CN111018525B - 一种双层固体电解质质子导体及其制备方法 - Google Patents

一种双层固体电解质质子导体及其制备方法 Download PDF

Info

Publication number
CN111018525B
CN111018525B CN201911346215.8A CN201911346215A CN111018525B CN 111018525 B CN111018525 B CN 111018525B CN 201911346215 A CN201911346215 A CN 201911346215A CN 111018525 B CN111018525 B CN 111018525B
Authority
CN
China
Prior art keywords
raw material
double
blank
calcined
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911346215.8A
Other languages
English (en)
Other versions
CN111018525A (zh
Inventor
厉英
丁玉石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201911346215.8A priority Critical patent/CN111018525B/zh
Publication of CN111018525A publication Critical patent/CN111018525A/zh
Application granted granted Critical
Publication of CN111018525B publication Critical patent/CN111018525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/51Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种双层固体电解质质子导体及其制备方法,由基体部分和涂层部分组成的双层结构,基体部分的分子式为A1‑yA′yB1‑zB′zO3‑α,涂层部分的分子式为ABO3;制备方法为:(1)准备A原料和B原料,混合球磨获得混合粉体Ⅰ;(2)压制后煅烧制成煅烧物料Ⅰ;(3)准备A原料、B原料、A′原料和B′原料,混合球磨获得混合粉体Ⅱ;(4)压制后煅烧制成煅烧物料Ⅱ;(5)煅烧物料Ⅱ压制成型,制成基体坯料;采用共压、流延、旋涂、磁控溅射或激光沉积,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层;(6)双层坯料在1300~1700℃烧结。本发明的产品具备质子导电性,同时限制住了氧离子空位及电子导电。

Description

一种双层固体电解质质子导体及其制备方法
技术领域
本发明涉及固体电解质质子导体技术领域,具体涉及一种双层固体电解质质子导体及其制备方法。
背景技术
高温氧化物质子导体是一种能够在高温下传递质子的固体电解质材料,在氢传感器、燃料电池、常压合成氨、电化学加氢脱氢等领域,质子导体具有良好的应用前景。
在高温质子导体中掺杂的钙钛矿型ABO3材料具有良好的质子导电性能,ABO3为立方、四方或者正交晶系,其中A位通常为+2价阳离子(如Ba、Ca、Sr等),B位为+4价阳离子(如Zr、Ce等),通常以三价稀土元素对四价B位元素进行掺杂后,使原材料产生氧空位。氧空位捕获气氛中的水蒸气或者氢气可引入质子,产生质子导电;但是,氧空位也会产生导电;另外在气氛氧分压较高时,材料中的氧空位捕获气氛中的氧气,产生电子空穴;低氧时,材料中的氧离子进入气相,产生氧空位及自由电子,产生电子导电。因此,ABO3材料易产生质子-氧离子空位-电子混合导电,极大的限制了材料的应用。
ABO3材料中的氧空位将导致材料产生混合导电,但是无氧空位,ABO3材料也无法产生质子,不能构成质子导体。
由上述可知,目前的钙钛矿结构ABO3材料易产生质子-氧离子空位-电子混合导电,限制了材料的应用。
发明内容
本发明的目的是提供一种双层固体电解质质子导体及其制备方法,采用掺杂的ABO3材料为基体,在其表面覆盖一层未掺杂的ABO3材料层,使组合形成的材料具备质子导电性,同时限制住了氧离子空位及电子导电。
本发明的双层固体电解质质子导体由基体部分和涂层部分组成,基体部分为钙钛矿材料,分子式为A1-yA′yB1-zB′zO3-α,涂层部分为钙钛矿材料,分子式为ABO3;其中的A元素为Ca、Sr和/或Ba,B元素为Sn、Zr、Hf、Pr、Ce、Th和/或Ti,A′元素为K、Na和/或Li,B′元素为Nd、Sm、Eu、Gd、Tb、Ho、Y、Dy、Er、Tm、Yb、Lu、In、Sc、Ga和/或Al,y=0~0.3,z=0~0.3,并且y+z≥0.05;上述的3-α取值随A1-yA′yB1-zB′zO3-α的总价态配平。
上述的双层固体电解质质子导体中,涂层部分与基体部分的厚度比为0.01~0.1。
本发明的双层固体电解质质子导体的制备方法按以下步骤进行:
1、准备A元素的氧化物、碳酸盐或硝酸盐作为A原料,准备B元素的氧化物、碳酸盐或硝酸盐作为B原料;将A原料和B原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅰ;
2、将混合粉体Ⅰ压制成块,然后在800~1400℃煅烧5~20小时,随炉冷却至常温,制成煅烧物料Ⅰ;
3、准备A元素的氧化物、碳酸盐或硝酸盐作为A原料,准备B元素的氧化物、碳酸盐或硝酸盐作为B原料,准备A′元素的氧化物、碳酸盐或硝酸盐作为A′原料,准备B′元素的氧化物、碳酸盐或硝酸盐作为B′原料;将A原料、A′原料、B原料和B′原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅱ;
4、将混合粉体Ⅱ压制成块,然后在800~1400℃煅烧5~20小时,随炉冷却至常温,制成煅烧物料Ⅱ;
5、将煅烧物料Ⅱ压制成型,制成基体坯料;然后采用共压、流延、磁控溅射或激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,获得双层坯料;
6、将双层坯料在1300~1700℃烧结5~20小时,随炉冷却至常温,制成双层固体电解质质子导体材料。
上述的煅烧物料Ⅰ的分子式为ABO3,煅烧物料Ⅱ的分子式为A1-yA′yB1-zB′zO3-α
上述的步骤2和4中,压制成块的压制压力5~10MPa。
上述的步骤5中,压制成型的压制压力50~300MPa。
上述的双层坯料中,基体坯料的厚度0.5~2mm,涂层厚度为基体坯料厚度的0.01~0.1倍。
本发明的原理是:未掺杂的ABO3材料中几乎不含有氧空位,可以限制材料中的氧离子空位及电子导电,同时未掺杂的ABO3材料晶体结构具备质子迁移的通道;A位或B位低价掺杂的ABO3材料中具备氧空位,可引入质子,使材料产生质子导电。因此,本发明提出在掺杂的ABO3材料表面覆盖一层未掺杂的ABO3材料,构建双层新材料,即具备质子导电性,同时限制住了氧离子空位及电子导电,可视为纯质子导体,具有良好的应用前景。
附图说明
图1为本发明实施例1中双层固体电解质质子导体的电导率及质子迁移数曲线图。
具体实施方式
本发明实施例中采用输力强1260A阻抗相位分析仪及吉时利2450多功能电表测试双层固体电解质质子导体的电导率和质子迁移数。
本发明实施例中采用的原料为市购分析纯试剂。
本发明实施例中采用的研磨罐为玛瑙材质。
本发明实施例中的混合固体电解质质子导体在500~900℃时电导率≤0.83×10-3S/cm。
本发明实施例中的混合固体电解质质子导体在500~800℃时质子迁移数>0.95。
本发明实施例中进行步骤5时采用等静压设备进行压制。
本发明实施例中的原料为元素A、A′、B和B′的碳酸盐、氧化物或硝酸盐。
本发明实施例中的双层固体电解质质子导体中,涂层部分与基体部分通过分子间力结合,该材料的孔隙率≤10%。
本发明实施例中的共压方法为文献《煅烧合成法制备Ni/YSZ金属陶瓷阳极及电化学行为研究》(Ringuede,A.;Bronin,D.I.;Frade,J.R Electrochemical Behaviour ofNi/YSZ Cermet Anodes Prepared by Combustion Synthesis,燃料电池.2001,1(3-4):238-242)记载的方法。
本发明实施例中的流延方法为《流延共烧法制备PSLZT多层复合NZFO材料及铁电、压电性能研究》(Ferroelectric and piezoelectric properties of PSLZT multilayer/NZFO co-sintered magnetoelectric composites fabricated by tape casting,欧洲陶瓷学会会刊,2019,39(16):5267-5276.)记载的方法。
本发明实施例中的磁控溅射方法为《磁控溅射法制备Mg、Al、Ga共掺杂ZnO导电玻璃及性能研究》(Liu,Y;Zhu,SM.Preparation and characterization of Mg,Al and Gaco-doped ZnO transparent conductive films deposited by magnetron sputtering,物理结论,2019,14:102514)记载的方法。
本发明实施例中的激光沉积方法为《脉冲激光法沉积法制备Al掺杂的Zn1-xMgxO带隙改性导电玻璃》(K.Matsubara,H.Tampo,H.Shibata,A.Yamada,P.Fons,K.Iwata,etal.Band-gap modified Al-doped Zn1-xMgxO transparent conducting filmsdeposited by pulsed laser deposition.物理应用快报,2004,85:1374-1376.)记载的方法。
本发明实施例中烧结造成的厚度变化忽略不计。
实施例1
双层固体电解质质子导体由基体部分和涂层部分组成的双层结构,基体部分的分子式为A1-yA′yB1-zB′zO3-α,涂层部分的分子式为ABO3;A元素为Sr,B元素为Ce,B′元素为Yb,y=0(没有元素A′),z=0.1;3-α取值随AB1-zB′zO3-α的总价态配平;涂层部分与基体部分的厚度比为0.1;
制备方法为:
准备SrCO3作为A原料,准备CeO2作为B原料;将A原料和B原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅰ;混合粉体Ⅰ中按摩尔比A:B=1;
将混合粉体Ⅰ压制成块,压制压力5MPa,然后在1200℃煅烧10小时,随炉冷却至常温,制成煅烧物料Ⅰ,分子式为ABO3(SrCeO3);
准备SrCO3作为A原料,准备CeO2作为B原料,准备Yb2O3作为B′原料;将A原料、A′原料、B原料和B′原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅱ;混合粉体Ⅱ中按摩尔比A:B:B′=1:0.9:0.1;
将混合粉体Ⅱ压制成块,压制压力5MPa,然后在1200℃煅烧10小时,随炉冷却至常温,制成煅烧物料Ⅱ,分子式为AB1-zB′zO3-α(SrCe0.9Yb0.1O3-α);
将煅烧物料Ⅱ压制成型,压制压力50MPa,制成基体坯料,厚度1mm;然后采用共压方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.1倍,获得双层坯料;
将双层坯料在1600℃烧结10小时,随炉冷却至常温,制成双层固体电解质质子导体材料,电导率及质子迁移数曲线如图1所示。
实施例2
双层固体电解质质子导体的中的A元素为Ca,B元素为Sn,A′元素为K,B′元素为Nd,y=0.3,z=0.3;涂层部分与基体部分的厚度比为0.1;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在800℃煅烧20小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.7:0.3:0.7:0.3;
(3)混合粉体Ⅱ压制压力10MPa,在800℃煅烧20小时;
(4)煅烧物料Ⅱ压制压力300MPa,基体坯料厚度0.5mm;采用磁控溅射方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.1倍;
(5)双层坯料在1300℃烧结20小时。
实施例3
双层固体电解质质子导体中的A元素为Ba,B元素为Zr,A′元素为Na,B′元素为Sm,y=0.12,z=0.01;涂层部分与基体部分的厚度比为0.01;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力6MPa,在900℃煅烧19小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.88:0.12:0.99:0.01;
(3)混合粉体Ⅱ压制压力6MPa,在900℃煅烧19小时;
(4)煅烧物料Ⅱ压制压力80MPa,基体坯料厚度2mm;采用激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.01倍;
(5)双层坯料在1350℃烧结19小时。
实施例4
双层固体电解质质子导体中的A元素为Ca,B元素为Hf,A′元素为Li,B′元素为Eu,y=0.2,z=0.25;涂层部分与基体部分的厚度比为0.02;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力7MPa,在950℃煅烧18小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.8:0.2:0.75:0.25;
(3)混合粉体Ⅱ压制压力7MPa,在950℃煅烧18小时;
(4)煅烧物料Ⅱ压制压力100MPa,基体坯料厚度1.5mm;采用激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.02倍;
(5)双层坯料在1380℃烧结18小时。
实施例5
双层固体电解质质子导体中的A元素为Sr,B元素为Pr,A′元素为K,B′元素为Gd,y=0.05,z=0.11;涂层部分与基体部分的厚度比为0.05;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力8MPa,在980℃煅烧17小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.95:0.05:0.89:0.11;
(3)混合粉体Ⅱ压制压力8MPa,在980℃煅烧17小时;
(4)煅烧物料Ⅱ压制压力120MPa,基体坯料厚度1.8mm;采用流延方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.05倍;
(5)双层坯料在1400℃烧结16小时。
实施例6
双层固体电解质质子导体中的A元素为Ba,B元素为Th,A′元素为Na,B′元素为Tb,y=0.18,z=0.24;涂层部分与基体部分的厚度比为0.04;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力9MPa,在1000℃煅烧16小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.82:0.18:0.76:0.24;
(3)混合粉体Ⅱ压制压力9MPa,在1000℃煅烧16小时;
(4)煅烧物料Ⅱ压制压力180MPa,基体坯料厚度1.8mm;采用流延方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.04倍;
(5)双层坯料在1400℃烧结15小时。
实施例7
双层固体电解质质子导体中的A元素为Ca,B元素为Ti,A′元素为Li,B′元素为Ho,y=0.05,z=0.15;涂层部分与基体部分的厚度比为0.08;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1020℃煅烧15小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.95:0.05:0.85:0.15;
(3)混合粉体Ⅱ压制压力10MPa,在1020℃煅烧15小时;
(4)煅烧物料Ⅱ压制压力200MPa,基体坯料厚度0.9mm;采用磁控溅射方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.08倍;
(5)双层坯料在1450℃烧结12小时。
实施例8
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为K,B′元素为Y,y=0.04,z=0.01;涂层部分与基体部分的厚度比为0.06;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1050℃煅烧14小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.96:0.04:0.99:0.01;
(3)混合粉体Ⅱ压制压力10MPa,在1050℃煅烧14小时;
(4)煅烧物料Ⅱ压制压力220MPa,基体坯料厚度1.5mm;采用流延方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.06倍;
(5)双层坯料在1450℃烧结12小时。
实施例9
双层固体电解质质子导体中的A元素为Sr,B元素为Sn,A′元素为Na,B′元素为Dy,y=0.28,z=0.02;涂层部分与基体部分的厚度比为0.05;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1080℃煅烧13小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.72:0.28:0.98:0.02;
(3)混合粉体Ⅱ压制压力10MPa,在1080℃煅烧13小时;
(4)煅烧物料Ⅱ压制压力240MPa,基体坯料厚度2mm;采用共压方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.05倍;
(5)双层坯料在1500℃烧结8小时。
实施例10
双层固体电解质质子导体中的A元素为Sr,B元素为Pr,A′元素为Li,B′元素为Er,y=0.11,z=0.12;涂层部分与基体部分的厚度比为0.08;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1100℃煅烧12小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.89:0.11:0.88:0.12;
(3)混合粉体Ⅱ压制压力10MPa,在1100℃煅烧12小时;
(4)煅烧物料Ⅱ压制压力260MPa,基体坯料厚度1.6mm;采用共压方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.08倍;
(5)双层坯料在1500℃烧结8小时。
实施例11
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为K,B′元素为Tm,y=0.23,z=0.13;涂层部分与基体部分的厚度比为0.04;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1150℃煅烧11小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.77:0.23:0.87:0.13;
(3)混合粉体Ⅱ压制压力10MPa,在1150℃煅烧11小时;
(4)煅烧物料Ⅱ压制压力280MPa,基体坯料厚度1.5mm;采用流延方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.04倍;
(5)双层坯料在1550℃烧结7小时。
实施例12
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为Na,B′元素为Lu,y=0.04,z=0.16;涂层部分与基体部分的厚度比为0.04;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1200℃煅烧9小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.96:0.04:0.84:0.16;
(3)混合粉体Ⅱ压制压力10MPa,在1200℃煅烧9小时;
(4)煅烧物料Ⅱ压制压力300MPa,基体坯料厚度1.5mm;采用磁控溅射方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.04倍;
(5)双层坯料在1550℃烧结7小时。
实施例13
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为Li,B′元素为In,y=0.13,z=0.26;涂层部分与基体部分的厚度比为0.02;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1250℃煅烧8小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.87:0.13:0.74:0.16;
(3)混合粉体Ⅱ压制压力10MPa,在1250℃煅烧8小时;
(4)煅烧物料Ⅱ压制压力300MPa,基体坯料厚度2mm;采用激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.02倍;
(5)双层坯料在1600℃烧结6小时。
实施例14
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为K,B′元素为Sc,y=0.3,z=0.3;涂层部分与基体部分的厚度比为0.06;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1300℃煅烧7小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.7:0.3:0.7:0.3;
(3)混合粉体Ⅱ压制压力10MPa,在1300℃煅烧7小时;
(4)煅烧物料Ⅱ压制压力300MPa,基体坯料厚度1.5mm;采用流延方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.06倍;
(5)双层坯料在1600℃烧结6小时。
实施例15
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为Na,B′元素为Ga,y=0.15,z=0.05;涂层部分与基体部分的厚度比为0.05;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1350℃煅烧6小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.85:0.15:0.95:0.05;
(3)混合粉体Ⅱ压制压力10MPa,在1350℃煅烧6小时;
(4)煅烧物料Ⅱ压制压力200MPa,基体坯料厚度2mm;采用磁控溅射方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.05倍;
(5)双层坯料在1700℃烧结5小时。
实施例16
双层固体电解质质子导体中的A元素为Sr,B元素为Ce,A′元素为Li,B′元素为Al,y=0.02,z=0.18;涂层部分与基体部分的厚度比为0.03;
方法同实施例1,不同点在于;
(1)混合粉体Ⅰ压制压力10MPa,在1400℃煅烧5小时;
(2)混合粉体Ⅱ中按摩尔比A:A′:B:B′=0.98:0.02:0.82:0.18;
(3)混合粉体Ⅱ压制压力10MPa,在1400℃煅烧5小时;
(4)煅烧物料Ⅱ压制压力150MPa,基体坯料厚度1mm;采用激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,厚度为基体坯料厚度的0.03倍;
(5)双层坯料在1700℃烧结5小时。

Claims (2)

1.一种双层固体电解质质子导体,其特征在于由基体部分和涂层部分组成,基体部分为钙钛矿材料,分子式为A1-yyB1-zzO3-α,涂层部分为钙钛矿材料,分子式为ABO3;其中的A元素为Ca、Sr和/或Ba,B元素为Sn、Zr、Hf、Pr、Ce、Th和/或Ti,A´元素为K、Na和/或Li,B´元素为Nd、Sm、Eu、Gd、Tb、Ho、Y、Dy、Er、Tm、Yb、Lu、In、Sc、Ga和/或Al,y=0~0.3,z=0~0.3,并且y+z≥0.05;上述的3-α取值随A1-yyB1-zzO3-α的总价态配平;所述的涂层部分与基体部分的厚度比为0.01~0.1。
2.一种权利要求1所述的双层固体电解质质子导体的制备方法,其特征在于按以下步骤进行:
(1)准备A元素的氧化物、碳酸盐或硝酸盐作为A原料,准备B元素的氧化物、碳酸盐或硝酸盐作为B原料;将A原料和B原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅰ;
(2)将混合粉体Ⅰ压制成块,然后在800~1400℃煅烧5~20小时,随炉冷却至常温,制成煅烧物料Ⅰ;煅烧物料Ⅰ的分子式为ABO3;压制成块的压制压力5~10MPa;
(3)准备A元素的氧化物、碳酸盐或硝酸盐作为A原料,准备B元素的氧化物、碳酸盐或硝酸盐作为B原料,准备A´元素的氧化物、碳酸盐或硝酸盐作为A´原料,准备B´元素的氧化物、碳酸盐或硝酸盐作为B´原料;将A原料、A´原料、B原料和B´原料混合球磨,磨细至平均粒径≤5μm,获得混合粉体Ⅱ;煅烧物料Ⅱ的分子式为A1-yyB1-zzO3-α
(4)将混合粉体Ⅱ压制成块,然后在800~1400℃煅烧5~20小时,随炉冷却至常温,制成煅烧物料Ⅱ;压制成块的压制压力5~10MPa;
(5)将煅烧物料Ⅱ压制成型,制成基体坯料;压制成型的压制压力50~300MPa;然后采用共压、流延、磁控溅射或激光沉积方法,将煅烧物料Ⅰ覆盖在基体坯料上形成涂层,获得双层坯料;双层坯料中,基体坯料的厚度0.5~2mm,涂层厚度为基体坯料厚度的0.01~0.1倍;
(6)将双层坯料在1300~1700℃烧结5~20小时,随炉冷却至常温,制成双层固体电解质质子导体材料。
CN201911346215.8A 2019-12-24 2019-12-24 一种双层固体电解质质子导体及其制备方法 Active CN111018525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911346215.8A CN111018525B (zh) 2019-12-24 2019-12-24 一种双层固体电解质质子导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911346215.8A CN111018525B (zh) 2019-12-24 2019-12-24 一种双层固体电解质质子导体及其制备方法

Publications (2)

Publication Number Publication Date
CN111018525A CN111018525A (zh) 2020-04-17
CN111018525B true CN111018525B (zh) 2021-08-31

Family

ID=70212086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911346215.8A Active CN111018525B (zh) 2019-12-24 2019-12-24 一种双层固体电解质质子导体及其制备方法

Country Status (1)

Country Link
CN (1) CN111018525B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763864A1 (en) * 1995-09-13 1997-03-19 Kabushiki Kaisha Meidensha High temperature solid electrolyte fuel cell
CN104916869A (zh) * 2015-05-15 2015-09-16 清华大学 多孔-致密双层电解质陶瓷烧结体、锂离子电池、锂-空气电池
CN105470576A (zh) * 2014-08-29 2016-04-06 比亚迪股份有限公司 一种高压锂电池电芯及其制备方法、锂离子电池
CN107851840A (zh) * 2015-06-01 2018-03-27 气动覆层科技有责任限公司 用于阳极活性材料、阴极活性材料和固态电解质的纳米工程涂层及包含纳米工程涂层的电池的制造方法
CN110165236A (zh) * 2019-06-05 2019-08-23 青岛大学 一种双层氧化物固态电解质的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763864A1 (en) * 1995-09-13 1997-03-19 Kabushiki Kaisha Meidensha High temperature solid electrolyte fuel cell
CN105470576A (zh) * 2014-08-29 2016-04-06 比亚迪股份有限公司 一种高压锂电池电芯及其制备方法、锂离子电池
CN104916869A (zh) * 2015-05-15 2015-09-16 清华大学 多孔-致密双层电解质陶瓷烧结体、锂离子电池、锂-空气电池
CN107851840A (zh) * 2015-06-01 2018-03-27 气动覆层科技有责任限公司 用于阳极活性材料、阴极活性材料和固态电解质的纳米工程涂层及包含纳米工程涂层的电池的制造方法
CN110165236A (zh) * 2019-06-05 2019-08-23 青岛大学 一种双层氧化物固态电解质的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中高温质子导体的结构及性能研究进展;厉英 等;《东北大学学报(自然科学版)》;20120731;第33卷(第6期);全文 *
锂过量对钙钛矿Li3/8Sr7/16Ta3/4Hf1/4O3固体电解质性能的影响;钟盛文 等;《有色金属科学与工程》;20170228;第8卷(第1期);70-74页 *

Also Published As

Publication number Publication date
CN111018525A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Shang et al. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3− δ
Hou et al. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells
Meng et al. A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0· 7Zr0· 1Y0· 2O3-δ electrolyte
EP2795708B1 (en) Solid oxide fuel cell interconnects including a ceramic interconnect material and partially stabilized zirconia
KR20080074851A (ko) 고체 산화물 연료 전지 및 이온 수송 막을 위한 신규한캐소드 및 전해질 물질
CN110970148B (zh) 一种复合氧化物质子导体材料及其制备方法
CN103390739A (zh) 一种固体氧化物燃料电池氧化铈基电解质隔层及其制备
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
US9368804B2 (en) Scheelite-structured composite metal oxide with oxygen ionic conductivity
CN110937897B (zh) 一种混合固体电解质质子导体材料及其制备方法
KR102080961B1 (ko) 공기극 구조체, 이를 포함하는 연료 전지, 상기 연료 전지를 포함하는 전지 모듈 및 공기극 구조체의 제조방법
KR101288375B1 (ko) 원자막 증착법으로 형성된 이트리아-안정화 지르코니아 기능층을 포함하는 세리아계 전해질 및 이를 포함하는 고체 산화물 연료전지
CN111028977B (zh) 一种双层复合质子导体材料及其制备方法
Yang et al. Investigation on properties of BaZr0. 6Hf0. 2Y0. 2O3-δ with sintering aids (ZnO, NiO, Li2O) and its application for hydrogen permeation
US20200212468A1 (en) Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for manufacturing solid electrolyte member
CN111018525B (zh) 一种双层固体电解质质子导体及其制备方法
Fan* Solid‐State Electrolytes for SOFC
KR102674321B1 (ko) 접촉층을 포함하는 금속지지체형 고체산화물 연료전지
Nagamori et al. Densification and Cell Performance of Gadolinium‐Doped Ceria (GDC) Electrolyte/NiO–GDC anode Laminates
KR102674323B1 (ko) 금속 페이스트 및 2d 금속을 포함하는 전류집전체와 이를 이용하는 세라믹지지체형 고체산화물 연료전지 셀 및 그 제조방법
US20240154143A1 (en) Protonic ceramic fuel cells and manufacturing method thereof
Yagi et al. Synthesis and Triple Conductive Properties of Ba and Fe Co-Doped Sr2TiO4 Based Layered Perovskite:(Ba x Sr2-x)(Ti0. 9Fe0. 1) O4-δ (X= 0.05, 0.10)
Xu et al. Proton-Responsive Nanomaterials for Fuel Cells
KR20230037717A (ko) 귀금속 페이스트 및 2d 금속산화물을 포함하는 전류집전체와 이를 이용하는 고체산화물 연료전지 셀 및 그 제조방법
JP2022170723A (ja) 積層体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant