLa细胞过程中碳点在细胞内的荧光成像图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
碳点合成,步骤如下:
将2.4 g无水柠檬酸溶解在16 mL超纯水中,再加入800 µL N,N-二甲基苯胺液体,将混合液用微波反应仪加热至160 ℃,持续反应4 h,反应液经柱层析分离,得到该碳点。
实施例2
碳点合成,步骤如下:
将2.4 g无水柠檬酸溶解在16 mL超纯水中,再加入800 µL N,N-二甲基苯胺液体,将混合液用微波反应仪加热至160 ℃,持续反应2 h,反应液经柱层析分离,得到该碳点。
实施例3
碳点合成,步骤如下:
将2.4 g无水柠檬酸溶解在16 mL超纯水中,再加入800 µL N,N-二甲基苯胺液体,将混合液用微波反应仪加热至160 ℃,持续反应1 h,反应液经柱层析分离,得到该碳点。
实施例4
碳点合成,步骤如下:
将2.4 g无水柠檬酸溶解在16 mL超纯水中,再加入800 µL N,N-二甲基苯胺液体,将混合液用微波反应仪加热至160 ℃,持续反应3 h,反应液经柱层析分离,得到该碳点。
实施例5
向比色皿中加入1990 µL的PBS缓冲溶液后,再加入8 µL 10 mg/mL的碳点储存液,以488 nm进行激发,测荧光发射图谱。
实施例1制备的碳点的应用
1. 碳点在活细胞和固定细胞中的的共聚焦成像应用
在37 ℃,95 %空气,5 %二氧化碳培养箱中,将HeLa细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h;然后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次,之后加入50 nM的商业化线粒体染料(MitoTrackerTM Deep Red)孵育25min,之后再用PBS清洗两次,加入1毫升无色DMEM培养基后共聚焦成像;
用4 %的多聚甲醛孵育HeLa细胞10min,PBS清洗两次后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次,之后加入商业化染料Propidium Iodode,Propidium Iodode可染色凋亡或坏死细胞中的细胞核,孵育15min后共聚焦成像。
如图3所示,在活细胞中,碳点在线粒体内聚集(A图),在固定细胞中碳点则在核仁内聚集(B图)。
2. 羰基氰-3-氯苯腙刺激线粒体膜电位可逆变化过程中碳点在细胞内的荧光成像图
在37℃,95 %空气,5 %二氧化碳培养箱中,将HeLa细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h。然后加入40 µg/mL的碳点,孵育40分钟后用PBS洗涤两次后成像,之后加入20 µM的羰基氰-3-氯苯腙(CCCP)刺激细胞内线粒体膜电位降低,并拍下碳点在CCCP刺激后在细胞内的成像图,随后,用PBS清洗细胞三次以除去羰基氰-3-氯苯腙,促使线粒体膜电位恢复,并拍下洗涤过后碳点在细胞内的荧光分布图。
A图为碳点在HeLa细胞内的荧光图像,B图为碳点在用CCCP刺激后的HeLa细胞内的荧光图像,C图为碳点在用PBS清洗细胞三次后的HeLa细胞内的荧光图像,如图4所示,碳点在活细胞中靶向线粒体,在CCCP刺激后,线粒体膜电位降低,碳点在细胞中的位置由线粒体部分迁移至核仁内,当CCCP被移除后,线粒体膜电位恢复,碳点的位置由核仁返回至线粒体。
3. 过氧化氢和抗坏血酸依次刺激过程中碳点在细胞内的荧光成像图
在37℃,95 %空气,5 %二氧化碳培养箱中,将HeLa细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h,然后加入40 µg/mL的碳点,孵育40分钟后用PBS洗涤两次后成像,拍下碳点在状态良好的HeLa细胞中的荧光成像图,然后加入过氧化氢(4 mM),诱导细胞凋亡,并拍下细胞在凋亡过程中碳点在细胞内的位置分布图,接下来,用PBS清洗细胞三次并加入100 µM的抗坏血酸(AA),促使细胞状态恢复,并拍下碳点在细胞状态恢复后于细胞内的位置分布图。
A图为碳点在HeLa细胞内的荧光图像,B图为碳点在用过氧化氢刺激后的HeLa细胞内的荧光图像,C图为碳点在用PBS清洗细胞三次后并加入抗坏血酸的HeLa细胞内的荧光图像,如图5所示,碳点在细胞状态良好时,分布在线粒体内;在细胞凋亡过程中,碳点在细胞内的位置由线粒体部分迁移至核仁,在细胞状态恢复时,碳点的位置由核仁返回至线粒体,随着细胞状态的可逆变化,碳点在细胞内的分布位置也随之可逆变化,因此,该碳点可实现对细胞状态的动态可逆监测。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种线粒体-核仁可逆迁移荧光碳点在监测细胞活性中的应用,其特征在于:荧光碳点在细胞状态良好时聚集在线粒体内,在细胞凋亡的过程中部分迁移至核仁,细胞状态恢复时又返回至线粒体内;
所述线粒体-核仁可逆迁移荧光碳点的制备方法,步骤如下:将无水柠檬酸加入到水中充分溶解,之后加入N,N-二甲基苯胺,混合液移入微波管中,在160 ℃下反应1-4h,反应液经柱层析分离,得到荧光碳点。
2.根据权利要求1所述的线粒体-核仁可逆迁移荧光碳点在监测细胞活性中的应用,其特征在于具体步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到培养基中培养24h后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次后成像;
(2)然后加入过氧化氢,诱导细胞凋亡,拍下细胞在碳点在细胞内的荧光成像图;
(3)将细胞用PBS清洗三次并加入抗坏血酸,促使细胞状态恢复,拍下碳点在细胞内的荧光成像图。
3.根据权利要求2所述的线粒体-核仁可逆迁移荧光碳点在监测细胞活性中的应用,其特征在于:所述步骤(1)培养基为含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基,碳点在细胞状态良好时靶向线粒体;步骤(2)中过氧化氢浓度为4 mM,过氧化氢刺激后,细胞开始凋亡,碳点在细胞中的位置由线粒体部分迁移至核仁内;步骤(3)中抗坏血酸浓度为100 µM,加入抗坏血酸后,细胞状态恢复,碳点的位置由核仁返回至线粒体。
4.根据权利要求1所述的线粒体-核仁可逆迁移荧光碳点在监测细胞活性中的应用,其特征在于:所述荧光碳点在细胞内的空间分布位置随线粒体膜电位可逆变化中的应用。
5.根据权利要求4所述的应用,其特征在于步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次后成像;
(2)加入20 µM的羰基氰-3-氯苯腙,拍下碳点在细胞内的成像图;
(3)移除含有羰基氰-3-氯苯腙的培养基后,用PBS清洗细胞三次,之后加入新鲜的培养基并拍下碳点在细胞内的荧光分布图。
6.根据权利要求5所述的应用,其特征在于:步骤(1)中碳点在细胞中靶向线粒体,步骤(2)羰基氰-3-氯苯腙刺激后,线粒体膜电位降低,碳点在细胞中的位置由线粒体部分迁移至核仁内;步骤(3)中清洗后,线粒体膜电位恢复,碳点的位置由核仁返回至线粒体。
7.根据权利要求1所述的应用,其特征在于:所述荧光碳点在活细胞和固定细胞中靶向位置成像的应用。
8.根据权利要求7所述的应用,其特征在于步骤如下:
(1)在37 ℃,95 %空气,5 %二氧化碳培养箱中,将细胞接种到含有10 %胎牛血清、1 %的青霉素和链霉素的DMEM培养基中培养24h后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次后成像;之后加入50 nM的商业化线粒体染料MitoTrackerTM Deep Red,商业化线粒体染料孵育25min,之后再用PBS清洗两次,加入1毫升无色DMEM培养基后共聚焦成像;
(2)用4 %的多聚甲醛孵育细胞10min,PBS清洗两次后加入40 µg/mL的碳点,孵育40min后用PBS洗涤两次,之后加入商业化染料Propidium Iodode,Propidium Iodode可染色凋亡或坏死细胞中的细胞核,孵育15min后共聚焦成像。
9.根据权利要求8所述的应用,其特征在于:所述步骤(1)在活细胞中碳点在线粒体内聚集,步骤(2)在固定细胞中碳点在核仁内聚集。
CN202010042425.4A 2020-01-15 2020-01-15 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用 Active CN111072011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010042425.4A CN111072011B (zh) 2020-01-15 2020-01-15 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010042425.4A CN111072011B (zh) 2020-01-15 2020-01-15 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用

Publications (2)

Publication Number Publication Date
CN111072011A CN111072011A (zh) 2020-04-28
CN111072011B true CN111072011B (zh) 2021-05-28

Family

ID=70323266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010042425.4A Active CN111072011B (zh) 2020-01-15 2020-01-15 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用

Country Status (1)

Country Link
CN (1) CN111072011B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340867B (zh) * 2022-08-30 2023-10-31 东南大学 绿色荧光碳点GB-CDs制备方法及在检测线粒体中Fe3+和ATP的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610376A (zh) * 2015-10-27 2017-05-03 中国科学院宁波材料技术与工程研究所 荧光碳点在活细胞核仁成像或rna标记或显示中的应用
CN110161005A (zh) * 2019-05-24 2019-08-23 郑州大学 一种检测细胞活性的荧光碳点、制备方法及其应用
CN110174387A (zh) * 2019-06-14 2019-08-27 郑州大学 一种荧光碳点在天然靶向溶酶体中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1880008E (pt) * 2005-05-03 2015-08-27 Inserm Inst Nat De La Santé Et De La Rech Médicale Expressão de proteína mitocondrial através de uma abordagem alotópica melhorada

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106610376A (zh) * 2015-10-27 2017-05-03 中国科学院宁波材料技术与工程研究所 荧光碳点在活细胞核仁成像或rna标记或显示中的应用
CN110161005A (zh) * 2019-05-24 2019-08-23 郑州大学 一种检测细胞活性的荧光碳点、制备方法及其应用
CN110174387A (zh) * 2019-06-14 2019-08-27 郑州大学 一种荧光碳点在天然靶向溶酶体中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"叶酸-聚乙烯亚胺复合碳点的跨膜机制和胞内分布";刘杰 等;《吉林大学学报(医学版)》;20180331;第44卷(第2期);第254-259页 *

Also Published As

Publication number Publication date
CN111072011A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN105295909A (zh) 一种苯二胺与柠檬酸制备细胞显影用碳量子点标记探针的方法
Liang et al. Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging
O'Riordan et al. Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging
CN111100476B (zh) 一种pH荧光探针的合成及应用
Koren et al. Luminescence lifetime imaging of chemical sensors—A comparison between time-domain and frequency-domain based camera systems
CN103896928B (zh) 一种pH荧光化学传感器及其合成方法和应用
Meyer-Almes Fluorescence lifetime based bioassays
CN110156839A (zh) 一种线粒体靶向的次氯酸根双光子荧光探针及其制备方法和应用
CN106814057B (zh) 一种基于聚集诱导荧光增强特性用于选择性识别atp的荧光探针、合成方法及其应用
CN106243170A (zh) 具有聚集诱导荧光增强特性的β‑半乳糖苷酶传感器的合成及应用
CN105154065B (zh) 一种快速专一性识别羟基自由基的荧光探针及其制备方法和应用
CN110981842A (zh) 一种区分正常细胞和癌细胞的特异性检测脂滴的荧光探针及应用
Zhang et al. Recent progress in electrochemiluminescence microscopy analysis of single cells
Song et al. A turn-on fluorescent probe for Au 3+ based on rodamine derivative and its bioimaging application
CN110243794A (zh) 一种基于石墨烯量子点的检测二氧化硫的荧光探针及其应用
CN107880034A (zh) 一种基于苯并噻唑的可视化检测肼的荧光探针及其制备方法和用途
CN108822031A (zh) 一种检测线粒体的双光子红发射荧光探针
CN111072011B (zh) 一种线粒体-核仁可逆迁移荧光碳点的制备及在监测细胞活性中的应用
CN112500386A (zh) 基于吡啰红肟的近红外HClO荧光探针、制备及其应用
Ripoll et al. A quantum dot-based FLIM glucose nanosensor
CN108872209A (zh) 基于纳米金簇电致化学发光探针的碱性磷酸酶测定方法
CN111153893A (zh) 一种用于检测细胞线粒体中so2衍生物的比率荧光探针及其应用
CN110776458A (zh) 一种检测线粒体膜电位的荧光探针及其制备方法和应用
CN114478513B (zh) 一种谷胱甘肽荧光探针及其应用
CN110687087B (zh) 一种溶酶体三磷酸腺苷识别碳点的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant