CN111056847B - 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法 - Google Patents

一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN111056847B
CN111056847B CN201911394024.9A CN201911394024A CN111056847B CN 111056847 B CN111056847 B CN 111056847B CN 201911394024 A CN201911394024 A CN 201911394024A CN 111056847 B CN111056847 B CN 111056847B
Authority
CN
China
Prior art keywords
ceramic
equal
fluorescent ceramic
nitrogen oxide
white light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911394024.9A
Other languages
English (en)
Other versions
CN111056847A (zh
Inventor
张乐
王蕊
孙炳恒
康健
陈东顺
邵岑
黄国灿
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201911394024.9A priority Critical patent/CN111056847B/zh
Publication of CN111056847A publication Critical patent/CN111056847A/zh
Application granted granted Critical
Publication of CN111056847B publication Critical patent/CN111056847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种白光LED用高光效、高显指的氮氧化物荧光陶瓷及其制备方法,该荧光陶瓷的化学通式为:(Y1‑xCex)3Al5Li12y(O1‑yNy)12,其中,0.002≤x≤0.01,0.0<y≤0.2;将称量的初始原料、烧结助剂与无水乙醇按一定比例混合球磨,将球磨得到的混合浆料进行干燥,过筛;将过筛后的粉体进行成型,煅烧,得到陶瓷素坯,再将陶瓷素坯进行烧结,冷却到室温后进行双面抛光处理,得到所述氮氧化物荧光陶瓷。本发明首次引入共价性更强的Al3+‑N3‑键替代原有Ce:YAG陶瓷材料的Al3+‑O2‑键,实现光谱大范围红移,陶瓷的制备工艺简单,成本低。

Description

一种白光LED用高光效、高显指的氮氧化物荧光陶瓷及其制备 方法
技术领域
本发明涉及一种荧光陶瓷,特别涉及一种白光LED用高光效、高显指的氮氧化物荧光陶瓷及其制备方法,属于无机发光材料技术领域。
背景技术
白光LED(white light emitting diode)作为第四代照明光源,具有低能耗、高效率、环境友好、寿命长等显著优势。当前白光LED最高效的实现方式为蓝光InGaN芯片结合稀土离子铈掺杂的钇铝石榴石(Ce:Y3Al5O12)黄色荧光粉,通过环氧树脂、硅胶等有机物封装后发射白光。然而,随着人们的照明需求不断提高,这种有机物封装荧光粉的方式已不能满足高功率高显色性能的白光LED 的需求。高功率以及高能量密度激发荧光粉将产生大量热量致使环氧树脂、硅胶等有机物加速老化从而导致白光LED的色温色坐标漂移同时使用寿命大大缩短。
Ce:YAG荧光陶瓷因具有高热导率、抗热冲击性好、光衰小等优势,能够有效替代传统“Ce:YAG荧光粉+有机树脂”技术方案,并且避免了点胶与混胶过程。然而荧光陶瓷的方案仍然有诸多问题亟需解决,其中最为突出的就是荧光光谱中缺少红光成分,从而导致的白光色温高,不柔和,并且在该方案下得到的 LED器件的发光效率和显色指数也普遍较低。
众所周知,Ce:YAG的发光特性与稀土离子Ce3+所处的晶体场强度密切相关。因此针对上述问题,研究人员针对Ce:YAG荧光陶瓷晶体结构的调整展开了相应研究。其中大部分均为具有较大离子半径的阳离子掺杂,如Gd、La、Tb等。然而该方法具有很大的局限性,同时还会导致发光离子与其他激活离子间产生能量传递导致发光强度下降并出现温度猝灭效应。但是,通过Al3+与具有更强共价性的阴离子,如N3-,形成Al3+-N3-键,从而取代Al3+-O2-键,可在保证发光效率的前提下,实现光谱的红移。由于阴离子的离子半径越大所带的负电荷越多,越容易受到阳离子极化,使得其受到的电子云膨胀效应也越强。电子云膨胀效应的增强,进一步压缩激发态d能级的位置,使发射光谱的发射峰向长波段移动(A.A. Setlur etal.Chem.Mater.20:6722(2008),US Pat.197,433)。但是,N3-引入后会导致的化学式失衡,致使样品无法形成YAG相(J.Am.Ceram,Soc,2019,DOI: 10.1111/jace.16155,金属学报,2016,52(05):607-613)。而Li+很容易与氧、氮、硫等离子化合,通过引入Li+作为电荷补偿剂,可使得化学式平衡,从而提高N3+的固溶度。
此外,Li+的偏析会对YAG晶粒的界面进行化学修饰,使晶粒尺寸发生改变,稳定晶粒界面,保证晶粒的均一生长,从而减少由于光的折射带来的量能损失,提高陶瓷的发光效率。
然而,由于在氮化物荧光粉制备过程中发光离子对晶体基质结构的要求较高,若采用传统的荧光陶瓷制备工艺,在混料和热处理时,易造成氮氧化物晶体结构缺陷和破坏,从而大幅降低发光强度。此外,传统的真空烧结以及气氛烧结通常需要在高温下长时间保温,促使取代离子更多的进入晶格。这些不利因素限制了其应用。CN106242539A通过预先使用高温固相反应法合成荧光粉,再将氮氧化物荧光粉与氧化物陶瓷粉体球磨混合,通过二次烧结制备的方法得到氮氧化物荧光陶瓷。该工艺虽然保障了氮氧化物晶体场结构,但是需要经过两步烧结,造成较大的能源消耗,并且效率低下,难以满足工业化生产以及市场化应用。
发明内容
为了克服传统Ce:YAG荧光陶瓷发射波长较短,在蓝光LED芯片的激发下色温较高,显指偏低的难题,本发明提供一种白光LED用高光效、高显指的氮氧化物荧光陶瓷。
为实现上述目的,本发明采用的技术方案如下:一种白光LED用高光效、高显指的氮氧化物荧光陶瓷,其化学通式为:
(Y1-xCex)3Al5Li12y(O1-yNy)12
其中,0.002≤x≤0.01,0.0<y≤0.2。
本发明还提供了一种上述氮氧化物荧光陶瓷的制备方法,包括以下步骤:
步骤一:按化学式(Y1-xCex)3Al5Li12y(O1-yNy)12,0.002≤x≤0.01,0.0<y≤0.2中各元素的化学计量比分别称取氧化钇、氧化铝、氧化铈、氧化锂及氮化铝,作为初始原料;
步骤二:将称量的初始原料、烧结助剂与无水乙醇置入球磨罐中,进行行星式球磨混合;
步骤三:将球磨后的混合浆料进行干燥,过筛,然后将粉体置于马弗炉中煅烧;
步骤四:将煅烧后的粉体进行干压成型,干压成型后再进行冷等静压成型,得到致密陶瓷素坯;
步骤五:将步骤四得到的陶瓷素坯进行烧结,冷却到室温后再进行双面抛光处理,得到所述氮氧化物荧光陶瓷。
优选的,步骤二中,所述球磨转速为120-160r/min,球磨时间为15-20h。
优选的,步骤二中,所述烧结助剂由占原料粉体总质量0.4-0.6%的正硅酸乙酯和0.04-0.06%的氧化镁组成,无水乙醇与原料粉体总量的质量比为1-2:1。
优选的,步骤三中,所述干燥温度为50-60℃,干燥时间为10-20h。
优选的,步骤三中,所述煅烧温度为400-900℃,升温速率为2-6℃/min,保温时间为3-6h,然后以10-30℃/min的速率降温至室温。
优选的,步骤四中,所述干压成型压力为3-9MPa,时间为180-260s;所述冷等静压成型压力为150-220MPa,保压220-360s。
优选的,步骤五中,所述烧结方式为真空烧结、热压烧结或还原气氛烧结中一种,所述烧结温度为1500-1750℃,保温8-16h。
与现有技术相比,本发明具有如下有益效果:
(1)为了调控晶体场促使发射光谱红移,本发明首次引入共价性更强的 Al3+-N3-键代替原有的Ce:YAG中的Al3+-O2-键,实现光谱大范围红移。
(2)为了平衡化学式提高N3-的固溶度,本发明通过引入Li+,作为Al3+-N3键取代Al3 +-O2-键时的补偿电荷,提高N3-的固溶度。
(3)引入Li+可以维持晶粒界面能量平衡,从而稳定晶粒生长,使得晶粒大小均一,提高陶瓷的发光效率。
(4)相较于目前已有的两步法制备氮氧化物荧光陶瓷技术,本发明采用的一步压力烧结法既保障了氮氧化物晶体场结构的稳定性,并且缩短了制备时间,减少了能耗,降低了成本。
(5)本发明提出的用于白光LED照明具有高光效、高显指的氮氧化物荧光陶瓷与蓝光芯片组装后得到的白光LED器件发光效率较高,范围在100-150 lm/W之间,显色指数可达到80-90。
附图说明
图1为本发明实施例1制备得到的氮氧化物荧光陶瓷的XRD图。
图2为本发明实施例1制备得到的氮氧化物荧光陶瓷在460nm蓝光LED芯片激发下的电致发光光谱;
图3为本发明实施例1制备得到的氮氧化物荧光陶瓷的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中所使用的AlN纯度>99.9%,平均粒径为2-50nm,Y2O3纯度>99.9%,平均粒径为20-100nm,CeO2纯度>99.9%,平均粒径为10-50nm, Al2O3纯度>99.9%,平均粒径为20-100nm,LiO2纯度>99.9%,平均粒径为0.1-25 nm。
实施例1
Ce:LiYAGN荧光陶瓷材料(Y0.998Ce0.002)3Al5Li0.12(O0.99N0.01)12的制备方法如下:
(1)以总量60g计,按上述化学式中各元素的化学计量比称取Y2O3:34.115 g,Al2O3:25.108g,CeO2:0.104g,AlN:0.496g,Li2O:0.181g;
(2)向称量的原料粉体中加入0.6wt.%的正硅酸乙酯和0.04wt.%的氧化镁作为烧结助剂,加入75ml无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为15h,转速为120r/min;
(3)将球磨得到的浆料进行烘干,烘干温度为60℃,时间10h,随后过 80目筛,将过筛好的粉体在马弗炉中煅烧,升温速率为2℃/min,烧结温度为 400℃,保温时间为6h,然后以10-30℃/min的速率降温至室温;
(4)将煅烧后的粉体导入钢模中,在9MPa压强下保压260s压制成型,再进行冷等静压成型,压力为150MPa,并保压220s,得到致密陶瓷素坯;
(5)将得到的陶瓷素坯进行热压烧结,以2℃/min的升温速率升至 1600℃,保温8h,随后冷却至室温;最后将烧结好的样品进行双面抛光处理。
附图1是本实施例制备的样品的X射线衍射图谱,XRD的测试结果显示,所制备的样品的X射线衍射峰与钇铝石榴石(JCPDS(#033-0040))的标准卡片相吻合。证明了Al3+-N3-键成功取代Al3+-O2-键进入晶格中,没有导致晶格被破坏。
附图2是本实施例制备的样品在460nm蓝光激发下的电致发光光谱,可以看到。黄光区的中心波长范围位于580nm,较传统的Ce:YAG荧光陶瓷材料红移30nm,有效补充了光谱中的红光成分,显色指数为82,发光效率为122lm/W。
附图3是本实施例制备的样品的SEM图,从图中可以看出,Li+的引入可有效控制晶粒大小,减少能量损失,提高激发光的利用率。
实施例2
Ce:LiYAGN荧光陶瓷材料(Y0.996Ce0.004)3Al5Li0.36(O0.97N0.03)12的制备方法如下:
(1)以总量60g计,按上述化学式中各元素的化学计量比称取Y2O3:34.049 g,Al2O3:23.874g,CeO2:0.208g,AlN:1.489g,Li2O:0.543g;
(2)向称量的原料粉体中加入0.6wt.%的正硅酸乙酯和0.05wt.%的氧化镁作为烧结助剂,加入90ml无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为16h,转速为130r/min;
(3)将球磨得到的浆料进行烘干,烘干温度为58℃,时间13h,随后过100目筛,将过筛好的粉体在马弗炉中煅烧,升温速率为3℃/min,烧结温度为500℃,保温时间为5h,然后以10-30℃/min的速率降温至室温;
(4)将煅烧后的粉体导入钢模中,在8MPa压强下保压240s压制成型,再进行冷等静压成型,压力为170MPa,并保压260s,得到致密陶瓷素坯;
(5)将得到的陶瓷素坯进行热压烧结,以3℃/min的升温速率升至 1500℃,保温10h,随后冷却至室温;最后将烧结好的样品进行双面抛光处理。
经过观测,本实施例2中所制备得到氮氧化物荧光陶瓷材料XRD的测试结果显示,所制备的样品的X射线衍射峰与钇铝石榴石(JCPDS(#033-0040))的标准卡片相吻合,仍为YAG相。本实施例制备的样品在458nm蓝光激发下,显色指数为84,发光效率为135lm/W。经SEM检测,可看到晶粒的大小均一。
实施例3
Ce:LiYAGN荧光陶瓷材料(Y0.994Ce0.006)3Al5Li0.6(O0.95N0.05)12的制备方法如下:
(1)以总量60g计,按上述化学式中各元素的化学计量比称取Y2O3:33.809 g,Al2O3:22.525g,CeO2:0.311g,AlN:4.118g,Li2O:0.900g;
(2)向称量的原料粉体中加入0.5wt.%的正硅酸乙酯和0.05wt.%的氧化镁作为烧结助剂,加入100ml无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为17h,转速为140r/min;
(3)将球磨得到的浆料进行烘干,烘干温度为55℃,时间16h,随后过 150目筛。将过筛好的粉体在马弗炉中煅烧,升温速率为4℃/min,烧结温度为 600℃,保温时间为4h,然后以10-30℃/min的速率降温至室温;
(4)将煅烧后的粉体导入钢模中,在6MPa压强下保压220s压制成型,再进行冷等静压成型,压力为190MPa,并保压300s,得到致密陶瓷素坯;
(5)将得到的陶瓷素坯进行热压烧结,以4℃/min的升温速率升至 1700℃,保温12h,随后冷却至室温。最后将烧结好的样品进行双面抛光处理。
经过观测,本实施例3中所制备得到氮氧化物荧光陶瓷材料XRD的测试结果显示,所制备的样品的X射线衍射峰与钇铝石榴石(JCPDS(#033-0040))的标准卡片相吻合,仍为YAG相。本实施例制备的样品在456nm蓝光激发下,显色指数为90,发光效率为148lm/W。经SEM检测,可看到晶粒的大小均一。
实施例4
Ce:LiYAGN荧光陶瓷材料(Y0.992Ce0.008)3Al5Li1.2(O0.9N0.1)12的制备方法如下:
(1)以总量60g计,按上述化学式中各元素的化学计量比称取Y2O3:33.557 g,Al2O3:19.347g,CeO2:0.413g,AlN:4.912g,Li2O:1.791g;
(2)向称量的原料粉体中加入0.4wt.%的正硅酸乙酯和0.05wt.%的氧化镁作为烧结助剂,加入120ml无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为18h,转速为150r/min;
(3)将球磨得到的浆料进行烘干,烘干温度为52℃,时间18h,随后过 150目筛。将过筛好的粉体在马弗炉中煅烧,升温速率为5℃/min,烧结温度为700℃,保温时间为4h,然后以10-30℃/min的速率降温至室温;
(4)将煅烧后的粉体导入钢模中,在5MPa压强下保压200s压制成型,再进行冷等静压成型,压力为200MPa,并保压330s,得到致密陶瓷素坯;
(5)将得到的陶瓷素坯进行热压烧结,以5℃/min的升温速率升至 1650℃,保温14h,随后冷却至室温。最后将烧结好的样品进行双面抛光处理。
经过观测,本实施例4中所制备得到氮氧化物荧光陶瓷材料XRD的测试结果显示,所制备的样品的X射线衍射峰与钇铝石榴石(JCPDS(#033-0040))的标准卡片相吻合,仍为YAG相。本实施例制备的样品在454nm蓝光激发下,显色指数为88,发光效率为142lm/W。经SEM检测,可看到晶粒的大小均一。
实施例5
Ce:LiYAGN荧光陶瓷材料(Y0.99Ce0.01)3Al5Li2.4(O0.8N0.2)12的制备方法如下:
(1)以总量60g计,按上述化学式中各元素的化学计量比称取Y2O3:33.144 g,Al2O3:13.101g,CeO2:0.510g,AlN:9.723g,Li2O:3.544g;
(2)向称量的原料粉体中加入0.4wt.%的正硅酸乙酯和0.06wt.%的氧化镁作为烧结助剂,加入150ml无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为20h,转速为160r/min;
(3)将球磨得到的浆料进行烘干,烘干温度50℃,时间20h,随后过200 目筛。将过筛好的粉体在马弗炉中煅烧,升温速率为6℃/min,烧结温度为 800℃,保温时间为4h,然后以10-30℃/min的速率降温至室温;
(4)将煅烧后的粉体导入钢模中,在3MPa压强下保压180s压制成型,再进行冷等静压成型,压力为220MPa,并保压360s,得到致密陶瓷素坯;
(5)将得到的陶瓷素坯进行热压烧结,以6℃/min的升温速率升至 1750℃,保温16h,随后冷却至室温。最后将烧结好的样品进行双面抛光处理。
经过观测,本实施例5中所制备得到氮氧化物荧光陶瓷材料XRD的测试结果显示,所制备的样品的X射线衍射峰与钇铝石榴石(JCPDS(#033-0040))的标准卡片相吻合,仍为YAG相。本实施例制备的样品在450nm蓝光激发下,显色指数为84,发光效率为136lm/W。经SEM检测,可看到晶粒的大小均一。

Claims (4)

1.一种白光LED用高光效、高显指的氮氧化物荧光陶瓷的制备方法,其特征在于,包括以下步骤:
步骤一:按化学式(Y1-xCex)3Al5Li12y(O1-yNy)12,其中,0.002≤x≤0.01,0.0<y≤0.2,中各元素的化学计量比分别称取氧化钇、氧化铝、氧化铈、氧化锂及氮化铝,作为初始原料;
步骤二:向称量的原料粉体中加入占原料粉体总质量0.4-0.6%的正硅酸乙酯和占原料粉体总质量0.04-0.06%的氧化镁作为烧结助剂,加入无水乙醇作为介质,然后置于尼龙球磨罐中进行行星式球磨,球磨时间为15-20 h,转速为120-160 r/min;
步骤三:将球磨后的混合浆料进行干燥,烘干温度为50-60℃,时间10-20h,随后过筛,然后将粉体置于马弗炉中煅烧,升温速率为2-6 ℃ /min,烧结温度为400-900 ℃,保温时间为3-6 h,然后以10-30 ℃ / min的速率降温至室温;
步骤四:将煅烧后的粉体进行干压成型,干压成型后再进行冷等静压成型,再进行冷等静压成型,压力为150-220 MPa,并保压220-360 s,得到致密陶瓷素坯;
步骤五:将步骤四得到的陶瓷素坯进行热压烧结,升至1500-1750 ℃,保温8-16 h,冷却到室温后再进行双面抛光处理,得到所述氮氧化物荧光陶瓷。
2.根据权利要求1所述的白光LED用高光效、高显指的氮氧化物荧光陶瓷的制备方法,其特征在于,步骤二中,所述无水乙醇与原料粉体总量的质量比为1-2:1。
3.根据权利要求1所述的白光LED用高光效、高显指的氮氧化物荧光陶瓷的制备方法,其特征在于,步骤四中,所述干压成型压力为3-9 MPa,时间为180-260 s。
4.一种权利要求1-3任一项所述的方法获得的白光LED用高光效、高显指的氮氧化物荧光陶瓷,其特征在于,其化学通式为:
(Y1-xCex)3Al5Li12y(O1-yNy)12
其中,0.002≤x≤0.01,0.0<y≤0.2。
CN201911394024.9A 2019-12-30 2019-12-30 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法 Active CN111056847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911394024.9A CN111056847B (zh) 2019-12-30 2019-12-30 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911394024.9A CN111056847B (zh) 2019-12-30 2019-12-30 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111056847A CN111056847A (zh) 2020-04-24
CN111056847B true CN111056847B (zh) 2022-04-15

Family

ID=70304591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911394024.9A Active CN111056847B (zh) 2019-12-30 2019-12-30 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111056847B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807825B (zh) * 2020-07-20 2022-09-06 江苏师范大学 一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用
CN112094110A (zh) * 2020-10-15 2020-12-18 贵州赛义光电科技有限公司 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
CN112239352A (zh) * 2020-10-17 2021-01-19 江苏师范大学 一种复相荧光陶瓷材料及其制备方法
CN113480311A (zh) * 2021-06-29 2021-10-08 南通大学 一种发射暖白光的Ce:YAG荧光陶瓷的制备方法
CN113501715B (zh) * 2021-06-29 2022-07-08 南通大学 一种基于改性荧光粉的荧光陶瓷的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079977A (zh) * 2010-10-21 2011-06-01 罗维鸿 用于暖白光led及其钆石榴石之荧光粉
RU2010121214A (ru) * 2010-05-26 2011-12-10 Геннадий Николаевич Мельников (RU) Фотолюминофор желтооранжевого свечения и светодиод на его основе
CN103031127A (zh) * 2011-09-30 2013-04-10 北京有色金属研究总院 一种橙色荧光粉及其制备方法和用该荧光粉制成的电光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010121214A (ru) * 2010-05-26 2011-12-10 Геннадий Николаевич Мельников (RU) Фотолюминофор желтооранжевого свечения и светодиод на его основе
CN102079977A (zh) * 2010-10-21 2011-06-01 罗维鸿 用于暖白光led及其钆石榴石之荧光粉
CN103031127A (zh) * 2011-09-30 2013-04-10 北京有色金属研究总院 一种橙色荧光粉及其制备方法和用该荧光粉制成的电光源

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"An efficient nitridation approach to enhance luminescent intensity of YAG : Ce3+ phosphor by using hexamethylenetetramine";Pin-Chun Lina et al.;《Journal of Ceramic Processing Research》;20140131;第15卷(第3期);第185-188页 *
"Dissimilar behavior of YAG:Ce and LuAG:Ce scintillator garnets regarding Li+ co-doping";M. V. Derdzyan et al.;《CRYSTENGCOMM》;20180213;第20卷(第11期);第1520-1526页 *
"The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor";Małgorzata Sopicka-Lizer et al.;《Journal of the European Ceramic Society》;20110513;第32卷;第1383–1387页 *

Also Published As

Publication number Publication date
CN111056847A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN111056847B (zh) 一种白光led用高光效、高显指的氮氧化物荧光陶瓷及其制备方法
CN108947516B (zh) 一种(Cu,Ce):YAG透明荧光陶瓷及其制备方法与应用
CN102268256B (zh) 一种蓝光激发发射红绿光的荧光材料及其制备方法
CN101671562B (zh) 一种氮氧化合物发光材料、其制备方法及其应用
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
US20110155972A1 (en) One silicon-aluminate light-conversion fluorescence material co-activated with halogen for white-light led
CN102173773A (zh) 用于高亮度白光发光二极管的透明陶瓷及其制备方法
CN103045267B (zh) 一种氮化物荧光粉、其制备方法及含该荧光粉的发光装置
JP2014503605A (ja) 窒素化合物発光材料及びその調製方法並びにそれによって製造された照明光源
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN103305216A (zh) 一种硼酸盐基红色荧光粉、制备方法及应用
CN111116207A (zh) 一种具有长波段发射、高显指的氧氮化物荧光陶瓷材料及其制备方法
CN104962286A (zh) 石榴石结构的复相荧光材料及其制备方法
CN102618265B (zh) 一种用于ac-led的绿色荧光材料及其制备方法
CN103320131B (zh) 一种磷酸盐基红色荧光粉、制备方法及应用
CN106635015B (zh) 一种具有石榴石结构的氮氧化物荧光粉及其制备方法和应用
CN102629655A (zh) 一种具有余辉特性的高显色白光led器件
WO2022100647A1 (zh) 一种绿色荧光陶瓷材料及其制备方法和应用
CN110129046B (zh) 一种Tb3+掺杂的氟铌钽酸盐荧光粉及其合成与应用
CN112239352A (zh) 一种复相荧光陶瓷材料及其制备方法
CN105820817A (zh) 一种钪酸盐绿色荧光粉及其制备方法
CN108676556B (zh) Ba3Si3N4O3晶体及荧光粉和制备方法
CN115650725B (zh) 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
CN110129047A (zh) 一种Tb3+激活的铌钽酸盐绿发光荧光粉及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant