CN111057138A - 一种从基因工程水稻种子中分离纯化重组人生长激素的方法 - Google Patents

一种从基因工程水稻种子中分离纯化重组人生长激素的方法 Download PDF

Info

Publication number
CN111057138A
CN111057138A CN201811208090.8A CN201811208090A CN111057138A CN 111057138 A CN111057138 A CN 111057138A CN 201811208090 A CN201811208090 A CN 201811208090A CN 111057138 A CN111057138 A CN 111057138A
Authority
CN
China
Prior art keywords
growth hormone
recombinant human
human growth
chromatography
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811208090.8A
Other languages
English (en)
Inventor
杨代常
董亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Healthgen Biotechnology Co Ltd
Original Assignee
Wuhan Healthgen Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Healthgen Biotechnology Co Ltd filed Critical Wuhan Healthgen Biotechnology Co Ltd
Priority to CN201811208090.8A priority Critical patent/CN111057138A/zh
Priority to PCT/CN2019/110385 priority patent/WO2020078254A1/zh
Publication of CN111057138A publication Critical patent/CN111057138A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • C07K14/615Extraction from natural sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种从基因工程水稻中分离纯化重组人生长激素(OsrhGH)的方法。具体包括以下步骤:1)从重组人生长激素基因工程水稻种子中提取含有重组人生长激素的蛋白粗提取物;2)将含有重组人生长激素的蛋白粗提取物经BestaroseDiamondMMC阳离子交换层析,得到初级产物I;3)将初级产物I经Q Sepharose FF阴离子交换层析,得到含有重组人生长激素的中级产物II;4)将中级产物II经PhenylBestaroseHP疏水层析,得到纯化的重组人生长激素目标物。经本发明的方法纯化后的植物源重组人生长激素纯度大于95%,具有高活性,纯化工艺简单,成本低廉等优点,适应大规模生产和应用。

Description

一种从基因工程水稻种子中分离纯化重组人生长激素的方法
技术领域
本发明属于生物技术领域,具体涉及一种从基因工程水稻种子中分离纯化 重组人生长激素的方法。
背景技术
人生长激素(human growth hormone,hGH)是由脑垂体前叶嗜酸细胞释放 的一种单一肽链的蛋白质激素,由191个氨基酸残基构成,是腺垂体中含量最 多的激素(约占总含量的50%)。其主要生理功能是对人体各种组织尤其是蛋白 质的合成具有促进作用,通过刺激骨关节软骨和骨骺软骨生长从而达到增高的 功能。
20世纪50年代开始将人源生长激素(GH)应用于临床,由于其源于尸 检人腺垂体,提取困难且易混有病毒和其他垂体激素等物质,因此未进行大规 模临床推广。之后,人们逐渐开始利用化学合成和基因重组方法生产生长激素, 美国基因工程技术公司的基因重组法在1981年实现工业化。美国基因工程技术 公司生产的重组生长激素(商品名为somatrem)含有192个氨基酸,比天然结 构多了一个氨基酸,用于人体后会导致64%的患者出现生长激素抗体。为有效 解决用药后的抗体产生问题,美国礼来和诺和诺德开发了191个氨基酸的生长 激素,但因天然结构依然不同,抗体产生率较高,且容易带入杂质导致过敏反 应发生。20世纪80年代上市的生长激素由于应用哺乳动物的重组合成技术,抗 体产生率很低,但由于可能引入疯牛病病毒,目前被少数生产厂商使用。20世 纪90年代大肠杆菌分泌基因表达技术进行生产生长激素,氨基酸序列相同, 抗体产生率低,生物活性好,目前为大多数国际领先生产厂商使用。20世纪末 到21世纪初,各厂家相继开始研发长效生长激素。
目前市场重组人生长激素均采用大肠杆菌表达(芽孢杆菌、酵母以及哺乳 动物细胞等表达系统也能产生,但是由于表达水平低、成本高等因素,鲜有公 司采用上述系统进行rhGH的生产),存在表达量低、工艺复杂等缺点,同时其 在临床应用也存在一定的副作用,如注射部位局部一过性反应(疼痛、发麻、 红肿等)和体液潴留的症状(外周水肿、关节痛或肌痛),另外长期使用可能在 人体内产生抗体从而影响治疗效果。在经济层面上重组人生长激素长效/水针/粉 针年花费分别被为19.5、4.25、2万元。高昂的治疗费用也限制了重组人生长激 素的推广使用。据估计,我国4~15岁矮小症患者达700万,预计存量适用 人群约400万人,每年新增适用人群40~50万人,而目前存量渗透率不到2%, 增量渗透率不到15%。
CN200480043565公开了一种采用疏水层析技术纯化通过DNA重组技术得 到的人生长激素的方法。现有重组人生长激素的分离提纯技术主要围绕从动物 细胞,大肠杆菌菌体,酵母菌体等提取OsrhGH的方法,例如,CN103724425A 公开了一种新的从大肠杆菌菌体中粗提重组人生长激素提取方法。宋学文等将 在中国仓鼠卵巢细胞(CHO)中基因克隆表达的人生长激素(hGH)培养物经 Octyl-SepharoseCL-4B疏水层析,SephadexG-100凝胶过滤层析, DEAE-CelluloseDE52离子交换层析,得到了较纯的hGH。(天津医科大学学报, 1995(2):18-20)。
发明内容
本发明在水稻胚乳细胞生物基因工程技术的基础上,进一步研究从基因水 稻种子中表达、提取、纯化重组人生长激素蛋白。蛋白质纯化的目的是将目标 蛋白质从种子蛋白粗提取液的全部组分中分离出来,同时仍保留目的蛋白的生 物学活性及结构的完整性。蛋白质的分离和纯化需根据蛋白的特性及待分离的 其他物质性质来选择合适的纯化方案。
本发明的目的在于提供一种从基因工程水稻中分离纯化重组人生长激素(OsrhGH)的方法。
为实现上述目的,本发明的方法具体包括以下步骤:
1)从重组人生长激素基因工程水稻种子中提取含有重组人生长激素的蛋白 粗提取物;
2)将含有重组人生长激素的蛋白粗提取物经BestaroseDiamond MMC阳离 子交换层析,得到初级产物I;
3)将初级产物I经Q Sepharose FF阴离子交换层析,得到含有重组人生长 激素的中级产物II;
4)将中级产物II经Phenyl BestaroseHP疏水层析,得到纯化的重组人生长 激素目标物;
本发明所述的方法中,步骤1)所述重组人生长激素粗提取物是通过下述 方法制备:
i)将含有重组人生长激素的基因工程水稻种子粉碎后与提取缓冲液按重 量/体积比(kg/L)=1∶5混合,在4~30℃下提取1~2小时;所述提取缓冲液包含 5~25mM Tris,5~25mM NaAC,pH为5.5~7.5;
ii)将步骤i)的提取混合物的pH调节至5.0~5.8,优选的pH为5.4~5.6, 并沉淀1~4小时;
iii)过滤步骤ii)的混合物,收集滤液,获得含有高浓度重组人生长激素的粗 提物溶液。
进一步的,本发明方法包含以下步骤:
(1)将基因工程稻谷脱壳加工成半精米,研磨成80~100目的米粉。将米 粉与提取缓冲液以1:5(重量/体积,kg/L)的比例混合,于25~28℃提取1小 时。提取缓冲液的成分为:25mM Tris-乙酸,25mM NaAc,pH 7.5。将上述得到 的混合物用20%乙酸调节pH至5.4~5.6,放置沉淀至少2小时后,加入2~5% 的珍珠岩进行压滤,压滤完毕后复调pH至5.0~5.8,经0.22μm滤膜过滤后即 为OsrhGH的粗提取物。
(2)采用Bestarose Diamond MMC层析介质进行初级分离纯化。采用4~6 倍柱体积(CV)的pH为5.2~5.6的50mM Tris、50mM NaAc的缓冲液,以170~ 240cm/h的线性流速平衡层析柱;以步骤1的粗提物为层析上样液,其中上样液 pH为5.2~5.6、电导3.5~5mS/cm,优选为4~5mS/cm。上样体积20~40CV; 用pH为6.0~6.5的50mM Tris、50mM NaAc缓冲液,以170~240cm/h的线性 流速进行洗脱,收集含有OsrhGH的洗脱液,获得含OsrhGH的初级产物I;
(3)采用Q Sepharose FF层析介质进行中级分离纯化。采用10~15倍柱体 积的pH为7.0~7.5的25mM Tris-HCl缓冲液,以120~300cm/h的流速平衡柱 子;将步骤2的含OsrhGH的洗脱液中加入约等体积的纯水,并调节pH至7.2~ 7.4,作为此步层析的上样液,其中样品电导为3~3.4mS/cm;用4~6倍柱体积、 pH为7.2~7.4、电导5.5~6.0mS/cm的25mM Tris-HCl,35mM NaCl缓冲液以 120~300cm/h的流速进行杂蛋白的洗脱;用4~6倍柱体积、pH为7.2~7.4、 电导8.1~8.6mS/cm的25mM Tris-HCl,60mM NaCl缓冲液以120~300cm/h的 流速进行OsrhGH的洗脱,获得含OsrhGH的中级产物II;
(4)采用Phenyl Bestarose HP层析进行精纯。用4~6倍柱体积的pH为7.2~ 7.4,电导为73~76mS/cm的8~12mM磷酸钠、0.5M硫酸铵的缓冲液以50~ 180cm/h的流速平衡柱子。将步骤3得到的中级纯度的洗脱样品采用3mM硫酸 铵调节电导至75~78mS/cm,pH调节至7.2~7.4,作为此步层析的上样液;用 pH为7.2~7.4的8~12mM磷酸钠、0.5M硫酸铵缓冲液以50~180cm/h的流 速洗脱样品,收集含有重组人生长激素的洗脱液,获得纯度95%以上的的重组 人生长激素。
本发明人依托公司两大优势平台——稻胚乳细胞生物反应器的高效表达技 术平台及重组蛋白纯化技术平台,采用水稻胚乳细胞高效表达出重组人生长激 素,经纯化后的植物源重组人生长激素具有高活性,高表达量,纯化工艺简单, 成本低廉等优点。目前获得的基因工程水稻每公斤稻谷可获得约80mg的重组人 生长激素,按照市场上粉针60元/mg(水剂120元/mg)计算,每公斤水稻产 值达4800(9600)元。可有效降低生长激素治疗成本,为了家庭贫困的矮小症 患者带来福音。
附图说明
图1、3种提取液缓冲体系的SDS-PAGE(左)及Western Blot(右)检测 结果。
图2、4种阳离子层析介质对OsrhGH的结合情况。
图3、不同pH值酸沉对提取液中OsrhGH含量的影响。
图4、不同pH值酸沉前后对提取液中OsrhGH活性影响。
图5、MMC层析上样液pH的优化。
图6、MMC层析洗脱条件的摸索。
图7、MMC层析洗脱条件的优化。
图8、MMC层析载量测定中穿透液的SDS-PAGE及Western Blot检测。
图9、Q FF层析载量测定中穿透液电泳及Western Blot检测图。
图10、Phenyl HP及Octyl FFSDS-PAGE检测结果。
图11、Phenyl HP层析条件优化1SDS-PAGE检测结果。
图12、Phenyl HP层析条件优化2(左)及优化3(右)SDS-PAGE检测结 果。
图13、不同Q FF层析上样量条件下的Phenyl HP层析洗脱液SDS-PAGE 检测结果。
图14、MMC层析3批验证层析图谱。
图15、Q FF层析3批验证层析图谱。
图16、Phenyl HP 3批验证层析图谱。
图17、提纯得到的OsrhGH SDS~PAGE检测结果。
图18、提纯得到的OsrhGH活性测定结果。
具体实施方式
以下通过结合附图详细说明本发明的特点和优点。所提供的实施例仅是对 本发明方法的举例说明,而不以任何方式限制本发明揭示的其余内容。
以下实施例中使用的Bestarose Diamond MMC(MMC)、Phenyl Bestarose HP(Phenyl HP)填料,生产商是博格隆(上海)生物技术有限公司;Q Sepharose FF(Q FF)填料,生产商是通用电气(GE Healthcare)公司;XK 26/20、XK16/20 层析柱,购自通用电气(GE Healthcare)公司;其它材料或试剂如无特殊说明均 为常规市售产品;
【实施例1】从基因工程稻米中提取OsrhGH
1.提取液缓冲体系的确定
分别用10mM的Tris-HCl缓冲液、10mM的PB缓冲液和10mM柠檬酸缓 冲液(pH均为7.5±0.1)提取5g米粉(1:5提取),离心后过滤,取16μL样品 进行SDS-PAGE和Western Blot检测,检测图谱如图1所示。同时初步采用ELISA 法进行测定,结果显示柠檬酸缓冲液提取的目的蛋白量最多(见表1及图1), 但是当样品放置过夜后发现,柠檬酸缓冲液提取的蛋白损失严重(表1),Tris缓 冲液样品最稳定。因此最终决定采用Tris缓冲体系作为OsrhGH提取液的基本 缓冲成分。并在此基础上不断优化并形成最终的提取液配方:25mM Tris-乙酸, 25mM NaAc,pH 7.5。
表1 3种缓冲液提取后样品放置前后ELISA检测结果
Figure BDA0001831724540000061
2.从基因工程稻米中提取OsrhGH
将基因工程稻谷脱壳加工成半精米,研磨成80~100目的米粉。将米粉与 提取缓冲液以1:5(重量/体积,kg/L)的比例混合,于25~28℃提取1小时。 提取缓冲液的成分为:25mM Tris-乙酸,25mMNaAc,pH 7.5。将上述得到的混 合物用20%乙酸调节pH至5.4~5.6,放置沉淀至少2小时后,加入2~5%的珍 珠岩进行压滤,压滤完毕后复调pH至5.4~5.6,0.22μm滤膜过滤后即为OsrhGH 的提取液。
【实施例2】通过阳离子交换层析进行初级纯化
1.4种常见阳离子层析介质对OsrhGH结合能力比较
将OsrhGH提取液pH调节至5.8,分别上样至SP FF(博格隆)、UNO S(伯 乐)、CM FF(GE)和MMC(博格隆)层析介质上,检测4种介质的流穿液, 发现MMC的结合最为牢固(图2),因此选择MMC作为第一步初级纯化的介 质。
2.提取液的预处理
OsrhGH提取液分别调酸至pH 6.9(pH7.5缓冲液提取后的提取液即为 pH6.9)、6.3、5.8、5.5、5.25、5.0、4.8,各取3ml/管室温放置4h,离心后,上 清分别留样,其中pH6.9、5.25、5.0、4.8送样测定细胞活性,SDS-PAGE及 Western Blot结果如图3所示。对酸沉样品的SDS-PAGE结果进行Quantity One 灰度分析,发现酸沉至pH5.8时,目的蛋白条带回收最高;当pH值低于pH5.2 时,目的蛋白明显损失。对各酸沉样品进行细胞活性测定,结果发现酸沉对样 品活性影响较小,目的蛋白降解后可能仍具有活性(图4)。结合PAGE上目的条带的含量和活性测定结果来确定酸沉pH值,最终认为酸沉pH值不得低于 pH5.25,因此,适合的酸沉pH值范围为5.2-6.9之间
3.MMC上样pH值的优化
前期的研究表明当pH为5.8时,MMC层析柱的载量约为10CV,而细胞活 性测定结果证明pH5.0条件下酸沉对提取液蛋白活性无影响(图4)。因此尝试 降低上样液pH值,以提高载量。故分别设置pH5.0,电导4.5mS/cm,6.5mS/cm; pH5.5,电导4.5mS/cm、6.5mS/cm以及pH5.8,电导4.5mS/cm,收集各条件样 品进行检测(见图5)。由于低于pH5.2的酸沉条件对hGH的细胞活性和目的蛋 白回收有明显影响;综合pH5.0上样时洗脱液中目的蛋白纯度的明显降低,认 为上样pH值应在pH5.5和pH5.8中选取;pH5.8,4.5mS/cm上样时,载量较低,约为8CV,但纯化后目的蛋白回收较高;pH5.5,4.5mS/cm上样时,载量大于 20CV,纯化后的目的蛋白纯度稍有降低,可作为优选的上样条件。MMC层析 作为第一步提纯,目的蛋白的回收更为重要,据此确定pH5.5,电导4.5mS/cm 为优选的上样条件。
4.MMC层析洗脱条件的确定
采用pH5.8的上样条件,再平衡后,先用pH6.3的缓冲液提高MMC柱的 pH值后,在50mMTris,50mM NaAC,pH6.3的缓冲液体系下进行升盐洗脱,0~ 2MNaCl,20CV,收集各样品进行检测。结果显示50mMTris,50mM NaAC,pH6.3 可将大部分目的蛋白洗脱下来,洗脱液纯度改善明显(如图6);在50mM Tris, 50mM NaAC,pH 6.3的基础上,对pH和盐浓度进行改变,测试了:50mM Tris, 50mM NaAC,pH 6.5;50mM Tris,50mM NaAC,100Mm NaCl,pH6.3;50mMTris,50mMNaAC,pH6.3等三种条件进行洗脱,观察MMC层析的去杂效果。 如图7结果所示,50mM Tris,50mM NaAC,pH6.3作为洗脱液效果最佳,可通 过增加洗脱液的体积来提高收率。
5.MMC载量的确定
取80g OsrhGH米粉加入400ml提取液,搅拌提取1h后,酸沉2h。采用Tricorn 10层析柱,柱体积5ml,上样流速1.5ml/min;上样约50mL时开始采用分部收 集器按照10ml即2CV开始自动收集,对收集的样品进行SDS-PAGE及Western Blot检测。结果显示第24管有信号出现,即MMC层析柱的最大载量为24× 2+10=58CV,去除管道死体积,约55CV。若按照80%的载量算,最终确定MMC 的上样量为40CV(图8)。
6.MMC层析条件的确定
采用4~6个柱体积(CV)的pH为5.4~5.6的50mM Tris、50mM NaAc 的缓冲液,以170~240cm/h的线性流速平衡层析柱;以实施例1的调配液为层 析上样液,其中上样液pH为5.4~5.6、电导3.5~4.5mS/cm,上样体积20~40CV; 用pH为6.2~6.4的50mM Tris、50mMNaAc缓冲液,以170~240cm/h的线性 流速进行洗脱,收集含有OsrhGH的洗脱液,获得初级纯度的OsrhGH。
【实施例3】通过Q FF阴离子交换层析进行中级纯化
1.Q FF层析最大载量的测定
将MMC层析上样量为40CV的层析洗脱液倍比稀释后,调节pH至7.2~ 7.4,作为QFF层析载量测定的上样液。采用1mL Q FF层析柱进行测定,流速 0.25mL/min。收集穿透液,并进行SDS-PAGE及Western Blot检测(图9),结 果显示Q FF层析的最大载量在50CV(即泳道20)和70CV(即泳道30)之间。 根据80%的最大载量上样,其上样量为40CV。
2.Q FF层析条件的确定
经过不断优化,最终确定Q FF层析的条件如下:采用10~15个柱体积的 pH为7.2~7.4的25mM Tris-HCl缓冲液,以120~300cm/h的流速平衡柱子; 将步骤2的含OsrhGH的洗脱液中加入约等体积的纯水,并调节pH至7.2~7.4, 作为此步层析的上样液,其中样品电导为3~3.4mS/cm;用4~6个柱体积、pH 为7.2~7.4、电导5.5~6.0mS/cm的25mM Tris-HCl,35mM NaCl缓冲液以 120~300cm/h的流速进行杂蛋白的洗脱;用4~6个柱体积、pH为7.2~7.4、 电导8.1~8.6mS/cm的25mM Tris-HCl,60mM NaCl缓冲液以120~300cm/h的 流速进行OsrhGH的洗脱,获得中级纯度的OsrhGH。
【实施例4】通过疏水层析进行精纯
1.疏水层析介质的确定
将实施例3中Q FF层析洗脱样品,加入终浓度为1M的硫酸铵,调节pH 至7.5即为上样液。将层析上样液分别上至柱体积均为5mL的phenyl HP,Octyl FF层析柱,上样流速1.25mL/min,上样体积为50mL;采用线性洗脱的方式进 行洗脱。SDS-PAGE结果显示(图10),Phenyl HP层析的8号样下面几乎无降 解带(图10所示),目的蛋白主要集中在洗脱峰主峰的前半部分,9号、10号 降解带开始大量被洗脱。Octyl FF层析线性洗脱,由于分辨率不如phenyl HP, 只有一个主峰,降解蛋白主要在6号样即主峰的前半部分存在。优化空间不大。因此初步确定Phenyl HP层析作为精纯步骤。
2.phenyl HP层析的优化
确定Phenyl HP介质后,分别对Phenyl HP层析条件进行如下优化:(1)1M 硫酸铵上样。0.5M硫酸铵(含10mM PB,pH 7.5)洗杂,0~0.5M硫酸铵(含 10mM PB,pH 7.5)线性洗脱;(2)0.5M硫酸铵上样,0.25M硫酸铵洗脱;(3) 1M硫酸铵上样,0.5M硫酸铵,0.25M硫酸铵,0.125M硫酸铵(含10mM PB, pH 7.5)梯度洗脱。通过比较3个优化条件下的层析图谱及SDS-PAGE检测结果 (图11、图12),最终确定Phenyl HP层析选择0.5M硫酸铵浓度上样,洗脱液硫酸铵浓度约在0.25M左右。
3.Q FF层析不同上样量对Phenyl HP层析行为的影响
根据前期的试验结果,当Q层析上样量40CV时,其层析行为已经发生变 化,后续的Phenyl HP的层析行为虽然没有变化,但是样品的纯度明显降低。为 此,对Q FF层析及Phenyl HP层析的上样体积进行如下设计:(1)将Q FF上 样10CV层析洗脱液按照10CV上样Phenyl HP层析;(2)将Q FF上样20CV 层析洗脱液按照5CV上样Phenyl HP;(3)将Q FF上样20CV层析的洗脱液按 照10CV上样Phenyl HP;结果显示Q FF 20CV、Phenyl HP 5CV与Q FF10CV Phenyl HP 10CV的洗脱样品纯度较高,明显比Q FF 20CV和Phenyl HP 10CV的 高(见图13)。综合成本等因素,最终选择Q FF的上样量为20CV,Phenyl HP的 上样量为5CV。
4.Phenyl HP层析条件的确定
用4~6倍柱体积的pH为7.2~7.4的电导为73~76mS/cm的8~12mM 磷酸钠、0.5M硫酸铵的缓冲液以50~180cm/h的流速平衡柱子。将Q FF中级 纯度的洗脱样品采用3mM硫酸铵调节电导至75~78mS/cm,pH调节至7.2~ 7.4,作为此步层析的上样液;用pH为7.2~7.4的8~12mM磷酸钠、0.5M硫 酸铵缓冲液以50~180cm/h的流速洗脱样品,收集含有重组人生长激素的洗脱 液,获得纯度95%以上的的重组人生长激素。
【实施例5】小试工艺验证
根据实施例1~4确定的工艺条件,对小试工艺进行了多批验证,确定了工 艺的可行性(如图14~16),经过3步纯化后产量可达87mg/kg糙米(表2)。 同时产品的内毒素含量<5EU/mg(表3)、经SEC-HPLC测试单体纯度>97%(表 4,图17),宿主DNA残留<1ng/mg(表5),均符合2015版中国药典标准。在 宿主蛋白残留方面,目前暂时高于药典标准,但是由于表达体系不同,宿主蛋 白的毒性也不同,后期将进一步研究宿主蛋白去除及可能的毒性作用。另外在 生物活性方面,OsrhGH与中检院标准品的活性相当,甚至更高(图18)。
表2三批层析收率
Figure RE-GDA0001934706230000011
表3 OsrhGH内毒素检测结果
项目 201705001 201705002 201705003
内毒素 2.2~4.4EU/mg 1.1~2.2EU/mg 1~2EU/mg
表4 4批OsrhGH的SEC~HPLC检测结果
项目 标准品 001批 002批 003批 004批
hGH单体 99.250 98.061 98.374 97.779 98.223
hGH二聚体 0.554 1.246 1.124 1.470 1.185
hGH 99.804 99.307 99.498 99.249 99.408
表5 OsrhGH中OHCP、DNA残留检测
项目 201706001 201706002 201706003 201706004
HCP残留 8.3ug/mg 12.7μg/mg 4.5μg/mg 5.7μg/ml
DNA残留 0.22ng/mg 0.55ng/mg 0.63ng/mg 0.38ng/mg

Claims (10)

1.一种从基因工程水稻种子中分离纯化重组人生长激素的方法,依次包含以下步骤:
1)从重组人生长激素基因工程水稻种子中提取含有重组人生长激素的粗提取物;
2)将含有重组人生长激素的粗提取物经Bestarose Diamond MMC阳离子交换层析分离纯化,得到初级产物I;
3)将初级产物I经Q Sepharose FF阴离子交换层析分离纯化,得到含有重组人生长激素的中级产物II;
4)将中级产物II经phenyl HP疏水层析分离纯化,得到纯化的重组人生长激素目标物。
2.根据权利要求1所述的方法,其特征在于,步骤1)所述重组人生长激素粗提取物是通过下述方法制备:
i)将含有重组人生长激素的基因工程水稻种子粉碎后与提取缓冲液按重量/体积比(kg/L)=1∶5混合,在4~30℃下提取1~2小时;所述提取缓冲液包含5~25mM Tris,5~25mM NaAC,pH为5.5~7.5;
ii)将步骤i)的提取混合物的pH调节至5.0~5.8,并沉淀1~4小时;
iii)过滤步骤ii)的混合物,收集滤液,获得含有高浓度重组人生长激素的粗提物溶液。
3.根据权利要求1所述的方法,其特征在于,所述步骤2)中,Bestarose Diamond MMC阳离子交换层析采用4~6倍柱体积的pH为5.4~5.6的50mM Tris、50mM NaAc的缓冲液,以170~240cm/h的线性流速平衡层析柱;以步骤1)获得的粗提取物为层析上样液,上样缓冲液的pH为5.2~5.8,电导为3.5~5mS/cm;所述Bestarose Diamond MMC阳离子层析中洗脱目标物的缓冲液包含50mM Tris、50mM NaAC,pH为6.2~6.4。
4.根据权利要求3所述的方法,其特征在于,所述Bestarose Diamond MMC阳离子交换层析的上样缓冲液的pH为5.2~5.8,电导为4~5mS/cm,上样量为20~40倍柱体积。
5.根据权利要求1所述的方法,其特征在于,所述步骤3)中,Q Sepharose FF阴离子层析采用10~15倍柱体积的pH为7.0~7.6的25mM Tris-HCl缓冲液,以120~300cm/h的流速平衡柱子;所述Q Sepharose FF层析中的上样液为步骤
2)中MMC阳离子层析洗脱得到的初级产物I调配而成,调配方法为在所述初级产物I中加入等体积的纯水,并调节pH至7.0~7.6,电导为3~3.4mS/cm。
6.根据权利要求1所述的方法,其特征在于,所述Q Sepharose FF阴离子层析中,洗脱杂蛋白的缓冲液包含5~25mM Tris-HCl缓冲液或磷酸盐缓冲液,30~40mM NaCl溶液,pH为7.0~7.5;所述Q Sepharose FF阴离子层析洗脱重组人生长激素的缓冲液包含5~25mMTris-HCl,60mM NaCl溶液,pH为7.0~7.5。
7.根据权利要求6所述的方法,其特征在于,所述Q Sepharose FF阴离子层析使用的洗脱缓冲液包含:洗脱杂蛋白的缓冲液为25mM Tris-HCl,35mM NaCl缓冲液,pH为7.2~7.4,电导为5.5~6.0mS/cm;以及,
洗脱重组人生长激素的缓冲液为25mM Tris-HCl,60mM NaCl缓冲液,pH为7.2~7.4,电导为8.1~8.6mS/cm。
8.根据权利要求1所述的方法,其特征在于,所述步骤4)中,phenyl Bestarose HP层析采用4~6倍柱体积的pH为7.2~7.4,电导为73~76mS/cm的8~12mM磷酸钠、0.5M硫酸铵的缓冲液以50~180cm/h的流速平衡柱子;上样液为Q Sepharose FF层析洗脱液即中级产物II调配而成,调配方法为在所述Q Sepharose FF层析洗脱液中加入终浓度0.5~1M的硫酸铵,并调节pH至7.2~7.4。
9.根据权利要求1或8所述的方法,其特征在于,所述Q Sepharose FF层析的上样量为20倍柱体积,Phenyl Bestarose HP层析的上样量为5倍柱体积。
10.根据权利要求1或8所述的方法,其特征在于所述Phenyl Bestarose HP层析洗脱缓冲液为含有8~12mM磷酸钠,0.5M硫酸铵的缓冲液,pH为7.2~7.4。
CN201811208090.8A 2018-10-17 2018-10-17 一种从基因工程水稻种子中分离纯化重组人生长激素的方法 Pending CN111057138A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811208090.8A CN111057138A (zh) 2018-10-17 2018-10-17 一种从基因工程水稻种子中分离纯化重组人生长激素的方法
PCT/CN2019/110385 WO2020078254A1 (zh) 2018-10-17 2019-10-10 一种从基因工程水稻种子中分离纯化重组人生长激素的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811208090.8A CN111057138A (zh) 2018-10-17 2018-10-17 一种从基因工程水稻种子中分离纯化重组人生长激素的方法

Publications (1)

Publication Number Publication Date
CN111057138A true CN111057138A (zh) 2020-04-24

Family

ID=70283692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811208090.8A Pending CN111057138A (zh) 2018-10-17 2018-10-17 一种从基因工程水稻种子中分离纯化重组人生长激素的方法

Country Status (2)

Country Link
CN (1) CN111057138A (zh)
WO (1) WO2020078254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845079A (zh) * 2022-11-24 2023-03-28 武汉禾元生物科技股份有限公司 一种重组人血清白蛋白与重组人生长激素的偶联物及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337493B (zh) * 2021-06-30 2022-10-14 武汉禾元生物科技股份有限公司 一种以基因工程水稻表达和制备重组瑞替普酶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075132A2 (en) * 2000-04-03 2001-10-11 Monsanto Technology Llc Method for producing authentic cytokines in plants
KR20020080108A (ko) * 2001-04-11 2002-10-23 한미약품공업 주식회사 재조합 대장균으로부터 인간 성장 호르몬의 정제 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075132A2 (en) * 2000-04-03 2001-10-11 Monsanto Technology Llc Method for producing authentic cytokines in plants
KR20020080108A (ko) * 2001-04-11 2002-10-23 한미약품공업 주식회사 재조합 대장균으로부터 인간 성장 호르몬의 정제 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKANARI S.等: "Production of human growth hormone in transgenic rice seeds: co-introduction of RNA interference cassette for suppressing the gene expression of endogenous storage proteins", 《PLANT CELL REP》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845079A (zh) * 2022-11-24 2023-03-28 武汉禾元生物科技股份有限公司 一种重组人血清白蛋白与重组人生长激素的偶联物及其制备方法
CN115845079B (zh) * 2022-11-24 2023-07-18 武汉禾元生物科技股份有限公司 一种重组人血清白蛋白与重组人生长激素的偶联物及其制备方法
WO2024109533A1 (zh) * 2022-11-24 2024-05-30 武汉禾元生物科技股份有限公司 一种重组人血清白蛋白与重组人生长激素的偶联物及其制备方法

Also Published As

Publication number Publication date
WO2020078254A1 (zh) 2020-04-23

Similar Documents

Publication Publication Date Title
EP2632944B1 (en) Method for purifying human granulocyte-colony stimulating factor from recombinant e. coli
JPH10506924A (ja) 動物性タンパク質を含まないエリトロポイエチンの製造のための方法
CN109929027B (zh) 采用线性洗脱步骤的重组融合蛋白纯化方法
JP2017526649A (ja) rHu−GCSFの精製のための新規プロセス
CN111057138A (zh) 一种从基因工程水稻种子中分离纯化重组人生长激素的方法
CN109879930B (zh) 一种重组蛋白的纯化方法
CN113817686B (zh) 一种杂交瘤细胞株及其分泌的单克隆抗体和应用
CN111320699B (zh) 从基因工程水稻种子中分离纯化重组人血清白蛋白-类胰岛素融合蛋白的方法
CN109929038B (zh) Vegf捕获剂融合蛋白的纯化方法
RU2643365C2 (ru) Способ очистки дарбэпоетина альфа
CN113480632B (zh) 一种在CHO细胞中表达的重组蛋白rhCG纯化工艺
WO2011024024A1 (en) A process for recovering darbepoeitin alfa isoforms
JPH02115196A (ja) エリスロポエチンの精製法
EP3731873B1 (en) Process for providing pegylated protein composition
KR100531670B1 (ko) 인체 인터페론 알파의 제조방법
CN105541994B (zh) 一种血小板生成素或其变体或衍生物的纯化方法
CN112341535A (zh) 一种采用离子交换色谱法分离纯化制备胰岛素的方法
CN116199768B (zh) 高纯度植物源重组人血清白蛋白的制备方法及其应用
CN113880908B (zh) 纯化重组人血清白蛋白的融合蛋白的方法
CN108017688B (zh) 一种目的蛋白的纯化方法
WO2011015919A1 (en) A highly efficient process of purification and production of recombinant infliximab
EP3153522A1 (en) Process for the purification of erythropoietin and darbepoetin alfa
WO2011015920A2 (en) A highly efficient process of purification and production of recombinant trastuzumab
CN107698676A (zh) 一种高纯度尿促性素的提取制备方法
CN118240054A (zh) 一种纯化Sox2蛋白的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination