CN110976849B - 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法 - Google Patents

一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法 Download PDF

Info

Publication number
CN110976849B
CN110976849B CN201911419927.8A CN201911419927A CN110976849B CN 110976849 B CN110976849 B CN 110976849B CN 201911419927 A CN201911419927 A CN 201911419927A CN 110976849 B CN110976849 B CN 110976849B
Authority
CN
China
Prior art keywords
laser
nickel
equal
powder
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911419927.8A
Other languages
English (en)
Other versions
CN110976849A (zh
Inventor
肖辉
谢盼
宋立军
易黄懿
肖文甲
成满平
罗国云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201911419927.8A priority Critical patent/CN110976849B/zh
Publication of CN110976849A publication Critical patent/CN110976849A/zh
Application granted granted Critical
Publication of CN110976849B publication Critical patent/CN110976849B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,先将镍基合金与纯铝粉末机械球磨,并对球磨后的粉末粒径筛选,并初步优化激光3D打印工艺窗口;采用比色高温计定点记录熔池温度变化曲线,提取并计算温度曲线的平均峰值温度T、固相线与温度曲线的截距t及熔池平均冷却速率ξ;根据1.4Tm≤T≤1.8Tm,0.55s≤t≤0.95s,ξ≥3.5×103℃/s原则对工艺参数进行优化,获得的优化工艺窗口:激光输出功率为800~1200W,离焦量‑2.5mm,激光光斑直径2~3mm,扫描速度为8~14mm/s,送粉量为12‑16g/min;本发明能在成形过程中原位合成氧化铝颗粒,提高镍基成形件的力学性能。

Description

一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印 方法
技术领域
本发明涉及激光材料加工领域,尤其涉及一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法。
背景技术
镍基高温合金因其良好的高温机械性能及抗腐蚀性能被广泛应用于航空、航天及能源领域,如蒸汽涡轮及航空发动机关键部件的制造。由于镍基高温合金工作环境通常十分苛刻,如承受高温、高压及氧化腐蚀等,且随着航空、航天发动机及燃气轮机技术的迅速发展,对镍基高温合金材料的适用温度及高温性能提出更高的要求。通常,采用定向凝固晶及单晶可以有效提高镍基合金的高温性能,然而其造价非常昂贵。众所周知,在金属材料中引入第二相颗粒进行弥散强化能有效提高材料的强度。据文献报道,在镍基高温合金中引入氧化物弥散颗粒,可有效提高材料的高温强度、蠕变及抗氧化性能。采用传统粉末冶金工艺将高熔点、高稳定的纳米级氧化物颗粒(如Y2O3,Al2O3等)引入镍基高温合金基体中,可获得氧化物弥散强化镍基复合材料。然而,通过直接添加纳米级氧化物颗粒的方法难以获得细小、均匀的氧化物颗粒。此外,这些氧化物颗粒也容易在晶界偏聚。
激光3D打印,也称“激光增材制造”,它以高能束激光为热源将粉末与基材熔化,再通过逐道搭接、逐层累加的方式实现零件的快速成型。此外,基于送粉式的激光增材制造工艺为金属材料的合金化提供了技术手段。采用激光增材制造技术引入氧化物弥散强化颗粒引起了广泛的关注。然而,采用该技术引入氧化物颗粒仍存在分布均匀性差、颗粒被高温熔化、与基体界面结合性差及颗粒粗大等问题。
本发明采用激光3D打印技术原位生成弥散的Al2O3颗粒弥散强化镍基复合材料,可获得分布均匀、颗粒细化及界面结合良好的镍基复合材料。
发明内容
本发明的目的是提供一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法。
一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,包括以下步骤:
步骤一:将镍基合金粉末与纯铝粉末进行混合,纯铝粉末质量百分比为2%~3%,再机械球磨8~12小时,球磨结束后筛选出粒径为50μm至120μm的粉末;
步骤二:对激光3D打印工艺窗口进行初步优化,获得如下初步优化参数:激光输出功率为700~1300W,离焦量-2.5mm,激光光斑直径2~3.5mm,扫描速度为6~15mm/s,送粉量为12-18g/min;
步骤三:采用比色高温计定点记录激光3D打印过程中熔池的温度变化曲线,提取并计算温度变化曲线的平均峰值温度T,镍基合金固相线与温度变化曲线的截距t,并对温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即熔池平均冷却速率ξ;
步骤四:根据1.4Tm≤T≤1.8Tm,0.55s≤t≤0.95s,ξ≥3.5×103℃/s原则对激光功率、激光光斑直径、扫描速度及送粉量等工艺参数进行优化,其中Tm为镍合金的熔点;
步骤五:获得的优化工艺参数如下:激光输出功率为800~1200W,离焦量-2.5mm,激光光斑直径2~3mm,扫描速度为8~14mm/s,送粉量为12-16g/min;
步骤六:按上述工艺参数及方法进行激光3D打印,获得具有氧化铝颗粒增强的镍基复合材料成形件。
在步骤一中,纯铝粉末质量百分比为2%~2.5%。
在步骤三中,比色高温计发射率设置为1.05,温度测量范围为600-3000℃,光斑尺寸为1mm,单个数据采集时间为1ms。
所述镍基合金包括固溶强化型镍基合金与时效硬化型镍基合金。
本发明采用激光3D打印技术原位生成弥散的氧化铝颗粒弥散强化镍基复合材料,在激光输出功率为800~1200W,离焦量-2.5mm,激光光斑直径2~3mm,扫描速度为8~14mm/s,送粉量为12-16g/min和优化参数条件下,可获得分布均匀、颗粒细化及界面结合良好的镍基高温复合材料。解决了目前引入氧化物颗粒仍存在分布均匀性差、颗粒被高温熔化、与基体界面结合性差及颗粒粗大等问题。
附图说明
图1为采用本发明实施例1所获得的镍基合金激光3D打印试样扫描电镜图。
图2为采用已有方法所获得的镍基合金激光3D打印试样扫描电镜图。
具体实施方式
实施例1
一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,包括以下步骤:
步骤一:将镍基合金粉末与纯铝粉末进行混合,纯铝粉末质量百分比为2%,再机械球磨10小时,球磨结束后筛选出粒径为50μm至120μm的粉末;
步骤二:对激光3D打印工艺窗口进行初步优化,获得如下初步优化参数:激光输出功率为700~1300W,离焦量-2.5mm,激光光斑直径2~3.5mm,扫描速度为6~15mm/s,送粉量为12-18g/min;
步骤三:采用比色高温计定点记录激光3D打印过程中熔池的温度变化曲线,提取并计算温度变化曲线的平均峰值温度T,镍基合金固相线与温度变化曲线的截距t,并对温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即熔池平均冷却速率ξ;
步骤四:根据1.4Tm≤T≤1.8Tm,0.55s≤t≤0.95s,ξ≥3.5×103℃/s原则对激光功率、激光光斑直径、扫描速度及送粉量等工艺参数进行优化,其中Tm为镍合金的熔点;
步骤五:获得的优化工艺参数如下:激光输出功率为800~1200W,离焦量-2.5mm,激光光斑直径2~3mm,扫描速度为8~14mm/s,送粉量为12-16g/min;
步骤六:按上述工艺参数及方法进行激光3D打印,获得具有氧化铝颗粒增强的镍基复合材料成形件。
图1为获得的激光3D打印试样扫描电镜图。试样中存在大量的球形氧化铝颗粒,如图1中箭头所指。球形氧化铝颗粒的产生主要是因为通过球磨,镍基合金粉末和纯铝粉末机械粘合,而铝元素在高温熔池中极易与氧结合,通过原位反应生成大量的球形氧化铝颗粒。上述结果表明,在本专利方法外,很难获得球形氧化铝颗粒。
图2为采用已有方法所获得的激光3D打印试样扫描电镜图。试样主要由粗大的枝晶组成,很难发现氧化铝颗粒。

Claims (4)

1.一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,其特征在于包括以下步骤:
步骤一:将镍基合金粉末与纯铝粉末进行混合,纯铝粉末质量百分比为2%~3%,再机械球磨8~12小时,球磨结束后筛选出粒径为50μm至120μm的粉末;
步骤二:对激光3D打印工艺窗口进行初步优化,获得如下初步优化参数:激光输出功率为700~1300W,离焦量-2.5mm,激光光斑直径2~3.5mm,扫描速度为6~15mm/s,送粉量为12-18g/min;
步骤三:采用比色高温计定点记录激光3D打印过程中熔池的温度变化曲线,提取并计算温度变化曲线的平均峰值温度T,镍基合金固相线与温度变化曲线的截距t,并对温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即熔池平均冷却速率ξ;
步骤四:根据1.4Tm≤T≤1.8Tm,0.55s≤t≤0.95s,ξ≥3.5×103℃/s原则对激光功率、激光光斑直径、扫描速度及送粉量进行优化,其中Tm为镍基合金的熔点;
步骤五:获得的优化工艺参数如下:激光输出功率为800~1200W,离焦量-2.5mm,激光光斑直径2~3mm,扫描速度为8~14mm/s,送粉量为12-16g/min;
步骤六:按上述工艺参数及方法进行激光3D打印,获得具有氧化铝颗粒增强的镍基复合材料成形件。
2.根据权利要求1所述的一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,其特征在于:在步骤一中,纯铝粉末质量百分比为2%~2.5%。
3.根据权利要求1所述的一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,其特征在于:在步骤三中,比色高温计发射率设置为1.05,温度测量范围为600-3000℃,光斑尺寸为1mm,单个数据采集时间为1ms。
4.根据权利要求1所述的一种原位合成氧化铝颗粒增强镍基复合材料的激光3D打印方法,其特征在于:所述镍基合金包括固溶强化型镍基合金与时效硬化型镍基合金。
CN201911419927.8A 2019-12-31 2019-12-31 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法 Active CN110976849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911419927.8A CN110976849B (zh) 2019-12-31 2019-12-31 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911419927.8A CN110976849B (zh) 2019-12-31 2019-12-31 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法

Publications (2)

Publication Number Publication Date
CN110976849A CN110976849A (zh) 2020-04-10
CN110976849B true CN110976849B (zh) 2021-02-19

Family

ID=70080177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911419927.8A Active CN110976849B (zh) 2019-12-31 2019-12-31 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法

Country Status (1)

Country Link
CN (1) CN110976849B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575537A (zh) * 2020-06-18 2020-08-25 衢州职业技术学院 一种in718粉末合金材料的制备方法
CN112570732B (zh) * 2020-12-23 2021-11-23 湖南大学 一种降低激光增材制造镍基高温合金热裂敏感性的方法
CN112575326B (zh) * 2020-12-23 2022-03-22 佛山科学技术学院 一种控制激光表面合金化过程中wc颗粒与基材扩散界面的方法
CN112548103B (zh) * 2020-12-23 2021-10-12 长沙理工大学 一种钛合金激光增材修复与表面渗氮复合处理工艺
CN112658281B (zh) * 2020-12-23 2022-01-07 湖南大学 一种提高激光增材制造高熵合金内部质量的方法
CN113059188B (zh) * 2021-06-03 2021-10-01 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法
CN115592129B (zh) * 2022-10-20 2023-09-22 成都新杉宇航科技有限公司 SiC颗粒增强铝合金复合材料的SLM成型方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2857404A1 (en) * 2011-12-14 2013-06-20 Alstom Technology Ltd. Method for additively manufacturing an article made of a difficult-to-weld material
CN106077647B (zh) * 2016-07-27 2018-04-06 湖南大学 一种激光增材制造镍基高温合金过程中控制脆性Laves相的方法
CN108754373B (zh) * 2018-06-15 2020-04-17 湖南大学 一种实现钛合金表面晶粒形态调控的方法
CN108746615B (zh) * 2018-06-15 2020-01-10 长沙理工大学 一种提高激光增材制造钛合金层间结合性能的方法
CN108728695A (zh) * 2018-06-27 2018-11-02 南通理工学院 一种多相纳米陶瓷颗粒混杂增强镍基合金及其激光成形方法
CN109402439B (zh) * 2018-12-17 2020-04-07 广东省新材料研究所 跨尺度多级孔结构多孔镍及其制备方法与应用

Also Published As

Publication number Publication date
CN110976849A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110976849B (zh) 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法
Liu et al. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy
CN110961631B (zh) 一种AlxCoCrFeNi高熵合金的激光快速制备方法
CN113061782B (zh) 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用
CN104928513A (zh) 一种钛合金激光3d打印改进方法
CN112921206A (zh) 增材制造用高γ′含量镍基高温合金粉末、其使用方法、镍基高温合金构件
CN105828983A (zh) 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金
CN109332695B (zh) 一种增强抗氧化性钼基合金的选区激光熔化制备方法
CN106521384B (zh) 一种利用电子束重熔技术提高Nb‑Si基合金抗氧化性的方法
TWI491749B (zh) 濺鍍靶材以及其製造方法
CN110523983B (zh) 一种新型的高性能超细晶gh4169金属涡轮盘制造方法
TWI424080B (zh) Sputtering target and its manufacturing method
CN109290583A (zh) 一种消除7075铝合金选择性激光熔化成型裂纹的方法
CN105132844A (zh) 一种改善Nb-Si基多元合金高温抗氧化性的方法
CN113020598A (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
CN101928939B (zh) 一种FenWnC-Co(Y)合金纳米涂层及其制备方法和应用
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
CN105728725A (zh) 3d打印制备多元素过渡界面协同增强镍基复合材料的方法
CN113579226A (zh) 一种多相增强钛合金复合材料制备方法
CN111926232A (zh) 一种高熵合金材料及其制备方法
CN110629100B (zh) 一种氧化物弥散强化镍基高温合金的制备方法
CN107116217A (zh) 选择性激光熔化成形法制备TiC增强镍基复合材料的方法
US9528181B2 (en) Sputtering target and method for producing same
CN104625395A (zh) Nb-Si系金属间化合物高温结构材料的扩散焊方法
CN113278968B (zh) 一种抗高温氧化的Al、Si复合添加改性镍基高温合金涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant