WO2020114066A1 - 插拔式电流引线结构及超导磁体 - Google Patents

插拔式电流引线结构及超导磁体 Download PDF

Info

Publication number
WO2020114066A1
WO2020114066A1 PCT/CN2019/109173 CN2019109173W WO2020114066A1 WO 2020114066 A1 WO2020114066 A1 WO 2020114066A1 CN 2019109173 W CN2019109173 W CN 2019109173W WO 2020114066 A1 WO2020114066 A1 WO 2020114066A1
Authority
WO
WIPO (PCT)
Prior art keywords
current lead
action
plug
superconducting magnet
lead structure
Prior art date
Application number
PCT/CN2019/109173
Other languages
English (en)
French (fr)
Inventor
赵华炜
王鹏
余乃君
万波
虞维兴
李强
史永凌
Original Assignee
湖南迈太科医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南迈太科医疗科技有限公司 filed Critical 湖南迈太科医疗科技有限公司
Publication of WO2020114066A1 publication Critical patent/WO2020114066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to the technical field of superconducting magnets, in particular to a plug-in current lead structure and superconducting magnets.
  • Superconductivity refers to the property that the resistance of some substances drops to zero under certain temperature conditions (generally lower temperature), and the superconductivity of the material can be used to make superconducting magnets. Among them, the superconducting coil in the superconducting magnet is connected to the external circuit through the current lead to generate a magnetic field and store energy.
  • the common current leads are permanent current leads and temporary current leads.
  • the permanent current lead is kept inside the magnet no matter during excitation or field reduction or after any operation is completed, so it is easy to generate additional heat conduction; while the temporary current lead is connected to the internal joint of the superconducting magnet (since from 300K (Environment enters 4K environment) There will be inadequate contact at the junction, resulting in the junction resistance greater than the safe value, thereby increasing the risk of quenching of the superconducting magnet during excitation and field drop.
  • a plug-in current lead structure is assembled on a superconducting magnet.
  • the plug-in current lead structure includes:
  • a fixed joint fixedly arranged on the cold screen of the superconducting magnet
  • a mobile joint removably provided on the superconducting magnet housing in the superconducting magnet;
  • An action container with an action cavity the action container being arranged between the superconducting magnet housing and the cold screen;
  • the fixed joint is configured to extend into the action cavity at one end, and when the movable joint is inserted into the action cavity and communicates with the fixed joint, the action cavity is used as a cooling cavity;
  • the active chamber is used as a vacuum chamber.
  • the superconducting magnet housing and/or the action container is provided with a plug port for the mobile joint to enter and exit.
  • the plug-in current lead structure includes a first sealing plug. The first sealing plug blocks the insertion port when the action chamber is a vacuum chamber.
  • the action container includes a neck tube that communicates with the outside world and the action cavity, a through hole is formed in the superconducting magnet housing to communicate with the action cavity, and one end of the neck tube is sealingly disposed at The outer periphery of the through hole communicates with the through hole, and the insertion and extraction port is opened at the other end.
  • the plug-in current lead structure includes a pipe and a second sealing plug, the pipe is configured to allow a working medium to enter and exit the working chamber, and the second sealing plug is located in the working chamber When the chamber is a vacuum chamber, the pipeline is blocked.
  • the working medium is a gas or liquid used for cooling.
  • an output channel for gas volatilization is opened inside the mobile joint, and the output channel communicates with the outside world and the action chamber.
  • the working container includes a bottom wall and a side wall, there is a certain distance between the bottom wall and the cold screen, the side wall is connected to the bottom wall and the superconducting magnet housing Between; one end of the fixed joint is fixedly disposed on the cold screen, and the other end of the fixed joint extends through the bottom wall into the action cavity.
  • the bottom wall and the fixed joint are insulated and sealed.
  • the side wall is formed by a poor thermal conductor.
  • a superconducting magnet includes a superconducting coil, a low-temperature cooling unit for providing superconducting temperature for the superconducting coil, and a current lead structure for realizing conduction between the superconducting coil and an external circuit; the low temperature
  • the cooling unit includes a superconducting magnet housing, an internal structure of a cold screen and a cold screen, the cold screen is disposed between the superconducting magnet housing and the internal structure of the cold screen; the current lead structure is the current lead described above structure.
  • the plug-in current lead structure and superconducting magnet provided in this application, the plug-in current lead structure, the fixed joint is set on the cold screen (50K environment), thereby reducing the entry from 300K environment to 4K environment (such as traditional temporary current lead). Lead to the problem of inadequate contact at the junction and the resistance of the junction is greater than the safe value; at the same time, the heat capacity of the cold screen (50K component) is greater than the heat capacity of the internal structure of the cold screen (4K), thereby reducing the superconducting magnet during excitation and field reduction The risk of quench.
  • the action cavity is used as a cavity with different functions when the mobile joint and the fixed joint are in different states, reducing heat conduction and achieving good thermal insulation performance.
  • FIG. 1 is a schematic diagram of the connection of the plug-in current lead structure of a superconducting magnet in an embodiment of the invention
  • FIG. 2 is a schematic diagram of the disconnection of the plug-in current lead structure of the superconducting magnet shown in FIG. 1.
  • superconducting magnets made of superconducting materials can be applied to technical fields such as motors, magnetic levitation transportation, magnetic resonance imaging (Magnetic Resonance Imaging, MRI), nuclear magnetic resonance (Nuclear Magnetic Resonance, NMR), and other technical fields.
  • medical superconducting magnets represented by medical superconducting magnets, medical superconducting magnets have become an important part of modern high-field magnetic resonance imaging systems (Magnetic, Resonance, Imaging, MRI), the main role is to provide high strength and high stability for MRI work
  • the background magnetic field facilitates fast, high-contrast and high-definition imaging.
  • the superconducting magnet is mainly composed of superconducting coil, superconducting switch, low temperature unit, auxiliary circuit and current lead.
  • the superconducting coil generates a magnetic field by passing current, which is the main energy storage component;
  • the superconducting switch ensures that the superconducting coil works steadily in the closed-loop and open-loop states, and the low-temperature unit ensures that all components that need to work in the superconducting state are at superconducting temperature, auxiliary
  • the circuit mainly completes the quench protection of the superconducting magnet and other functions, so that the superconducting magnet will not damage the coil by high voltage or high temperature during the quenching process;
  • the current lead is used to connect the superconducting coil with the external loop to realize the superconducting coil Excitation and drop field.
  • the temporary current lead is only used when operating the superconducting magnet, such as providing a current channel when exciting or dropping the field; when the predetermined operation is completed, the current lead and the superconducting magnet are separated and taken out.
  • the temporary current is connected to the internal connector of the superconducting magnet (due to entering the 4K environment from the 300K environment), there will be inadequate contact at the junction, causing the junction resistance to be greater than the safe value, thereby increasing the superconductivity during excitation and field reduction Risk of magnet quench.
  • the permanent current lead is kept inside the superconducting magnet no matter during the excitation or field reduction or after any operation is completed. One end is connected to the internal circuit of the superconducting magnet, and the other end is connected to the power cable outside the superconducting magnet. That is, the permanent current lead will always be connected to the internal circuit of the superconducting magnet. Although there is no process from 300K to 4K when connected to the external circuit, the disadvantages caused by the temporary current lead can be avoided, but it remains in the magnet and is easy to produce. Extra heat conduction.
  • the present invention provides a plug-in current lead structure to solve the above problems.
  • the structure of the superconducting magnet is briefly introduced first. Because of the low-temperature superconducting magnet, it must operate in the low-temperature temperature range of about 4K (-269°C). Therefore, in order to maintain the working environment of the low-temperature superconducting magnet, the low-temperature superconducting magnet is usually designed as a Dewar vessel with high vacuum and high insulation performance.
  • the Dewar container includes the internal structure of the cold screen, the superconducting magnet shell and the cold screen.
  • the internal structure of the cold screen is filled with liquid helium and helium, and the superconducting coil in the superconducting magnet is immersed in liquid helium.
  • the superconducting magnet shell is arranged outside the internal structure of the cold screen, and forms a double-walled structure with the internal structure of the cold screen.
  • a high vacuum is drawn between the walls to reduce the heat transfer of the gas, and the two opposite surfaces of the double wall are plated or polished to reduce the emissivity, thereby reducing the radiation heat transfer as much as possible.
  • the cold screen (50K environment) is placed between the internal structure of the cold screen and the superconducting magnet shell, and the surface is wrapped with multiple layers of polymer insulation film to minimize the superconducting magnet shell (the external temperature is 300K) to the internal structure of the cold screen (4K environment) heat transfer (ie, heat leakage).
  • the plug-in current lead structure 100 is assembled on a superconducting magnet and is used to connect the superconducting coil with an external circuit to generate a magnetic field to realize the superconducting coil. Energy storage.
  • the plug-in current lead structure 100 includes a fixed joint 10, a movable joint 30 and an action container 50.
  • the fixed joint 10 is fixedly arranged on the superconducting magnet intercooler 200
  • the movable joint 30 is removably arranged on the superconducting magnet housing 400 of the superconducting magnet
  • the action container 50 has an action cavity 51, and is arranged in the superconducting magnet casing Between 400 and the cold screen 200.
  • the fixed joint 10 is configured to extend into the action cavity 51 at one end, and when the movable joint 30 is inserted into the action cavity 51 to communicate with the fixed joint 10, the action cavity 51 is used as a cooling cavity to cool the mobile joint 30; and when When the movable joint 30 is pulled out of the active chamber 51 and disconnected from the fixed joint 10, the active chamber 51 is used as a vacuum chamber to ensure good thermal insulation performance between the superconducting magnet housing 400 (300K assembly) and the cold screen 200 (50K assembly) .
  • the plug-in current lead structure 100 is divided into two parts, one part is fixedly disposed on the cold screen 200 (ie, the fixed joint 10), and the other part is pluggable relative to the superconducting magnet housing 400 (ie, the movable joint 30 ).
  • the superconducting magnet is also provided with an action cavity 51; when the mobile joint 30 communicates with the fixed joint 10, it is used to cool the mobile joint 30; and when the mobile joint 30 is disconnected from the fixed joint 10, it is used to maintain a vacuum State, to achieve good thermal insulation performance.
  • the fixed joint 10 is provided on the cold screen 200 (50K environment), thereby reducing the contact from the 300K environment to the 4K environment (such as the traditional temporary current lead), resulting in inadequate contact and junction
  • the problem that the resistance is greater than the safe value; at the same time, because the heat capacity of the cold screen 200 (50K component) is greater than the heat capacity of the internal structure of the cold screen (4K), the risk of quenching of the superconducting magnet during excitation and field reduction is reduced.
  • the acting cavity 51 serves as a cavity having different functions when the mobile joint 30 and the fixed joint 10 are in different states, reducing heat conduction and achieving good thermal insulation performance.
  • the action container 50 includes a bottom wall 52 and a side wall 53 with a certain distance between the bottom wall 52 and the cold shield 200, and the side wall 53 is connected between the bottom wall 52 and the superconducting magnet housing 400.
  • One end of the fixed joint 10 is fixedly disposed on the cold screen 200, and the other end of the fixed joint 10 extends through the bottom wall 52 into the working cavity 51.
  • the bottom wall 52 and the fixed joint 10 are insulated and sealed.
  • the side wall 53 is formed of a poor conductor of heat to reduce heat conduction.
  • the bottom wall 52 may also be combined with the outer surface of the cold screen 200, that is, the bottom wall 52 is composed of the outer surface of the cold screen 200, and the side wall 53 is directly sealed and formed on the cold screen Between the outer surface of 200 and the superconducting magnet housing 400; only the action container 50 needs to be a sealed container formed between the superconducting magnet housing 400 and the cold shield 200, which is not limited herein.
  • the superconducting magnet housing 400 and/or the action container 50 is provided with a plug-in port 510 for the mobile joint 30 to enter and exit.
  • the plug-in current lead structure 100 includes a first sealing plug 70 (as shown in FIG. 2 ), and the first seal The plug 70 blocks the insertion port 510 when the action chamber 51 is a vacuum chamber.
  • the insertion port 510 and the superconducting magnet housing 400 are provided with a through hole for the mobile connector 30 to enter and exit.
  • the mobile connector 30 enters the action chamber 51 through the insertion port 510 and communicates with the fixed connector 10. And when the moving joint 30 is pulled out from the action cavity 51, and the action cavity 51 is drawn into a vacuum cavity, the first sealing plug 70 blocks the insertion port 510.
  • the action container 50 includes a neck tube 55 that communicates with the outside world and the action cavity 51, and the superconducting magnet housing 400 defines a through hole 401 communicating with the action cavity 51.
  • One end of the neck tube 55 is sealingly disposed on the outer periphery of the through hole 401 and communicates with the through hole 401, and the other end defines a plug-in port 510. That is to say, the superconducting magnet housing 400 is provided with a through hole 401 for the mobile joint 30 to enter and exit.
  • the neck tube 55 is integrally or separately provided on the superconducting magnet housing 400 and communicates with the through hole 401 to form a The channel for moving the joint 30 in and out.
  • the connection method of the neck tube 55 and the superconducting magnet housing 400 can be ultrasonic welding, sealant connection and other directions, and only needs to realize the sealed connection, which is not limited herein.
  • the neck tube 55 may be directly sealed and sleeved in the through hole 401, so that the through hole 401 is only used to accommodate the neck tube 55, and the movement joint 30 is completely inserted through the neck tube 55.
  • the port 510 is sufficient. After the working chamber 51 is evacuated into a vacuum chamber, the first sealing plug 70 blocks the insertion port 510 on the neck tube 55.
  • the plug-in current lead structure 100 further includes a pipe 80 and a second sealing plug 90 (as shown in FIG. 2 ).
  • the pipe 80 is configured to allow the working medium to enter and exit the working chamber 51, and the second sealing plug 90 is in the working chamber When 51 is a vacuum chamber, the pipeline 80 is blocked. Specifically, one end of the pipe 80 is inserted into the superconducting magnet housing 400 and the action container 50 into the action cavity 51, and the other end is exposed. As shown in FIG.
  • the aforementioned working medium is a gas or liquid for cooling, preferably liquid nitrogen.
  • an output channel 31 for gas volatilization is opened inside the mobile joint 30.
  • the output channel 31 communicates with the outside and the action chamber 51 so that the heated nitrogen gas can be discharged through the output channel 31.
  • the current lead structure 100 provided in this application has the following beneficial effects:
  • the combination of the movable joint 30 and the fixed joint 10 of the plug-in current lead structure 100 in this application is from the 300K environment to the 50K environment, thereby reducing the contact from the junction from the 300K environment to the 4K environment (such as traditional temporary current leads)
  • the problem is not tight and the resistance at the junction is greater than the safe value;
  • the heat capacity of the cold screen 200 (50K component) is greater than the heat capacity of the internal structure of the cold screen (4K), thereby reducing the quenching of the superconducting magnet during excitation and field reduction risk;
  • the action cavity 51 is used as a cavity with different functions when the mobile joint 30 and the fixed joint 10 are in different states, reducing heat conduction and achieving good thermal insulation performance.
  • the superconducting magnet provided in the first embodiment of the present invention has all the technical features of the plug-in current lead structure 100, and therefore has the same technical effects as the plug-in current lead structure 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种插拔式电流引线结构(100)及超导磁体,插拔式电流引线结构(100)包括固定接头(10)、移动接头(30)以及具有作用腔(51)的作用容器(50),作用容器(50)配置于超导磁体外壳(400)与冷屏(200)之间;固定接头(10)构造为一端伸入作用腔(51)内,移动接头(30)插入作用腔(51)内与固定接头(10)连通时,作用腔(51)用作冷却腔;移动接头拔出作用腔(51)后与固定接头(10)断开时,作用腔(51)用作真空腔。所述插拔式电流引线结构(100)的固定接头(10)设置于冷屏(200)上,从而降低从300K环境进入4K环境而导致结合处接触不紧密、结合处电阻大于安全值的问题;同时由于冷屏(200)的热容大于冷屏(200)内部结构的热容,从而降低励磁和降场过程中失超的风险。此外,作用腔(51)在移动接头(30)与固定接头(10)不同状态时用作具有不同功能的腔,降低热传导并达到良好绝热性能。

Description

插拔式电流引线结构及超导磁体 技术领域
本发明涉及超导磁体技术领域,特别涉及一种插拔式电流引线结构及超导磁体。
背景技术
超导是指某些物质在一定温度条件下(一般为较低温度)电阻降为零的性质,利用材料的超导性可制作超导磁体。其中,超导磁体中超导线圈借由电流引线与外部回路导通,以产生磁场并储能。
然而,常见的电流引线有永久电流引线和临时电流引线两种。其中,永久电流引线不论在励磁或降场过程中还是完成任何操作之后,一直保持在磁体内部,因此易产生额外的热传导;而临时电流引线在与超导磁体内部接头连接过程中(由于从300K环境进入4K环境)会出现结合处接触不紧密,导致结合处电阻大于安全值,从而加大励磁和降场过程中超导磁体失超的风险。
发明内容
基于此,提供一种降低额外热传导及失超风险的插拔式电流引线结构及超导磁体。
一种插拔式电流引线结构,装配于超导磁体上,所述插拔式电流引线结构包括:
固定设置于所述超导磁体中冷屏上的固定接头;
可插拔地设置于所述超导磁体中超导磁体外壳上的移动接头;以及
具有作用腔的作用容器,所述作用容器配置于所述超导磁体外壳与所述冷屏之间;
其中,所述固定接头构造为一端伸入所述作用腔内,所述移动接头插入所述作用腔内与所述固定接头连通时,所述作用腔用作冷却腔;
所述移动接头拔出所述作用腔后与所述固定接头断开时,所述作用腔用作真空腔。
在其中一个实施例中,所述超导磁体外壳和/或所述作用容器上开设有供所述移动接头出入的插拔口,所述插拔式电流引线结构包括第一密封堵头,所述第一密封堵头在所述作用腔为真空腔时封堵所述插拔口。
在其中一个实施例中,所述作用容器包括连通外界与所述作用腔的颈管,所述超导磁体外壳上开设与所述作用腔连通的通孔,所述颈管的一端密封设置于所述通孔的外周并与所述通孔连通,另一端开设所述插拔口。
在其中一个实施例中,所述插拔式电流引线结构包括管道及第二密封堵头,所述管道构造为允许作用介质进出所述作用腔,所述第二密封堵头在所述作用腔为真空腔时封堵所述管道。
在其中一个实施例中,所述作用介质为用于冷却的气体或液体。
在其中一个实施例中,所述移动接头内部开设有用于气体挥发的输出通道,所述输出通道连通外界与所述作用腔。
在其中一个实施例中,所述作用容器包括底壁及侧壁,所述底壁与所述冷屏之间具有一定间距,所述侧壁连接于所述底壁与所述超导磁体外壳之间;所述固定接头的一端固定设置于所述冷屏上,所述固定接头的另一端穿过所述底 壁伸入所述作用腔内。
在其中一个实施例中,所述底壁与所述固定接头之间绝缘且密封设置。
在其中一个实施例中,所述侧壁由热的不良导体形成。
一种超导磁体,其包括超导线圈、用于为所述超导线圈提供超导温度的低温冷却单元以及用于实现所述超导线圈与外部回路导通的电流引线结构;所述低温冷却单元包括超导磁体外壳、冷屏内部结构以及冷屏,所述冷屏设置于所述超导磁体外壳与所述冷屏内部结构之间;所述电流引线结构为上述所述的电流引线结构。
本申请提供的插拔式电流引线结构及超导磁体,插拔式电流引线结构,固定接头设置于冷屏(50K环境)上,从而降低从300K环境进入4K环境(如传统临时电流引线)而导致结合处接触不紧密、结合处电阻大于安全值的问题;同时由于冷屏(50K组件)的热容大于冷屏内部结构(4K)的热容,从而降低励磁和降场过程中超导磁体失超的风险。此外,作用腔在移动接头与固定接头不同状态时用作具有不同功能的腔,降低热传导并达到良好绝热性能。
附图说明
图1为本发明一实施例中超导磁体的插拔式电流引线结构连通的示意图;
图2为图1所示超导磁体的插拔式电流引线结构断开的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实 现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在两者之间的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在两者之间的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
随着科学技术的发展,超导技术在工业和科研中得到更为广泛的应用。具体地,利用超导材料制作的超导磁体可应用于电机、磁悬浮运输、磁共振成像(Magnetic Resonance Imaging,简称:MRI)、核磁共振(Nuclear Magnetic Resonance,简称:NMR)等技术领域。其中,以医用超导磁体为代表,医用超导磁体已成为现代高场磁共振成像系统(Magnetic Resonance Imaging,MRI)的重要组成部分,主要作用是为MRI的工作提供高强度、高稳定性的背景磁场,便于实现快速、高对比度和高清晰度的成像。
超导磁体主要由超导线圈、超导开关、低温单元、辅助电路以及电流引线组成。其中,超导线圈通电流产生磁场,为主要储存能量的元件;超导开关保证超导线圈稳定工作于闭环和开环状态,低温单元保证所有需要超导态工作的部件处于超导温度,辅助电路主要完成超导磁体的失超保护等功能,使得超导磁体在失超过程中不会出现高电压或者高温损坏线圈;电流引线用于将超导线圈与外部回路导通,实现超导线圈的励磁及降场。
其中,临时电流引线只在对超导磁体进行操作时使用,如励磁或降场时提供电流通道;当完成既定操作后,会将电流引线与超导磁体分离并拿出。而临时电流引在与超导磁体内部接头连接过程中(由于从300K环境进入4K环境),会出现结合处接触不紧密导致结合处电阻大于安全值,从而加大励磁和降场过程中超导磁体失超的风险。
永久电流引线不论在励磁或降场过程中还是完成任何操作之后,是一直保持在超导磁体内部,其一端与超导磁体内部电路相连,另一端在超导磁体外部用以和电源电缆相连。即永久电流引线会一直与超导磁体内部电路相连,虽然与外部电路连接时不存在从300K进入4K这一过程,可以避免临时电流引线带来的不利因素,但一直保持在磁体内部,易产生额外的热传导。
为解决上述临时电流引线与永久电流引线存在的上述问题,本发明提供一种插拔式电流引线结构,以解决上述问题。
为了便于理解,首先就超导磁体的结构进行简单介绍。由于低温超导磁体必须运行在4K(-269℃)左右的低温温区。因此,为维持低温超导磁体的工作环境,通常将低温超导磁体设计成一个高真空、高绝热性能的杜瓦容器。
其中,杜瓦容器包括冷屏内部结构、超导磁体外壳以及冷屏。冷屏内部结构内充满液氦及氦气,超导磁体中超导线圈浸于液氦内。超导磁体外壳设置在冷屏内部结构外部,并与冷屏内部结构之间形成双层壁结构。同时,在壁间抽成高真空以减小气体的传热,双层壁相对的两个表面镀银或抛光以降低辐射率,从而使辐射传热尽可能地减小。冷屏(50K环境)设置于冷屏内部结构与超导磁体外壳之间,并在表面包裹多层高分子绝热膜,用于尽量减少超导磁体外壳(外部为室温300K)向冷屏内部结构(4K环境)的热传递(即漏热)。
请参看图1和图2,本发明一实施例中,插拔式电流引线结构100装配于超导磁体上,用于将超导线圈与外部回路导通,以产生磁场,实现超导线圈的储能。插拔式电流引线结构100包括固定接头10、移动接头30以及作用容器50。
固定接头10固定设置于超导磁体中冷屏200上,移动接头30可插拔地设置于超导磁体中超导磁体外壳400上,作用容器50具有作用腔51,且配置于超导磁体外壳400与冷屏200之间。
具体地,固定接头10构造为一端伸入作用腔51内,移动接头30插入作用腔51内与固定接头10连通时,作用腔51用作冷却腔,以对移动接头30进行降温冷却;而当移动接头30拔出作用腔51后与固定接头10断开时,作用腔51用作真空腔,以保证超导磁体外壳400(300K组件)和冷屏200(50K组件)之间良好的绝热性能。
也就是说,插拔式电流引线结构100被分为两个部分,一部分固定设置于冷屏200上(即固定接头10),另一部分相对超导磁体外壳400可插拔设置(即移动接头30)。同时,超导磁体内部还设置有作用腔51;使得在移动接头30与固定接头10连通时,用于对移动接头30冷却;而在移动接头30与固定接头10断开时,用于保持真空状态,达到良好绝热性能。
本申请中插拔式电流引线结构100,固定接头10设置于冷屏200(50K环境)上,从而降低从300K环境进入4K环境(如传统临时电流引线)而导致结合处接触不紧密、结合处电阻大于安全值的问题;同时由于冷屏200(50K组件)的热容大于冷屏内部结构(4K)的热容,从而降低励磁和降场过程中超导磁体失超的风险。此外,作用腔51在移动接头30与固定接头10不同状态 时用作具有不同功能的腔,降低热传导并达到良好绝热性能。
具体地,作用容器50包括底壁52及侧壁53,底壁52与冷屏200之间具有一定间距,侧壁53连接于底壁52与超导磁体外壳400之间。固定接头10的一端固定设置于冷屏200上,固定接头10的另一端穿过底壁52伸入作用腔51内。
其中,为了保证作用腔51的密封性能,底壁52与固定接头10之间绝缘且密封设置。此外,侧壁53由热的不良导体形成,以减少热传导。
可以理解地,在其它实施例中,底壁52亦可与冷屏200的外表面合二为一,即底壁52即由冷屏200的外表面构成,侧壁53直接密封形成于冷屏200外表面与超导磁体外壳400之间;只需要作用容器50为形成于超导磁体外壳400与冷屏200之间的密封容器即可,在此不作限定。
超导磁体外壳400和/或作用容器50上开设有供移动接头30出入的插拔口510,插拔式电流引线结构100包括第一密封堵头70(如图2所示),第一密封堵头70在作用腔51为真空腔时封堵插拔口510。
在其中一个实施例中,插拔口510与超导磁体外壳400上设置供移动接头30出入的通孔合二为一,移动接头30由插拔口510进入作用腔51与固定接头10连通,且当移动接头30由作用腔51中拔出,作用腔51被抽成真空腔后,第一密封堵头70封堵插拔口510。
在本具体实施例中,作用容器50包括连通外界与作用腔51的颈管55,超导磁体外壳400上开设与作用腔51连通的通孔401。颈管55的一端密封设置于通孔401的外周并与通孔401连通,另一端开设插拔口510。也就是说,超导磁体外壳400上自身开设有仅供移动接头30进出的通孔401,颈管55一体 或分体式的设置于超导磁体外壳400上,并与通孔401连通形成一条供移动接头30进出的通道。当作用腔51被抽成真空腔后,第一密封堵头70封堵颈管55上的插拔口510。其中,颈管55与超导磁体外壳400的连接方式可以为超声波焊接、密封胶连接等多种方向,只需要实现密封连接即可,在此不作限定。
可以理解地,在其它实施例中,颈管55可直接密封套设于通孔401内,使通孔401仅用于容纳颈管55,而移动接头30的出入完全通过颈管55的插拔口510即可,当作用腔51被抽成真空腔后,第一密封堵头70封堵颈管55上的插拔口510。
进一步地,插拔式电流引线结构100还包括管道80及第二密封堵头90(如图2所示),管道80构造为允许作用介质进出作用腔51,第二密封堵头90在作用腔51为真空腔时封堵管道80。具体地,管道80的一端插入超导磁体外壳400与作用容器50进入作用腔51内,另一端外露。如图1所示,在进行励磁或降场时,拔出第一密封堵头70和第二密封堵头90,移动接头30插入作用腔51与固定接头10接触,作用腔51内通过管道80通入液氮,以对移动接头30冷却降温;如图2所示,而当操作完成后,移动接头30由作用腔51拔出,将第一密封堵头70封堵插拔口510,并通过管道80对作用腔51进行抽空呈真空腔后,通过第二密封堵头90封堵管道80,以保证达到良好绝热性能。
上述作用介质为用于冷却的气体或液体,优选地为液氮。对应地,移动接头30内部开设有用于气体挥发的输出通道31,输出通道31连通外界与作用腔51使得受热呈气态的氮气可经输出通道31排出。
本申请中提供的电流引线结构100,具有以下有益效果:
1、本申请中插拔式电流引线结构100的移动接头30与固定接头10的结 合为由300K环境进入50K环境,从而降低从300K环境进入4K环境(如传统临时电流引线)而导致结合处接触不紧密、结合处电阻大于安全值的问题;同时由于冷屏200(50K组件)的热容大于冷屏内部结构(4K)的热容,从而降低励磁和降场过程中超导磁体失超的风险;
2、作用腔51在移动接头30与固定接头10不同状态时用作具有不同功能的腔,降低热传导并达到良好绝热性能。
3、降低使用过程的热传导,在励磁及降场过程完成后,移动接头30与固定接头10会由作用腔51内部拔出,切断了热传导通道,减少了从300K环境向4K环境的热传导。
本发明实施例一提供的超导磁体,因其具有上述插拔式电流引线结构100全部的技术特征,故具有与上述插拔式电流引线结构100相同的技术效果。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种插拔式电流引线结构,装配于超导磁体上,其特征在于,所述插拔式电流引线结构包括:
    固定设置于所述超导磁体中冷屏上的固定接头;
    可插拔地设置于所述超导磁体中超导磁体外壳上的移动接头;以及
    具有作用腔的作用容器,所述作用容器配置于所述超导磁体外壳与所述冷屏之间;
    其中,所述固定接头构造为一端伸入所述作用腔内,所述移动接头插入所述作用腔内与所述固定接头连通时,所述作用腔用作冷却腔;
    所述移动接头拔出所述作用腔后与所述固定接头断开时,所述作用腔用作真空腔。
  2. 根据权利要求1所述的插拔式电流引线结构,其特征在于,所述超导磁体外壳和/或所述作用容器上开设有供所述移动接头出入的插拔口,所述插拔式电流引线结构包括第一密封堵头,所述第一密封堵头在所述作用腔为真空腔时封堵所述插拔口。
  3. 根据权利要求2所述的插拔式电流引线结构,其特征在于,所述作用容器包括连通外界与所述作用腔的颈管,所述超导磁体外壳上开设与所述作用腔连通的通孔,所述颈管的一端密封设置于所述通孔的外周并与所述通孔连通,另一端开设所述插拔口。
  4. 根据权利要求1或2所述的插拔式电流引线结构,其特征在于,所述插拔式电流引线结构包括管道及第二密封堵头,所述管道构造为允许作用介质 进出所述作用腔,所述第二密封堵头在所述作用腔为真空腔时封堵所述管道。
  5. 根据权利要求4所述的插拔式电流引线结构,其特征在于,所述作用介质为用于冷却的气体或液体。
  6. 根据权利要求5所述的插拔式电流引线结构,其特征在于,所述移动接头内部开设有用于气体挥发的输出通道,所述输出通道连通外界与所述作用腔。
  7. 根据权利要求1所述的插拔式电流引线结构,其特征在于,所述作用容器包括底壁及侧壁,所述底壁与所述冷屏之间具有一定间距,所述侧壁连接于所述底壁与所述超导磁体外壳之间;所述固定接头的一端固定设置于所述冷屏上,所述固定接头的另一端穿过所述底壁伸入所述作用腔内。
  8. 根据权利要求7所述的插拔式电流引线结构,其特征在于,所述底壁与所述固定接头之间绝缘且密封设置。
  9. 根据权利要求7所述的插拔式电流引线结构,其特征在于,所述侧壁由热的不良导体形成。
  10. 一种超导磁体,其特征在于,包括超导线圈、用于为所述超导线圈提供超导温度的低温冷却单元以及用于实现所述超导线圈与外部回路导通的电流引线结构;所述低温冷却单元包括超导磁体外壳、冷屏内部结构以及冷屏,所述冷屏设置于所述超导磁体外壳与所述冷屏内部结构之间;所述电流引线结构为上述权利要求1-9任意一项所述的电流引线结构。
PCT/CN2019/109173 2018-12-04 2019-09-29 插拔式电流引线结构及超导磁体 WO2020114066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811474369.0 2018-12-04
CN201811474369.0A CN109360707A (zh) 2018-12-04 2018-12-04 插拔式电流引线结构及超导磁体

Publications (1)

Publication Number Publication Date
WO2020114066A1 true WO2020114066A1 (zh) 2020-06-11

Family

ID=65331027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109173 WO2020114066A1 (zh) 2018-12-04 2019-09-29 插拔式电流引线结构及超导磁体

Country Status (2)

Country Link
CN (1) CN109360707A (zh)
WO (1) WO2020114066A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360707A (zh) * 2018-12-04 2019-02-19 湖南迈太科医疗科技有限公司 插拔式电流引线结构及超导磁体
CN109887702B (zh) * 2019-03-06 2021-06-22 上海交通大学 一种用于高温超导磁悬浮列车磁体励磁的电流引线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436233B (en) * 2006-02-17 2008-03-19 Siemens Magnet Technology Ltd Current leads for cryogenically cooled equipment
CN101178967A (zh) * 2006-10-02 2008-05-14 通用电气公司 用于超导磁体的高温超导电流引线
US20080227647A1 (en) * 2007-03-16 2008-09-18 Concetta Beneduce Current lead with high temperature superconductor for superconducting magnets in a cryostat
CN103413645A (zh) * 2013-08-09 2013-11-27 中国科学院电工研究所 一种分离式一级电流引线装置
CN103714937A (zh) * 2014-01-16 2014-04-09 奥泰医疗系统有限责任公司 超导磁体用电流引线结构
CN105378861A (zh) * 2013-07-11 2016-03-02 三菱电机株式会社 超导磁体
CN107134767A (zh) * 2017-06-06 2017-09-05 西安交通大学 一种应用于大温度梯度条件下的高电压大电流电极引线
CN109360707A (zh) * 2018-12-04 2019-02-19 湖南迈太科医疗科技有限公司 插拔式电流引线结构及超导磁体
CN209015801U (zh) * 2018-12-04 2019-06-21 湖南迈太科医疗科技有限公司 插拔式电流引线结构及超导磁体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867610B (zh) * 2012-09-03 2014-09-17 中国科学院电工研究所 一种二元可拔气冷电流引线装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436233B (en) * 2006-02-17 2008-03-19 Siemens Magnet Technology Ltd Current leads for cryogenically cooled equipment
CN101178967A (zh) * 2006-10-02 2008-05-14 通用电气公司 用于超导磁体的高温超导电流引线
US20080227647A1 (en) * 2007-03-16 2008-09-18 Concetta Beneduce Current lead with high temperature superconductor for superconducting magnets in a cryostat
CN105378861A (zh) * 2013-07-11 2016-03-02 三菱电机株式会社 超导磁体
CN103413645A (zh) * 2013-08-09 2013-11-27 中国科学院电工研究所 一种分离式一级电流引线装置
CN103714937A (zh) * 2014-01-16 2014-04-09 奥泰医疗系统有限责任公司 超导磁体用电流引线结构
CN107134767A (zh) * 2017-06-06 2017-09-05 西安交通大学 一种应用于大温度梯度条件下的高电压大电流电极引线
CN109360707A (zh) * 2018-12-04 2019-02-19 湖南迈太科医疗科技有限公司 插拔式电流引线结构及超导磁体
CN209015801U (zh) * 2018-12-04 2019-06-21 湖南迈太科医疗科技有限公司 插拔式电流引线结构及超导磁体

Also Published As

Publication number Publication date
CN109360707A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
US8923939B2 (en) Superconduction apparatus
US9014769B2 (en) Cryocooler system and superconducting magnet apparatus having the same
CN109243754B (zh) 电流引线结构及超导磁体
EP0392771B1 (en) Cryogenic precooler for superconductive magnet
WO2020114066A1 (zh) 插拔式电流引线结构及超导磁体
CN109273193B (zh) 电流引线结构及超导磁体
US20180120392A1 (en) Superconducting magnet cooling system
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
JP2010283186A (ja) 冷凍機冷却型超電導磁石
CN104700976B (zh) 低温保持器及其制造方法、冷却方法,磁共振系统
RU2011146550A (ru) Модуль с градиентными катушками из сверхпроводника с криогенным охлаждением для магнитно-резонансной томографии
CN102903473A (zh) 超导磁体系统
WO2017057760A1 (ja) 超電導磁石装置及び超電導磁石励磁用具
JP6104007B2 (ja) 電流供給装置
JPH09223621A (ja) 超伝導装置
CN209015801U (zh) 插拔式电流引线结构及超导磁体
JP6901622B2 (ja) コールドヘッドの熱経路が熱交換器により冷却される超電導磁石
JPS59224187A (ja) 超伝導装置特に磁石のための励磁用引込導体装置
Alexander et al. A 1.5–4 K detachable cold‐sample transfer system: Application to inertially confined fusion with spin‐polarized hydrogen fuels
JP6021791B2 (ja) 永久電流スイッチ及びこれを備える超電導装置
JP5920924B2 (ja) 超電導磁石装置及び磁気共鳴撮像装置
KR101165229B1 (ko) 열발생 방지를 위한 초전도 회전기
JPS6119090B2 (zh)
Mizumaki et al. Development of the magnetically floating superconducting dipole in the RT-1 plasma device
JPH0734294Y2 (ja) 極低温冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892738

Country of ref document: EP

Kind code of ref document: A1