CN110995286A - 一种s=2编码方式的低功耗蓝牙维特比联合解调解码算法 - Google Patents

一种s=2编码方式的低功耗蓝牙维特比联合解调解码算法 Download PDF

Info

Publication number
CN110995286A
CN110995286A CN201911383136.4A CN201911383136A CN110995286A CN 110995286 A CN110995286 A CN 110995286A CN 201911383136 A CN201911383136 A CN 201911383136A CN 110995286 A CN110995286 A CN 110995286A
Authority
CN
China
Prior art keywords
state
decoding algorithm
low
decoding
joint demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911383136.4A
Other languages
English (en)
Other versions
CN110995286B (zh
Inventor
杜晴鹤
蒋轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201911383136.4A priority Critical patent/CN110995286B/zh
Publication of CN110995286A publication Critical patent/CN110995286A/zh
Application granted granted Critical
Publication of CN110995286B publication Critical patent/CN110995286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1108Hard decision decoding, e.g. bit flipping, modified or weighted bit flipping
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明属于无线通信的解调解码技术领域,具体为S=2编码方式的低功耗蓝牙维特比联合解调解码算法。本发明针对S=2编码模式,将高斯频移键控调制(GFSK)过程和低功耗蓝牙编码过程建模为一个有限状态机,利用维特比译码算法对此模型进行联合解调解码。本发明考虑到了低功耗蓝牙的实际应用场景,算法复杂度低,而且能够显著降低误码率,提升接收机灵敏度。

Description

一种S=2编码方式的低功耗蓝牙维特比联合解调解码算法
技术领域
本发明属于无线通信的解调解码技术领域,具体涉及一种S=2编码方式的低功耗蓝牙维特比联合解调解码算法。
背景技术
低功耗蓝牙技术是物联网代表性技术之一,广泛应用于成本较低、功耗较小的计算器件以及较低数据速率和较低占空比的短距离无线通信场景下。随着物联网的发展,在2016年蓝牙协议5.0版本中,低功耗蓝牙新增了编码物理层以及两种编码方案(S=2,S=8),对应信息传输速率分别为500kb/s以及125kb/s。编码物理层增强了蓝牙信号传输的稳定性,在不提高发送功率的前提下低功耗蓝牙信号传输距离最高可以提升4倍,大大拓展了低功耗蓝牙在物联网的应用领域以及发展前景。
针对S=2低功耗蓝牙的编码物理层,接收机利用维特比联合解调解码,将会极大地提高接收机的灵敏度,是一个非常具有实际意义的问题。
发明内容
本发明的目的在于提供一种计算复杂度低、误码率也低的S=2编码方式的低功耗蓝牙维特比联合解调解码算法。
本发明核心是将高斯频移键控调制(GFSK)过程和低功耗蓝牙编码过程建模为一个有限状态机,并根据维特比译码算法将解调解码联合进行。本发明提供一种针对S=2编码模式,进一步利用维特比译码算法对此模型进行联合解调解码。本发明考虑到了低功耗蓝牙的实际应用场景,而且能够显著降低误码率,提升接收机灵敏度。
本发明提供的S=2编码方式的低功耗蓝牙维特比联合解调解码算法,具体步骤如下。
第一步,对于一个经过S=2编码器以及调制器的发送蓝牙信号r(t),其相位为:
Figure BDA0002342776970000011
由GFSK信号模型,有:
Figure BDA0002342776970000012
Figure BDA0002342776970000013
其中,
Figure BDA0002342776970000021
Q()为高斯Q函数,Ik∈{±1}是输入的随机比特流,h是GFSK调制指数,通常取为0.5;BT为时间-带宽乘积,一般取为0.5,即脉冲成型函数q(t)的有效持续时间为2T。
因此有:当t<0时,q(t)=0,t≥2T时,
Figure BDA0002342776970000022
当t<0和t≥2T时,g(t)=0;
Figure BDA0002342776970000023
根据低功耗蓝牙5.0协议,比特流在编码后经过映射延展之后比特‘1’映射为‘1’,‘0’映射为‘0’,φ(t;I)的状态由
Figure BDA0002342776970000024
Figure BDA0002342776970000025
(t;I)联合决定,而
Figure BDA0002342776970000026
(t;I)仅由卷积码编码器输出决定,
Figure BDA0002342776970000027
Figure BDA0002342776970000028
四种取值,因此S=2模式下的编码调制联合的有限状态机可以等效为一个有四位寄存器(
Figure BDA0002342776970000029
d2d1d0)的编码器。它的状态网格中的状态由编码器的寄存器(d2d1d0)的状态和调制器的状态
Figure BDA00023427769700000210
共同决定(一共有8×4=32种状态)。
第二步,根据第一步接收信号建模成的有限状态机,利用维特比译码算法对接收信号进行联合解调解码。
第二步中所述利用维特比译码算法对接收信号进行联合解调解码,具体流程如下:
(1)根据第一步将接收信号建模成的有限状态机每个状态的输出计算分支度量;
(2)根据有限状态机每个状态的转换关系计算路径度量值;
(3)对每一个状态,保留上一步骤计算所得的具有最小路径度量值的到达路径(幸存路径),删除其余的到达路径;
(4)找到最小路径度量值对应的幸存路径,根据有限状态机的状态转换关系依次输出译码比特。
本发明第二步中,利用维特比译码算法对接收信号进行联合解调解码,对接收到的蓝牙信号,其相位如(4)式所示;
S=2编码调制联合的有限状态机的输出由
Figure BDA00023427769700000211
Figure BDA00023427769700000212
(t;I)共同决定,一共有:4×ML=4× 22=16种组合。分支度量的计算方法为接收机计算在nT<t<(n+2)T时刻内,接收信号r(t) 和包含所有{
Figure BDA00023427769700000213
(t;I)}状态的
Figure BDA00023427769700000214
(共16种状态组合,i=0…15)的相关度量,并保留具有最大相关度量值的路径,即:
Figure BDA00023427769700000215
本发明中,S=2编码模式下编码调制联合有限状态机的输入输出和状态转换的关系,见表1、表2。
本发明方法的优点:相比较解调之后再进行解码的传统译码方法,联合维特比解调解码算法显著降低了误码率,提升了接收机灵敏度。
附图说明
图1为S=2编码模式下编码调制联合的状态转换图。
图2为S=2编码方案下联合解调解码算法的误码率性能比较。
具体实施方式
下面通过具体实施例,进一步介绍本发明。
作为实施例,本发明用计算机仿真了蓝牙GFSK信号编码-调制-解调-解码的完整流程。仿真过程中随机生成1000bit的数据包,GFSK调制指数为0.5,采用低功耗蓝牙协议规定的编码方式,在低功耗蓝牙S=2编码方案下,进行了1000次蒙特卡洛实验。最终误码率性能及比较如图2所示,其中x-轴是仿真信噪比,y-轴是接收端解码之后的误码率。
图中差分硬解调解码算法(上侧带菱形的线)对应直接将接收信号取最优相位差分之后做硬判决为0/1比特之后经过解映射输入到维特比解码器进行硬解码;差分软解调软解码算法 (上侧带三角形的线)对应将解调相位解映射之后直接作为维特比软解码的输入;维特比硬解调硬解码算法(下侧带叉号的线)对应将接收信号先维特比算法解调为0/1比特之后经过解映射输入到维特比解码器进行硬解码;维特比联合解调解码算法(下侧带圆点的线)对应本发明算法。可以看到本发明提出的联合解调解码算法误码率性能比传统软解码提升了4dB~6dB,比维特比硬解调硬解码提升了2dB~3dB。
表1
Figure BDA0002342776970000041
表2
Figure BDA0002342776970000051
参考文献
[1]Bo Y,Yang L,Chong C C.Optimized Differential GFSK Demodulator[J].IEEE Transactions on Communications,2011,59(6):1497-1501.
[2]Anderson J B,Aulin T,Sundberg C E.Digital Phase Modulation[J].Applications of Communications Theory,1986:412-412.。

Claims (3)

1.一种S=2编码方式的低功耗蓝牙维特比联合解调解码算法,其特征在于,具体步骤为:
第一步,对于一个经过S=2编码器以及调制器的发送蓝牙信号r(t),其相位为:
Figure FDA0002342776960000011
由GFSK信号模型,有:
Figure FDA0002342776960000012
Figure FDA0002342776960000013
其中,
Figure FDA0002342776960000014
Q()为高斯Q函数,Ik∈{±1}是输入的随机比特流,h是GFSK调制指数,BT为时间-带宽乘积,脉冲成型函数q(t)的有效持续时间为2T;
因此有:当t<0时,q(t)=0,t≥2T时,
Figure FDA0002342776960000015
当t<0和t≥2T时,g(t)=0;
Figure FDA0002342776960000016
根据低功耗蓝牙5.0协议,比特流在S=2方式编码后经过映射延展之后比特‘1’映射为‘1’,‘0’映射为‘0’;
φ(t;I)的状态由
Figure FDA0002342776960000017
Figure FDA0002342776960000018
联合决定,而
Figure FDA0002342776960000019
仅由卷积码编码器输出决定,
Figure FDA00023427769600000110
Figure FDA00023427769600000111
四种取值,于是S=2模式下的编码调制联合的有限状态机可以等效为一个有四位寄存器
Figure FDA00023427769600000112
的编码器;它的状态网格中的状态由编码器的寄存器(d2d1d0)的状态和调制器的状态
Figure FDA00023427769600000113
共同决定,一共有8×4=32种状态;
第二步,根据第一步接收信号建模成的有限状态机,利用维特比译码算法对接收信号进行联合解调解码。
2.根据权利要求1所述的联合解调解码算法,其特征在于,第二步中,利用维特比译码算法对接收信号进行联合解调解码,具体流程如下:
(1)根据第一步将接收信号建模成的有限状态机每个状态的输出计算分支度量;
(2)根据有限状态机每个状态的转换关系计算路径度量值;
(3)对每一个状态,保留上一步骤计算所得的具有最小路径度量值的到达路径,删除其余的到达路径;
(4)找到最小路径度量值对应的幸存路径,根据有限状态机的状态转换关系依次输出译码比特。
3.根据权利要求2所述的联合解调解码算法,其特征在于,对接收到的蓝牙信号,其相位为:
Figure FDA0002342776960000021
S=2编码调制联合的有限状态机的输出由
Figure FDA0002342776960000022
Figure FDA0002342776960000023
共同决定,一共有:4×ML=4×22=16种组合;分支度量的计算方法为接收机计算在nT<t<(n+2)T时刻内,接收信号r(t)和包含所有
Figure FDA0002342776960000024
状态的
Figure FDA0002342776960000025
共16种状态组合,i=0…15的相关度量,并保留具有最大相关度量值的路径,即:
Figure FDA0002342776960000026
CN201911383136.4A 2019-12-28 2019-12-28 一种s=2编码方式的低功耗蓝牙维特比联合解调解码方法 Active CN110995286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911383136.4A CN110995286B (zh) 2019-12-28 2019-12-28 一种s=2编码方式的低功耗蓝牙维特比联合解调解码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911383136.4A CN110995286B (zh) 2019-12-28 2019-12-28 一种s=2编码方式的低功耗蓝牙维特比联合解调解码方法

Publications (2)

Publication Number Publication Date
CN110995286A true CN110995286A (zh) 2020-04-10
CN110995286B CN110995286B (zh) 2023-05-02

Family

ID=70078325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911383136.4A Active CN110995286B (zh) 2019-12-28 2019-12-28 一种s=2编码方式的低功耗蓝牙维特比联合解调解码方法

Country Status (1)

Country Link
CN (1) CN110995286B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818464A (zh) * 2020-07-02 2020-10-23 上海橙群微电子有限公司 一种低功耗蓝牙设备的广播方法及终端
CN112073157A (zh) * 2020-11-11 2020-12-11 南京沁恒微电子股份有限公司 一种蓝牙接收机的低功耗viterbi译码实现方法
CN112653537A (zh) * 2020-12-06 2021-04-13 复旦大学 一种提高低功耗蓝牙系统中接收机灵敏度的方法
CN113098811A (zh) * 2021-04-01 2021-07-09 高拓讯达(北京)科技有限公司 一种gfsk信号的解调解码方法及解调解码装置
US11290208B1 (en) 2021-10-25 2022-03-29 Nanjing qinheng Microelectronics Co., Ltd. Decoding implementation method of Bluetooth receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1901509A1 (en) * 2006-09-14 2008-03-19 BRITISH TELECOMMUNICATIONS public limited company M-GFSK receiver with a Viterbi-decoder having reduced trellis states
CN101247380A (zh) * 2008-03-27 2008-08-20 复旦大学 用于多带正交频分复用超宽带系统的高速维特比解码器
US20150222419A1 (en) * 2014-01-31 2015-08-06 Stichting Imec Nederland Circuit for Symbol Timing Synchronization
US20150280951A1 (en) * 2014-04-01 2015-10-01 Samsung Electronics Co., Ltd. Apparatus and method for receiving signal in communication system supporting gaussian frequency shift keying modulation scheme
CN108881088A (zh) * 2018-08-01 2018-11-23 上海华虹集成电路有限责任公司 一种卷积编码的gfsk信号的联合解调和译码方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1901509A1 (en) * 2006-09-14 2008-03-19 BRITISH TELECOMMUNICATIONS public limited company M-GFSK receiver with a Viterbi-decoder having reduced trellis states
CN101247380A (zh) * 2008-03-27 2008-08-20 复旦大学 用于多带正交频分复用超宽带系统的高速维特比解码器
US20150222419A1 (en) * 2014-01-31 2015-08-06 Stichting Imec Nederland Circuit for Symbol Timing Synchronization
US20150280951A1 (en) * 2014-04-01 2015-10-01 Samsung Electronics Co., Ltd. Apparatus and method for receiving signal in communication system supporting gaussian frequency shift keying modulation scheme
CN108881088A (zh) * 2018-08-01 2018-11-23 上海华虹集成电路有限责任公司 一种卷积编码的gfsk信号的联合解调和译码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.SPETH等: "MLSE based detection for GFSK signals with arbitrary modulation index", 《INTERNATIONAL ZURICH SEMINAR ON COMMUNICATIONS》 *
上官泽胤: "Multi-h CPM解调算法研究综述", 《电子测量技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818464A (zh) * 2020-07-02 2020-10-23 上海橙群微电子有限公司 一种低功耗蓝牙设备的广播方法及终端
CN111818464B (zh) * 2020-07-02 2021-08-03 上海橙群微电子有限公司 一种低功耗蓝牙设备的广播方法及终端
CN112073157A (zh) * 2020-11-11 2020-12-11 南京沁恒微电子股份有限公司 一种蓝牙接收机的低功耗viterbi译码实现方法
CN112653537A (zh) * 2020-12-06 2021-04-13 复旦大学 一种提高低功耗蓝牙系统中接收机灵敏度的方法
CN112653537B (zh) * 2020-12-06 2022-03-18 复旦大学 一种提高低功耗蓝牙系统中接收机灵敏度的方法
CN113098811A (zh) * 2021-04-01 2021-07-09 高拓讯达(北京)科技有限公司 一种gfsk信号的解调解码方法及解调解码装置
CN113098811B (zh) * 2021-04-01 2022-06-28 高拓讯达(北京)科技有限公司 一种gfsk信号的解调解码方法及解调解码装置
US11290208B1 (en) 2021-10-25 2022-03-29 Nanjing qinheng Microelectronics Co., Ltd. Decoding implementation method of Bluetooth receiver

Also Published As

Publication number Publication date
CN110995286B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN110995286B (zh) 一种s=2编码方式的低功耗蓝牙维特比联合解调解码方法
CN111082811B (zh) 一种s=8编码方式的低功耗蓝牙维特比联合解调解码方法
CN111162873B (zh) 一种低功耗蓝牙的低复杂度优化解码算法
CN108881088B (zh) 一种卷积编码的gfsk信号的联合解调和译码方法
CN103888218B (zh) 基于psk信号与ldpc码联合迭代解调译码的信息传输方法
JPH07273813A (ja) ソフトシンボルの生成方法と装置
CN107094064B (zh) 针对八进制连续相位频移键控的维特比解调系统及方法
CN110061803B (zh) 一种低复杂度的极化码比特交织编码调制方法
CN101180846A (zh) 信号调制格式类型的检测
CN115694518A (zh) 基于gmm-hmm的卷积码解码方法和系统
CN105099974B (zh) 一种低复杂度的空间调制软判决检测方法
CN101404564B (zh) 8psk格雷映射的一种软解调方法
CN110838895A (zh) 一种基于极化码的差分混沌通信方法及系统
CN101931453A (zh) 一种基于随机序列的用于交织多址系统的方法
CN110166386B (zh) 一种基于递归混沌码的水声通信均衡译码方法
CN112653537B (zh) 一种提高低功耗蓝牙系统中接收机灵敏度的方法
CN109586850B (zh) 一种用于连续变量量子密钥分发系统中的基于极化码的分层数据协调方法
CN101518002A (zh) 解调方法
US12040906B2 (en) Encoded signal demodulation method, apparatus, device, and computer readable storage medium
CN103188040A (zh) Turbo均衡及其帧间、帧内相关预测的方法和装置
CN100358324C (zh) 用于突发通信的数据均衡方法
US11456818B2 (en) Sensitivity of bluetooth receiver by introducing interleaver
CN112653538B (zh) 一种提高低功耗蓝牙系统中接收机灵敏度的方法
CN1703833A (zh) 数字通信方法和数字通信装置
CN102394721B (zh) 一种软符号到软比特的有效映射算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant