CN110983432B - 一种半导体硅材料晶体生长的图像识别控制方法 - Google Patents

一种半导体硅材料晶体生长的图像识别控制方法 Download PDF

Info

Publication number
CN110983432B
CN110983432B CN201911354459.0A CN201911354459A CN110983432B CN 110983432 B CN110983432 B CN 110983432B CN 201911354459 A CN201911354459 A CN 201911354459A CN 110983432 B CN110983432 B CN 110983432B
Authority
CN
China
Prior art keywords
camera
liquid level
liquid
plc
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911354459.0A
Other languages
English (en)
Other versions
CN110983432A (zh
Inventor
李辉
张熠
穆童
秦英谡
毛洪英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jingsheng Equipment Co.,Ltd.
Original Assignee
Nanjing Crystal Growth & Energy Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Crystal Growth & Energy Equipment Co ltd filed Critical Nanjing Crystal Growth & Energy Equipment Co ltd
Priority to CN201911354459.0A priority Critical patent/CN110983432B/zh
Publication of CN110983432A publication Critical patent/CN110983432A/zh
Application granted granted Critical
Publication of CN110983432B publication Critical patent/CN110983432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种半导体硅材料晶体生长的图像识别控制方法,在坩埚上方设有三个摄像机,以计算机测量图像中固相硅的面积,通过摄像机及计算机实时测量液面状况,当发现液面出现液态和固态的变动就会给PLC发出信号,让PLC判断液面熔化情况和晶体结晶,当熔化完成,自动切换到生长状态,当生长完成,自动切换至退火状态,完全不用人工介入,避免由于人工介入误操作引起的良率损失。本发明能够直接准确测量晶体熔化速度和晶体结晶速度,提供硅材料生长过程中的数据,真正实现全工艺过程自动化进行。

Description

一种半导体硅材料晶体生长的图像识别控制方法
技术领域
本发明属于硅晶体材料生长技术领域。
背景技术
硅材料由于具有单方向导电性、热敏特性、光电特性以及掺杂特性等优良性能,可以生长为大尺寸高纯度单晶体,且价格适中,故而成为全球应用广泛的重要集成电路基础材料。
半导体硅材料主要为单晶硅材料,按照应用场景划分,半导体硅材料可以分为芯片用单晶硅材料和蚀刻用硅材料。其中芯片用单晶硅材料是制造半导体器件的基础原材料,芯片用单晶硅材料经过一系列晶圆制造工艺形成极微小的电路结构,再经切割、封装、测试等环节成为芯片,并广泛应用于集成电路下游市场。蚀刻用硅材料则是加工制成半导体级硅部件,用于蚀刻设备上的硅电极,由于硅电极在硅片氧化膜刻蚀等加工工艺过程会逐渐腐蚀并变薄,当硅电极厚度减少到一定程度后,需要更换新的硅电极,因此硅电极是晶圆制造蚀刻环节所需的核心耗材。
硅材料耗材生长炉是重要的蚀刻用硅材料制备设备,该设备通过在特定的压力、温度下将坩埚中的多晶硅原料熔化,重新结晶成特定形状的硅材料。在硅材料生长过程中,晶体纯度是半导体级长晶设备区别于太阳能级的长晶设备一个重要的因素,本发明采用的新型排气方式,通过设置新型的气路,通过可延长进气管、坩埚气罩、内置排气管等结构,避免了长晶过程中产生的影响晶体质量的挥发物沉积在炉内,挥发物在高温条件下直接被抽到排气管内,不会在炉内沉积,从而保证炉炉内清洁,实现炉内无挥发物沉积,从而实现半导体长晶炉的清洁生产,提高晶体质量。
现有技术中,在原料融化过程主要通过人员观察判断原料融化结束,通常难以控制熔料结束的时间点,熔料时间过短尚未熔化结束就进入生长会造成晶体沿着剩余原料结晶造成开裂,熔料时间过长会造成熔料温度过高造成坩埚上的氮化硅图层脱落,使得硅晶体和石英坩埚黏连开裂。另外,长晶过程主要通过人员观察判断生长结束,生长结束时间判断过早,原料尚未生长完成,会造成未结晶的原料快速凝结,晶粒尺寸过小,难以达到晶体品质要求,剩余原料过多,还会造成晶体应力过大,造成加工过程开裂;生长结束时间判断过迟,延长了晶体生长周期,造成生产成本上升。
发明内容
发明目的:本发明提供一种半导体硅材料晶体生长的图像识别控制方法,解决如何精确判断硅材料生长时原料状态的问题。
技术方案:为达到上述目的,本发明可采用如下技术方案:
一种半导体硅材料晶体生长的图像识别控制方法,在坩埚上方设有三个摄像机,分别为第一摄像机、第二摄像机、第三摄像机;通过设置加热体对坩埚加热;设置plc控制加热体的发热功率;三个摄像机在坩埚中的硅材料加热时拍摄硅材料的图像;第一摄像机位于坩埚的中央正上方,第二摄像机与第三摄像机位于第二摄像机两侧;提供与三个摄像机连接的计算机,用于测量图像中固相硅的面积;
对液态图像和固态图像的灰度值和液面晶体面积进行标定,液态图像的灰度值和液面晶体面积分别为G1和S1;
具体的步骤为:
在硅材料熔料阶段,
(1a)、第一摄像机、第二摄像机和第三摄像机同时采集硅材料液面图像;
(1b)、第三摄像机的灰度值G8和液面晶体面积S8,初始熔料阶段全为固态G8=G2、S8=S2,当第三摄像机采集到的图像的灰度值G8<G2、液体晶体面积S8<S2时,记录此刻时间为t1,返回上一步,否则进入下一步;
(1c)、当采集到的第二摄像机采集到的图像的灰度值G7<G2、液体晶体面积S7<S2时,记录此刻时间为t2,返回上一步,否则进入下一步;
(1d)、当采集到的第一摄像机采集到的图像的灰度值G6<G2、液体晶体面积S6<S2时,记录此刻时间为t3,返回上一步,否则进入下一步;
(1e)、当采集到的第一摄像机采集到的图像的灰度值G6=G1、液体晶体面积S6=S1时,判断熔料结束;
步骤(1b)到步骤(1c)定义为熔料第一阶段,计算机根据公式v1=(L2-L1)/(t2-t1)计算第一阶段的熔料速度v1,将v1反馈给plc,plc根据预设的速度v进行对比,当v1>v时,plc将依据v1和v的差值,降低发热体的功率,当v1<v时,plc将依据v1和v的差值,增加发热体的功率;
步骤(1c)到步骤(1d)定义为熔料第二阶段,计算机根据公式v2=L1/(t3-t2)计算第二阶段的熔料速度v2,将v2反馈给plc,plc根据预设的速度v进行对比,当v2>v时,plc将依据v2-v的差值,降低发热体的功率;当v2<v时,plc依据v2和v的差值,增加发热体的功率;
在晶体生长阶段,
(2a)、第一摄像机、第二摄像机和第三摄像机同时采集硅料液面图像;
(2b)、第一摄像机的灰度值G6和液面晶体面积S6,初始长晶阶段全为液态G6=G1、S6=S1,当第一摄像机采集到的图像的灰度值G6>G1、液体晶体面积S6>S1时,记录此刻时间为t4,返回上一步,否则进入下一步;
(2c)、当采集到的第二摄像机采集到的图像的灰度值G7>G1、液体晶体面积S7>S1时,记录此刻时间为t5,返回上一步,否则进入下一步;
(2d)、当采集到的第一摄像机采集到的图像的灰度值G8>G1、液体晶体面积S8>S1时,记录此刻时间为t6,返回上一步,否则进入下一步;
(2e)、当采集到的第一摄像机采集到的图像的灰度值G8=G2、液体晶体面积S8=S2时,判断为晶体生长结束;
步骤(2b)到步骤(2c)定义为晶体生长第一阶段,计算机根据公式v3=(L2-L1)/(t5-t4)计算第一阶段的长晶速度v3,将v3反馈给plc,plc根据预设的晶体生长速度v进行对比,当v3>v时,plc依据v3和v的差值,降低发热体的温度下降速度,当v3<v时,plc将依据v3和v的差值,提高发热体的温度下降速度;
步骤(2c)到步骤(2d)定义为晶体生长第二阶段,计算机根据公式v4=L1/(t6-t5)计算第二阶段的晶体生长速度v4,将v4反馈给plc,plc根据预设的晶体生长速度v进行对比,当v4>v时,plc依据v4和v的差值,降低发热体的温度下降速度,当v4<v时,plc依据v4和v的差值,提高发热体的温度下降速度。
进一步的,第一摄像机和第二摄像机的距离为L1,第一摄像机和第三摄像机的距离为L2,其中L2>L1。
进一步的,固态图像的灰度和液面晶体面积分别为G2和S2;当液面灰度值G和液面晶体面积S同时满足G=G1、S=S1时,判定液面全为液态;当液面灰度值G和液面晶体面积S同时满足G1<G<G2、S1<S<S2时,判定液面为固液共存态;当液面灰度值G和液面晶体面积S同时满足G=G2、S=S2时,判定液面全为固态。
进一步的,硅材料熔料阶段,液面会从固态变成固液共存态再变成液态;而晶体生长阶段,液面会由液态变成固液共存状态再变成固态。
进一步的,晶体生长热场结构中还包括支撑坩埚的石墨支撑轴、收容坩埚及发热体的保温屏。
有益效果:相对于现有技术,本发明技术方案的优点为:
本发明实时测量液面状况,当发现液面出现液态和固态的变动就会给PLC发出信号,让PLC判断液面熔化情况和晶体结晶,当熔化完成,自动切换到生长状态,当生长完成,自动切换至退火状态,完全不用人工介入,避免由于人工介入误操作引起的良率损失。本发明能够直接准确测量晶体熔化速度和晶体结晶速度,提供硅材料生长过程中的数据,真正实现全工艺过程自动化进行。
附图说明
图1是本发明中晶体生长热场结构的结构图。
图2是硅材料熔料阶段液面的示意图。
图3是晶体生长阶段液面的示意图。
具体实施方式
请结合图1所示,本实施例公开一种半导体硅材料晶体生长的图像识别控制方法,在坩埚4上方设有三个摄像机,分别为第一摄像机6、第二摄像机7、第三摄像机8。通过设置加热体3对坩埚4加热;设置plc控制加热体3的发热功率。三个摄像机在坩埚4中的硅材料5加热时拍摄硅材料的图像。第一摄像机6位于坩埚4的中央正上方,第二摄像机7与第三摄像机8位于第二摄像机两侧。提供与三个摄像机连接的计算机,用于测量图像中固相硅的面积;晶体生长热场结构中还包括支撑坩埚的石墨支撑轴1、收容坩埚4及发热体3的保温屏2。第一摄像机6和第二摄像机7的距离为L1,第一摄像机6和第三摄像机8的距离为L2,其中L2>L1
硅材料熔料阶段,液面会从固态变成固液共存态再变成液态;而晶体生长阶段,液面会由液态变成固液共存状态再变成固态。对液态图像和固态图像的灰度值和液面晶体面积进行标定,液态图像的灰度值和液面晶体面积分别为G1和S1;固态图像的灰度和液面晶体面积分别为G2和S2;当液面灰度值G和液面晶体面积S同时满足G=G1、S=S1时,判定液面全为液态;当液面灰度值G和液面晶体面积S同时满足G1<G<G2、S1<S<S2时,判定液面为固液共存态;当液面灰度值G和液面晶体面积S同时满足G=G2、S=S2时,判定液面全为固态。
具体的步骤为:
在硅材料熔料阶段,如图2所示,其中硅材料熔化阶段包括已熔化的原料9和未熔化的原料10。
(1a)、第一摄像机6、第二摄像机7和第三摄像机8同时采集硅材料液面图像;
(1b)、第三摄像机8的灰度值G8和液面晶体面积S8,初始熔料阶段全为固态G8=G2、S8=S2,当第三摄像机8采集到的图像的灰度值G8<G2、液体晶体面积S8<S2时,记录此刻时间为t1,返回上一步,否则进入下一步;
(1c)、当采集到的第二摄像机7采集到的图像的灰度值G7<G2、液体晶体面积S7<S2时,记录此刻时间为t2,返回上一步,否则进入下一步;
(1d)、当采集到的第一摄像机6采集到的图像的灰度值G6<G2、液体晶体面积S6<S2时,记录此刻时间为t3,返回上一步,否则进入下一步;
(1e)、当采集到的第一摄像机6采集到的图像的灰度值G6=G1、液体晶体面积S6=S1时,判断熔料结束;
步骤(1b)到步骤(1c)定义为熔料第一阶段,计算机根据公式v1=(L2-L1)/(t2-t1)计算第一阶段的熔料速度v1,将v1反馈给plc,plc根据预设的速度v进行对比,当v1>v时,plc将依据v1和v的差值,降低发热体的功率,当v1<v时,plc将依据v1和v的差值,增加发热体的功率;
步骤(1c)到步骤(1d)定义为熔料第二阶段,计算机根据公式v2=L1/(t3-t2)计算第二阶段的熔料速度v2,将v2反馈给plc,plc根据预设的速度v进行对比,当v2>v时,plc将依据v2-v的差值,降低发热体的功率;当v2<v时,plc依据v2和v的差值,增加发热体的功率;
在晶体生长阶段,如图3所示,
(2a)、第一摄像机6、第二摄像机7和第三摄像机8同时采集硅料液面图像;
(2b)、第一摄像机6的灰度值G6和液面晶体面积S6,初始长晶阶段全为液态G6=G1、S6=S1,当第一摄像机6采集到的图像的灰度值G6>G1、液体晶体面积S6>S1时,记录此刻时间为t4,返回上一步,否则进入下一步;
(2c)、当采集到的第二摄像机7采集到的图像的灰度值G7>G1、液体晶体面积S7>S1时,记录此刻时间为t5,返回上一步,否则进入下一步;
(2d)、当采集到的第一摄像机6采集到的图像的灰度值G8>G1、液体晶体面积S8>S1时,记录此刻时间为t6,返回上一步,否则进入下一步;
(2e)、当采集到的第一摄像机6采集到的图像的灰度值G8=G2、液体晶体面积S8=S2时,判断为晶体生长结束;
步骤(2b)到步骤(2c)定义为晶体生长第一阶段,计算机根据公式v3=(L2-L1)/(t5-t4)计算第一阶段的长晶速度v3,将v3反馈给plc,plc根据预设的晶体生长速度v进行对比,当v3>v时,plc依据v3和v的差值,降低发热体的温度下降速度,当v3<v时,plc将依据v3和v的差值,提高发热体的温度下降速度;
步骤(2c)到步骤(2d)定义为晶体生长第二阶段,计算机根据公式v4=L1/(t6-t5)计算第二阶段的晶体生长速度v4,将v4反馈给plc,plc根据预设的晶体生长速度v进行对比,当v4>v时,plc依据v4和v的差值,降低发热体的温度下降速度,当v4<v时,plc依据v4和v的差值,提高发热体的温度下降速度。
本发明具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (3)

1.一种半导体硅材料晶体生长的图像识别控制方法,在坩埚上方设有三个摄像机,分别为第一摄像机、第二摄像机、第三摄像机;通过设置加热体对坩埚加热;设置plc控制加热体的发热功率;三个摄像机在坩埚中的硅材料加热时拍摄硅材料的图像;第一摄像机位于坩埚的中央正上方,第二摄像机与第三摄像机位于第二摄像机两侧;提供与三个摄像机连接的计算机,用于测量图像中固相硅的面积;
其特征在于:
对液态图像和固态图像的灰度值和液面晶体面积进行标定,液态图像的灰度值和液面晶体面积分别为G1和S1;固态图像的灰度和液面晶体面积分别为G2和S2;当液面灰度值G和液面晶体面积S同时满足G=G1、S=S1时,判定液面全为液态;当液面灰度值G和液面晶体面积S同时满足G1<G<G2、S1<S<S2时,判定液面为固液共存态;当液面灰度值G和液面晶体面积S同时满足G=G2、S=S2时,判定液面全为固态;
具体的步骤为:
在硅材料熔料阶段,
(1a)、第一摄像机、第二摄像机和摄像机8同时采集硅材料液面图像;
(1b)、第三摄像机的灰度值G8和液面晶体面积S8,初始熔料阶段全为固态G8=G2、S8=S2,当第三摄像机采集到的图像的灰度值G8<G2、液面晶体面积S8<S2时,记录此刻时间为t1,返回上一步,否则进入下一步;
(1c)、当采集到的第二摄像机采集到的图像的灰度值G7<G2、液面晶体面积S7<S2时,记录此刻时间为t2,返回上一步,否则进入下一步;
(1d)、当采集到的第一摄像机采集到的图像的灰度值G6<G2、液面晶体面积S6<S2时,记录此刻时间为t3,返回上一步,否则进入下一步;
(1e)、当采集到的第一摄像机采集到的图像的灰度值G6=G1、液面晶体面积S6=S1时,判断熔料结束;
步骤(1b)到步骤(1c)定义为熔料第一阶段,计算机根据公式v1=(L2-L1)/(t2-t1)计算第一阶段的熔料速度v1,将v1反馈给plc,plc根据预设的速度v进行对比,当v1>v时,plc将依据v1和v的差值,降低发热体的功率,当v1<v时,plc将依据v1和v的差值,增加发热体的功率;
步骤(1c)到步骤(1d)定义为熔料第二阶段,计算机根据公式v2=L1/(t3-t2)计算第二阶段的熔料速度v2,将v2反馈给plc,plc根据预设的速度v进行对比,当v2>v时,plc将依据v2-v的差值,降低发热体的功率;当v2<v时,plc依据v2和v的差值,增加发热体的功率;
在晶体生长阶段,
(2a)、第一摄像机、第二摄像机和第三摄像机同时采集硅料液面图像;
(2b)、第一摄像机的灰度值G6和液面晶体面积S6,初始长晶阶段全为液态G6=G1、S6=S1,当第一摄像机采集到的图像的灰度值G6>G1、液面晶体面积S6>S1时,记录此刻时间为t4,返回上一步,否则进入下一步;
(2c)、当采集到的第二摄像机采集到的图像的灰度值G7>G1、液面晶体面积S7>S1时,记录此刻时间为t5,返回上一步,否则进入下一步;
(2d)、当采集到的第三摄像机采集到的图像的灰度值G8>G1、液面晶体面积S8>S1时,记录此刻时间为t6,返回上一步,否则进入下一步;
(2e)、当采集到的第三摄像机采集到的图像的灰度值G8=G2、液面晶体面积S8=S2时,判断为晶体生长结束;
步骤(2b)到步骤(2c)定义为晶体生长第一阶段,计算机根据公式v3=(L2-L1)/(t5-t4)计算第一阶段的长晶速度v3,将v3反馈给plc,plc根据预设的晶体生长速度v进行对比,当v3>v时,plc依据v3和v的差值,降低发热体的温度下降速度,当v3<v时,plc将依据v3和v的差值,提高发热体的温度下降速度;
步骤(2c)到步骤(2d)定义为晶体生长第二阶段,计算机根据公式v4=L1/(t6-t5)计算第二阶段的晶体生长速度v4,将v4反馈给plc,plc根据预设的晶体生长速度v进行对比,当v4>v时,plc依据v4和v的差值,降低发热体的温度下降速度,当v4<v时,plc依据v4和v的差值,提高发热体的温度下降速度。
2.根据权利要求1所述的图像识别控制方法,其特征在于:第一摄像机和第二摄像机的距离为L1,第一摄像机和第三摄像机的距离为L2,其中L2>L1。
3.根据权利要求2所述的图像识别控制方法,其特征在于:硅材料熔料阶段,液面会从固态变成固液共存态再变成液态;而晶体生长阶段,液面会由液态变成固液共存状态再变成固态。
CN201911354459.0A 2019-12-25 2019-12-25 一种半导体硅材料晶体生长的图像识别控制方法 Active CN110983432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911354459.0A CN110983432B (zh) 2019-12-25 2019-12-25 一种半导体硅材料晶体生长的图像识别控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911354459.0A CN110983432B (zh) 2019-12-25 2019-12-25 一种半导体硅材料晶体生长的图像识别控制方法

Publications (2)

Publication Number Publication Date
CN110983432A CN110983432A (zh) 2020-04-10
CN110983432B true CN110983432B (zh) 2021-04-06

Family

ID=70076460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911354459.0A Active CN110983432B (zh) 2019-12-25 2019-12-25 一种半导体硅材料晶体生长的图像识别控制方法

Country Status (1)

Country Link
CN (1) CN110983432B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215651B (zh) * 2021-04-08 2022-11-22 银川隆基光伏科技有限公司 一种拉晶控制方法和设备、单晶炉以及计算机存储介质
CN114387248B (zh) * 2022-01-12 2022-11-25 苏州天准科技股份有限公司 一种硅料熔化度监测方法、存储介质、终端和拉晶设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2659031B1 (en) * 2010-12-30 2015-02-18 MEMC Electronic Materials, Inc. Measuring a crystal growth feature using multiple cameras
CN202170375U (zh) * 2011-07-14 2012-03-21 常州江南电力光伏科技有限公司 用于晶体生长的检测系统
CN104514030B (zh) * 2013-09-29 2017-01-04 内蒙古恒嘉晶体材料有限公司 晶体生长速度检测方法、控制方法及系统
JP6519422B2 (ja) * 2015-09-15 2019-05-29 株式会社Sumco 単結晶の製造方法および装置
CN105350071B (zh) * 2015-10-23 2017-09-22 西安理工大学 一种可抑制波动的直拉硅单晶炉液位检测方法

Also Published As

Publication number Publication date
CN110983432A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110983432B (zh) 一种半导体硅材料晶体生长的图像识别控制方法
KR101416093B1 (ko) 차열 부재 하단면과 원료 융액면 사이의 거리 측정방법 및 그 거리 제어방법
CN101168848A (zh) 一种直拉硅单晶炉的熔硅液面位置的控制方法
EP2425454A1 (en) Quality control process for umg-si feedstock
CN103215633A (zh) 一种多晶硅的铸锭方法
JPH107493A (ja) シリコン半導体基板および太陽電池用基板の製造方法
TW201300590A (zh) 用於晶體生長裝置之自動檢視系統
US11680334B2 (en) Method of automatically measuring seed melt back of crystalline material
JPH0832038A (ja) 貼り合わせsoi基板の製造方法および貼り合わせsoi基板
CN104010968B (zh) 多晶硅锭、其制造方法及其用途
TW201447058A (zh) 藍寶石單晶之製造方法
CN102212871A (zh) 蓝宝石晶体的生长方法及蓝宝石晶体生长用的长晶炉结构
TWI471463B (zh) 晶體成長量測補償系統及其方法
US8547121B2 (en) Quality control process for UMG-SI feedstock
CN202099407U (zh) 蓝宝石晶体生长用的长晶炉结构
US6951585B2 (en) Liquid-phase growth method and liquid-phase growth apparatus
CN110849875A (zh) 一种分析铸造多晶硅微观结构的方法
KR20140080222A (ko) 사파이어 단결정 성장장치
JP5182234B2 (ja) シリコン単結晶の製造方法
CN111270302A (zh) 一种高品质半导体硅材料耗材生长方法
KR20220041649A (ko) 반도체 링 제조장치 및 그를 이용한 반도체 링 제조방법
JP3969319B2 (ja) 燐化物単結晶ウェーハの評価方法
KR20220059639A (ko) 반도체 링 제조장치 및 그를 이용한 반도체 링 제조방법
Khattak et al. Automation in HEM silicon ingot production [for solar cells]
JP3905163B2 (ja) 半導体結晶の製造方法および製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 211113 west side of building B4, Hongfeng science and Technology Park, Nanjing Economic and Technological Development Zone, Nanjing City, Jiangsu Province

Patentee after: Nanjing Jingsheng Equipment Co.,Ltd.

Address before: No. 30-1, HENGFA Road, Nanjing Economic and Technological Development Zone, Nanjing, Jiangsu, 211113

Patentee before: NANJING CRYSTAL GROWTH & ENERGY EQUIPMENT Co.,Ltd.