CN110993246B - 一种空间推进地面模拟环境超导磁体系统长路径冷却系统 - Google Patents

一种空间推进地面模拟环境超导磁体系统长路径冷却系统 Download PDF

Info

Publication number
CN110993246B
CN110993246B CN201911271588.3A CN201911271588A CN110993246B CN 110993246 B CN110993246 B CN 110993246B CN 201911271588 A CN201911271588 A CN 201911271588A CN 110993246 B CN110993246 B CN 110993246B
Authority
CN
China
Prior art keywords
long
superconducting magnet
path
low
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911271588.3A
Other languages
English (en)
Other versions
CN110993246A (zh
Inventor
郑金星
刘海洋
宋云涛
陆坤
卫靖
吴友军
朱小亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201911271588.3A priority Critical patent/CN110993246B/zh
Publication of CN110993246A publication Critical patent/CN110993246A/zh
Application granted granted Critical
Publication of CN110993246B publication Critical patent/CN110993246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

本发明公开了一种空间推进地面模拟环境超导磁体系统长路径冷却系统,包括超导磁体、低温制冷系统、真空舱体、长路径冷却管路、超导磁体支撑。所述超导磁体固定在超导磁体支撑上,长路径冷却管路连接低温制冷系统和超导磁体,低温制冷系统与真空舱体通过密封法兰连接。所述长路径冷却系统的结构,使制冷的液氦和液氮能传输到超导磁体内,液氦波纹管连接低温制冷系统内的氦管和长路径管路下方的氦管,氦槽内通过氦管填充液氦,冷屏与氦槽之间保持真空,冷屏外侧包裹液氮盘管。所述超导磁体氦槽通过连接的氦管来输入液氦。实现超导磁体与低温制冷系统长距离跨越连接,以保证超导线圈在低温超导状态下稳定运行。

Description

一种空间推进地面模拟环境超导磁体系统长路径冷却系统
技术领域
本发明涉及空间推进地面模拟环境中超导磁体系统工程技术领域,主要涉及一种低温超导磁体系统长路径的冷却系统。
背景技术
空间推进技术是一种用电磁力作用于带电粒子来产生推力的新型电推进技术。一般采用的离子推进,是在静电场的作用下,将工质电离生成的离子加速喷出,产生推力。采用常规磁线圈或永磁体来产生需要的磁场时,磁体本身的体积过大,中心磁场强度耗散后效率降低,难以满足后续地面试验以及上星需求,而且在低磁场强度下,难以找到推力器的性能拐点。因此,超导磁体可以很好的满足,不但可以提供较高的磁场强度而且整体部件的尺寸也大幅降低。
空间推进地面模拟环境舱体是高真空环境,超导磁体在其中可以长时间稳定运行,所需功耗和冷却剂也较少,产生的磁场稳定。然而超导磁体与舱体环境口位置较远,需考虑超导磁体的冷却装置与超导磁体之间的冷却路径设计,设计一套适合空间推进地面模拟环境舱体超导磁体系统的冷却系统回路系统
发明内容
本发明的目的是提供一种空间推进地面模拟环境超导磁体系统长路径的冷却系统,以实现超导磁体的低温持续运行,并且实现液氦的零挥发,保证整个低温系统的稳定运行及超导磁体的稳定运行。
本发明是通过以下技术方案实现的:一种空间推进地面模拟环境超导磁体系统长路径冷却系统,包括超导磁体、低温制冷系统、真空舱体、长路径冷却管路、超导磁体支撑;所述超导磁体固定在超导磁体支撑上,长路径冷却管路连接低温制冷系统和超导磁体,低温制冷系统与真空舱体通过密封法兰连接。
进一步的,系统还包括长路径管路杜瓦、液氮盘管、长路径管路冷屏、长路径管路氦槽、液氦管,该系统结构从外到内分别是长路径管路杜瓦、液氮盘管、长路径管路冷屏、长路径管路氦槽、液氦管,用于使制冷的液氦和液氮能传输到超导磁体内,对整个系统进行冷却。
进一步的,长路径冷却管路冷屏位于长路径管路氦槽的外侧,长路径管路冷屏与长路径管路氦槽之间保持真空,长路径管路冷屏外侧包裹液氮盘管,并且与低温制冷系统冷屏和超导磁体冷屏连接,液氮盘管连接盘绕整个冷屏系统,对冷屏进行冷却。
进一步的,长路径管路杜瓦位于整个长路径管路的最外侧,与低温制冷系统杜瓦以及超导磁体杜瓦连接,位于真空舱体的真空环境中;长路径冷却管路系统通过超导磁体支撑顶部舱体法兰和低温制冷系统法兰来固定支撑。
进一步的,液氦管贯穿于低温制冷系统、长路径冷却管路和超导磁体,位于整个系统最内侧。
进一步的,所述长路径管路液氦波纹管是柔性结构,连接低温制冷系统杜瓦内的氦管和长路径管路下方的氦管。
进一步的,与长路径冷却管路上部连接的低温制冷系统包括制冷机、阀组件,与长路径冷却管路下部连接的超导磁体包括超导磁体支撑,整体系统处在真空舱体中,真空舱体的舱体法兰与低温制冷系统法兰连接,保证系统的封闭性。
进一步的,所述的长路径是指,制冷机液氦出口距离超导磁体线圈超过1米。
有益效果
本发明提出的一种空间推进地面模拟环境超导磁体系统长路径冷却系统,可以实现超导磁体与低温制冷系统长距离跨越连接,以保证超导线圈在低温超导状态下稳定运行,不产生失超现象,同时保证液氦挥发损耗低,保证设备稳定长时间运行。本发明对于超导磁体更广泛的应用,具有重要意义。
附图说明
图1为本发明超导磁体连接的整体系统示意图;
图2为本发明超导磁体的低温制冷系统内部结构示意图;
图3为本发明超导磁体长路径冷却系统结构示意图。
其中,附图中标号:1超导磁体;2低温制冷系统;3制冷机;4阀组件;5真空舱体;6长路径冷却管路;7低温制冷系统杜瓦;8低温制冷系统法兰;9舱体法兰;10低温制冷系统液氦槽;11液氦管;12低温制冷系统冷屏;13长路径管路杜瓦;14液氮盘管;15长路径管路冷屏;16长路径管路氦槽;17液氦波纹管;18超导磁体支撑。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1、2、3所示。一种用于空间推进地面模拟环境中超导磁体系统长路径冷却管路6,包括长路径管路杜瓦13、液氮盘管14、长路径管路冷屏15、长路径管路氦槽16、液氦波纹管17、液氦管11。与长路径冷却管路6上部连接的低温制冷系统2主要包括制冷机3、阀组件4等,与长路径冷却管路6下部连接的超导磁体1包括超导磁体支撑18等,整体系统处在真空舱体5中,真空舱体5的舱体法兰9与低温制冷系统法兰8连接,保证系统的封闭性。所述的长路径是指,制冷机液氦出口距离超导磁体线圈超过1米。
液氦管11贯穿于低温制冷系统2、长路径冷却管路6和超导磁体1,位于整个系统最内侧,所述长路径管路液氦波纹管17是柔性结构,连接低温制冷系统杜瓦7内的氦管和长路径管路下方的氦管。通过低温制冷系统2上的液氦注入口注入液氦,传输到长路径冷却管路氦槽16内的液氦管11中,继续传输液氦到超导磁体1中的超导磁体氦槽内来对超导磁体线圈进行冷却,运行过程蒸发的氦气通过长路径冷却管路氦槽16传输到低温制冷系统液氦槽10内由制冷机3对其冷凝,从而实现零挥发。
长路径冷却管路冷屏15位于长路径冷却管路氦槽16的外侧,两者之间保持真空,长路径管路冷屏15外侧包裹液氮盘管14,并且与低温制冷系统冷屏12和超导磁体冷屏19连接,液氮盘管14连接盘绕整个低温制冷系统冷屏12,对其进行冷却。
长路径管路杜瓦13位于整个长路径管路的最外侧,与低温制冷系统杜瓦7以及超导磁体外杜瓦连接,位于真空舱体5的真空环境中。通过超导磁体支撑18支撑整个系统固定安装。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (1)

1.一种空间推进地面模拟环境超导磁体系统长路径冷却系统,其特征在于:
包括超导磁体、低温制冷系统、真空舱体、长路径冷却管路、超导磁体支撑;所述超导磁体固定在超导磁体支撑上,长路径冷却管路连接低温制冷系统和超导磁体,低温制冷系统与真空舱体通过密封法兰连接;
系统还包括长路径管路杜瓦、液氮盘管、长路径管路冷屏、长路径管路氦槽、液氦管,该系统结构从外到内分别是长路径管路杜瓦、液氮盘管、长路径管路冷屏、长路径管路氦槽、液氦管,用于使制冷的液氦和液氮能传输到超导磁体内,对整个系统进行冷却;
长路径管路冷屏位于长路径管路氦槽的外侧,长路径管路冷屏与长路径管路氦槽之间保持真空,长路径管路冷屏外侧包裹液氮盘管,并且与低温制冷系统冷屏和超导磁体冷屏连接,液氮盘管连接盘绕整个低温制冷系统冷屏,对整个低温制冷系统冷屏进行冷却;
长路径管路杜瓦位于整个长路径冷却管路的最外侧,与低温制冷系统杜瓦以及超导磁体杜瓦连接,位于真空舱体的真空环境中;长路径冷却管路通过超导磁体支撑顶部舱体法兰和低温制冷系统法兰来固定支撑;
液氦管贯穿于低温制冷系统、长路径冷却管路和超导磁体,位于整个系统最内侧;
长路径管路液氦波纹管是柔性结构,连接低温制冷系统杜瓦内的氦管和长路径管路下方的氦管;
与长路径冷却管路上部连接的低温制冷系统包括制冷机、阀组件,与长路径冷却管路下部连接的超导磁体包括超导磁体支撑,整体系统处在真空舱体中,真空舱体的舱体法兰与低温制冷系统法兰连接,保证系统的封闭性;
所述的长路径是指,制冷机液氦出口距离超导磁体线圈超过1米。
CN201911271588.3A 2019-12-12 2019-12-12 一种空间推进地面模拟环境超导磁体系统长路径冷却系统 Active CN110993246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911271588.3A CN110993246B (zh) 2019-12-12 2019-12-12 一种空间推进地面模拟环境超导磁体系统长路径冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911271588.3A CN110993246B (zh) 2019-12-12 2019-12-12 一种空间推进地面模拟环境超导磁体系统长路径冷却系统

Publications (2)

Publication Number Publication Date
CN110993246A CN110993246A (zh) 2020-04-10
CN110993246B true CN110993246B (zh) 2021-11-19

Family

ID=70092729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911271588.3A Active CN110993246B (zh) 2019-12-12 2019-12-12 一种空间推进地面模拟环境超导磁体系统长路径冷却系统

Country Status (1)

Country Link
CN (1) CN110993246B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111667969B (zh) * 2020-04-30 2022-03-11 宁波高思超导技术有限公司 一种无液氦超导磁体的冷却系统及其冷却方法
CN116864258A (zh) * 2023-08-08 2023-10-10 西安聚能超导磁体科技有限公司 一种支撑连接结构及超导磁体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820071A2 (en) * 1996-07-19 1998-01-21 Sumitomo Electric Industries, Ltd Cooling method and energizing method of superconductor
JP2010262950A (ja) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp 超電導電磁石及びその輸送方法
CN103065759A (zh) * 2013-01-24 2013-04-24 中国科学院电工研究所 一种超导磁体的支撑定位系统
WO2013085181A1 (en) * 2011-12-06 2013-06-13 Korea Basic Science Institute Cooling system for superconductive magnets
CN103366917A (zh) * 2013-06-28 2013-10-23 清华大学 制冷装置和高温超导磁体制冷装置
CN104200951A (zh) * 2014-09-19 2014-12-10 中国科学院电工研究所 一种超导磁体冷却装置
US20150332829A1 (en) * 2014-05-19 2015-11-19 General Electric Company Cryogenic cooling system
WO2019073573A1 (ja) * 2017-10-12 2019-04-18 三菱電機株式会社 超電導電磁石装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229886A (ja) * 1986-03-29 1987-10-08 Toshiba Corp クライオスタツト
JPH11219814A (ja) * 1998-01-29 1999-08-10 Toshiba Corp 超電導マグネットおよびその予冷方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820071A2 (en) * 1996-07-19 1998-01-21 Sumitomo Electric Industries, Ltd Cooling method and energizing method of superconductor
JP2010262950A (ja) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp 超電導電磁石及びその輸送方法
WO2013085181A1 (en) * 2011-12-06 2013-06-13 Korea Basic Science Institute Cooling system for superconductive magnets
CN103065759A (zh) * 2013-01-24 2013-04-24 中国科学院电工研究所 一种超导磁体的支撑定位系统
CN103366917A (zh) * 2013-06-28 2013-10-23 清华大学 制冷装置和高温超导磁体制冷装置
US20150332829A1 (en) * 2014-05-19 2015-11-19 General Electric Company Cryogenic cooling system
CN104200951A (zh) * 2014-09-19 2014-12-10 中国科学院电工研究所 一种超导磁体冷却装置
WO2019073573A1 (ja) * 2017-10-12 2019-04-18 三菱電機株式会社 超電導電磁石装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
低温地面支持设备系统CGSE中模拟器的结构和强度设计;石玉美等;《低温技术》;20171231(第1期);第9-11页 *

Also Published As

Publication number Publication date
CN110993246A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110993246B (zh) 一种空间推进地面模拟环境超导磁体系统长路径冷却系统
CN106679217B (zh) 一种机械振动隔离的液氦再凝聚低温制冷系统
CN110440477A (zh) 一种可插拔式低温容器
CN109243754B (zh) 电流引线结构及超导磁体
JP2003219581A (ja) 超電導フライホイ−ル電力貯蔵装置
CN107068323A (zh) 一种高温超导磁体液氮自动加注制冷装置
CN113053613A (zh) 一种传导冷却式高温超导电动悬浮磁体结构
CN215069486U (zh) 一种传导冷却式高温超导电动悬浮磁体结构
CN110993247B (zh) 一种空间推进地面模拟环境用t级高场超导磁体系统
CN109887701B (zh) 一种用于超导磁悬浮列车的超导磁体冷却装置及使用方法
WO2020114066A1 (zh) 插拔式电流引线结构及超导磁体
CN114520086A (zh) 干式超导磁体的低温冷却装置、冷却系统及其运行方法
CN112331409B (zh) 一种用于超导电缆的双端逆流制冷系统
JPH06188466A (ja) 超電導マグネット冷却システム
CN201707992U (zh) 通用型超导磁体系统
JP2001099156A (ja) 高温超電導磁気軸受装置及び高温超電導フライホイール装置
KR100571679B1 (ko) 연료전지가 결합된 초전도 모터
KR20040009260A (ko) 전도냉각형 고온초전도 회전자 냉각시스템
CN216964941U (zh) 一种超导除铁器磁体导冷结构
CN113257449B (zh) 一种月球氦3的储运装置
CN203114546U (zh) 一种火箭推进装置
CN117334399A (zh) 一种超导直流输电电缆和海上风电超导直流输电系统
WO2023087408A1 (zh) 磁浮交通列车及磁浮交通的车载超导磁体系统
CN214541777U (zh) 一种低温系统的超导磁体装置
CN109143131B (zh) 磁共振成像系统及其低温保持器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant