CN108746615B - 一种提高激光增材制造钛合金层间结合性能的方法 - Google Patents

一种提高激光增材制造钛合金层间结合性能的方法 Download PDF

Info

Publication number
CN108746615B
CN108746615B CN201810620295.0A CN201810620295A CN108746615B CN 108746615 B CN108746615 B CN 108746615B CN 201810620295 A CN201810620295 A CN 201810620295A CN 108746615 B CN108746615 B CN 108746615B
Authority
CN
China
Prior art keywords
titanium alloy
laser
additive manufacturing
curve
laser additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810620295.0A
Other languages
English (en)
Other versions
CN108746615A (zh
Inventor
李聪
陈荐
邱玮
李微
何建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810620295.0A priority Critical patent/CN108746615B/zh
Publication of CN108746615A publication Critical patent/CN108746615A/zh
Application granted granted Critical
Publication of CN108746615B publication Critical patent/CN108746615B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种提高激光增材制造钛合金层间结合性能的方法。首先将基材预热至300℃,对激光增材制造工艺窗口优化,对激光沉积过程中沉积层中部熔池的定点温度变化记录,获得熔池中心的定点热循环曲线,提取出峰值温度T及液相线与温度曲线的截距t,并对液相线以上温度曲线部分对时间积分I;根据T≥1.4Tm,t≥0.8s,I≥0.45TL/V原则对工艺参数进行优化,获得的优化工艺窗口:激光功率为600~900W,扫描速度为6~10mm/s,送粉量为8‑14g/min,光斑直径为1~2mm;高度方向增量Z为0.2~0.3毫米/层;获得无层间缺陷的钛合金成形件。本发明能有效提高钛合金成形件的层间结合性能。

Description

一种提高激光增材制造钛合金层间结合性能的方法
技术领域
本发明涉及激光金属材料加工领域,尤其涉及一种提高激光增材制造钛合金层间结合性能的方法。
背景技术
激光增材制造,也称“激光增材制造”,是一种将激光熔覆技术与快速原型技术相结合的先进制造技术。该技术以高能激光束为热源,以送粉/丝或铺粉为材料供给方式,通过分层加工、逐层累加的方式实现三维实体零件的快速成形,有效地缩短生产周期与降低零件加工成本。此外,激光增材制造也能实现磨损零件的快速修复。
激光增材制造钛合金是采用移动式激光热源将材料快速加热熔化,并随着激光热源的远离而快速凝固,进而形成熔覆层,再通过逐道搭接、逐层叠加实现三维零件的成形。钛合金由于具有比强度高、生物相容性好及抗腐蚀等特点被广泛应用于航空航天及生物医疗等领域。由于激光增材制造独特的逐层累加方式,激光增材制造钛合金具有以下特征:1)周期性的层带效应;2)显微组织不均匀;3)层间界面易产生缺陷;4)较弱的层间结合性能及低的塑性。然而,上述特征对成形件的机械性能非常不利。因此,有必要对其进行有效调控,尤其是避免层间未熔合缺陷,提高成形件的层间结合能力。
国内外学者针对3D打印钛合金层间界面行为进行了相关的研究工作。Dinda等人报道,激光增材制造试样中存在周期性的层带结构,且相邻层带之间的间距与层抬升量相当,层带处组织与其它部位组织具有明显差异。Liu等人发现层间界面使工件的显微组织及硬度变得不均匀。Wen等人报道,层间界面对加载状态下微观滑移、宏观塑性行为及断裂模式具有重要的影响,层间界面的存在是工件明显各向异性及低塑性的主要原因。目前,现有报道主要通过调节工艺参数或外加温度场以改变熔池状态进而提高层间界面结合能力。如,Gu等人发现低的扫描速度、高的激光功率及高的线能量密度有利于减少层间未熔合缺陷,进而提升成形件层间结合性能。Yang等人发现,熔池模式对层间缺陷及力学性能具有重要的作用。与热传导模式相比,小孔模式能获得更好的层间界面及更高的界面结合能力,进而获得更高的强度与塑性。此外,也有文献报道对基材进行预热,能够有效减少层与层之间的未熔合缺陷,提高钛合金零件层间结合能力。
上述研究为激光增材制造钛合金的工艺-层间界面-力学性能关系等提供了很好的见解及调控方法。然而,由于激光增材制造过程中的物理过程极其复杂、影响参数众多,想要获得无层间缺陷、组织性能优异的钛合金成形零件尚存在一定挑战。此外,激光增材制造具有系统依赖性,采用相同优化的工艺参数在其它的激光增材制造系统很难重复获得想要的结果。目前,尚缺乏一种通用的方法能够对激光增材制造钛合金层间界面进行有效调控。
发明内容
本发明的目的是提供一种提高激光增材制造钛合金层间结合性能的方法。
一种提高激光增材制造钛合金层间结合性能的方法,包括以下步骤:
步骤一:首先,采用电磁感应加热设备将基材预热至300℃,再对激光增材制造工艺窗口进行优化,获得如下初步优化参数:激光功率为400~1000W,扫描速度为4~12mm/s,送粉量为6-18g/min,光斑直径为1~2mm;高度方向增量Z为0.15~0.3毫米/层;
步骤二:采用比色高温计对激光沉积过程中沉积层中部熔池的定点温度变化进行记录,获得熔池中心的定点热循环曲线,提取出峰值温度T及液相线与温度曲线的截距t,t表示熔池寿命,并对液相线以上温度曲线部分做时间的积分,得到温度对时间的积分强度I;
步骤三:根据T≥1.4Tm,t≥0.8s,I≥0.45TL/V原则对工艺参数进行优化,其中Tm为钛合金的熔点,L为熔池的长度,V为扫描速度;
步骤四:获得的优化工艺窗口如下:激光功率为600~900W,扫描速度为6~10mm/s,送粉量为8-14g/min,光斑直径为1~2mm;高度方向增量Z为0.2~0.3毫米/层;
步骤五:最后,按上述工艺参数及方法进行钛合金激光增材制造,获得无层间缺陷的钛合金成形件。
在步骤二中,比色高温计发射率设置为1.1,温度测量范围为600-3300℃,光斑尺寸为0.8mm,单个数据采集时间为1ms。
所述钛合金包括α钛合金、α+β钛合金及β钛合金。
本发明通过熔池温度场模拟与凝固理论,根据T≥1.4Tm,t≥0.8s,I≥TL/V原则对工艺参数进行优化,获得的优化工艺窗口如下:激光功率P为400-600W;扫描速度V为4-6mm/s;送粉量F为6-10g/min;光斑直径D为1-3mm;高度方向增量Z为0.3毫米/层;最后,按上述工艺参数及方法进行钛合金激光增材制造,获得无层间缺陷的钛合金成形件,获得的特征指标,能有效提高钛合金成形件的层间结合性能。
附图说明
图1为现有方法得到的钛合金3D打印试样金相图;
图2为本发明得到的钛合金3D打印试样金相图。
具体实施方式
实施例1
步骤一:首先,采用电磁感应加热设备将基材预热至300℃,再对激光增材制造工艺窗口进行优化,获得如下初步优化参数:激光功率为400~1000W,扫描速度为4~12mm/s,送粉量为6-18g/min,光斑直径为1~2mm;高度方向增量Z为0.15~0.3毫米/层;
步骤二:采用比色高温计对激光沉积过程中沉积层中部熔池的定点温度变化进行记录,获得熔池中心的定点热循环曲线,提取出峰值温度T及液相线与温度曲线的截距t,t表示熔池寿命,并对液相线以上温度曲线部分做时间的积分,得到温度对时间的积分强度I;比色高温计发射率设置为1.1,温度测量范围为600-3300℃,光斑尺寸为0.8mm,单个数据采集时间为1ms。
步骤三:根据T≥1.4Tm,t≥0.8s,I≥0.45TL/V原则对工艺参数进行优化,其中Tm为钛合金的熔点,L为熔池的长度,V为扫描速度;
步骤四:获得的优化工艺窗口如下:激光功率为600~900W,扫描速度为6~10mm/s,送粉量为8-14g/min,光斑直径为1~2mm;高度方向增量Z为0.2~0.3毫米/层;
步骤五:最后,按上述工艺参数及方法进行钛合金激光增材制造,获得无层间缺陷的钛合金成形件。
图1为采用已有方法所获得的钛合金3D打印试样金相图。试样具有逐层制造特征,平均层间距约为0.6mm(如图1(a)所示)。此外,层与层之间界面处存在明显的未融合缺陷,如图1(a)与(b)所示。此类未融合缺陷的产生主要与下列原因有关:1)钛合金在增材制造过程中表面极易氧化,在沉积层表面生成难熔的氧化钛;2)在较低能量密度下,激光很难将生成的氧化膜全部熔化;3)熔池没有足够的能量与时间对已沉积层进行有效稀释。上述结果表明,在本专利方法外,很难消除层间未熔合缺陷。
图2为采用本发明实施例1所获得的钛合金3D打印试样金相图。图2(a)为试样界面的整体形貌。宏观上试样具有典型的带状结构,整体颜色较深,组织难以分辨。图2(b)及(c)为试样左端区域的低倍与高倍金相图。从中可以看出,层与层之间为冶金结合,并没有发现未熔合及气孔等缺陷。与层带上方组织相比,层带下方由较粗的网篮组织组成。采用本专利提出方法不仅对熔池的能量输入、峰值温度及熔池寿命(即熔池存活时间)进行严格的控制,确保熔池与已沉积层有足够的时间及能量进行反应,进而消除层间界面缺陷,提高层间冶金结合能力。上述结果表明,采用本专利方法可以有效地对层间界面缺陷进行有效调控。

Claims (3)

1.一种提高激光增材制造钛合金层间结合性能的方法,其特征在于包括以下步骤:
步骤一:首先,采用电磁感应加热设备将基材预热至300℃,再对激光增材制造工艺窗口进行优化,获得如下初步优化参数:激光功率为400~1000W,扫描速度为4~12mm/s,送粉量为6-18g/min,光斑直径为1~2mm;高度方向增量Z为0.15~0.3毫米/层;
步骤二:采用比色高温计对激光沉积过程中沉积层中部熔池的定点温度变化进行记录,获得熔池中心的定点热循环曲线,提取出峰值温度T及液相线与温度曲线的截距t,t表示熔池寿命,并对液相线以上温度曲线部分做时间的积分,得到温度对时间的积分强度I;
步骤三:根据T≥1.4Tm,t≥0.8s,I≥0.45TL/V原则对工艺参数进行优化,其中Tm为钛合金的熔点,L为熔池纵截面的长度,V为扫描速度;
步骤四:获得的优化工艺窗口如下:激光功率为600~900W,扫描速度为6~10mm/s,送粉量为8-14g/min,光斑直径为1~2mm;高度方向增量Z为0.2~0.3毫米/层;
步骤五:最后,按上述工艺参数及方法进行钛合金激光增材制造,获得无层间缺陷的钛合金成形件。
2.根据权利要求1所述的一种提高激光增材制造钛合金层间结合性能的方法,其特征在于:在步骤二中,比色高温计发射率设置为1.1,温度测量范围为600-3300℃,光斑尺寸为0.8mm,单个数据采集时间为1ms。
3.根据权利要求1所述的一种提高激光增材制造钛合金层间结合性能的方法,其特征在于:所述钛合金包括α钛合金、α+β钛合金及β钛合金。
CN201810620295.0A 2018-06-15 2018-06-15 一种提高激光增材制造钛合金层间结合性能的方法 Expired - Fee Related CN108746615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810620295.0A CN108746615B (zh) 2018-06-15 2018-06-15 一种提高激光增材制造钛合金层间结合性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810620295.0A CN108746615B (zh) 2018-06-15 2018-06-15 一种提高激光增材制造钛合金层间结合性能的方法

Publications (2)

Publication Number Publication Date
CN108746615A CN108746615A (zh) 2018-11-06
CN108746615B true CN108746615B (zh) 2020-01-10

Family

ID=63978163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810620295.0A Expired - Fee Related CN108746615B (zh) 2018-06-15 2018-06-15 一种提高激光增材制造钛合金层间结合性能的方法

Country Status (1)

Country Link
CN (1) CN108746615B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220176457A1 (en) * 2019-03-29 2022-06-09 Siemens Energy Global GmbH & Co. KG Method and system for optimzing process parameters in an additive manufacturing process
CN110340358B (zh) * 2019-07-09 2020-02-18 南京中科煜宸激光技术有限公司 增材制造过程工艺参数梯度调控的方法
CN111001807B (zh) * 2019-12-31 2021-02-19 湖南大学 一种调控激光3D打印镍基高温合金中富Nb相析出行为的方法
CN110961631B (zh) * 2019-12-31 2021-02-26 湖南大学 一种AlxCoCrFeNi高熵合金的激光快速制备方法
CN111014675B (zh) * 2019-12-31 2021-06-04 长沙理工大学 一种获得激光3D打印双相钛合金超细针状α相的方法
CN110976849B (zh) * 2019-12-31 2021-02-19 湖南大学 一种原位合成氧化铝颗粒增强镍基复合材料的激光3d打印方法
CN110904405B (zh) * 2019-12-31 2021-09-28 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法
CN112548103B (zh) * 2020-12-23 2021-10-12 长沙理工大学 一种钛合金激光增材修复与表面渗氮复合处理工艺
CN114211000A (zh) * 2021-12-16 2022-03-22 上海工程技术大学 一种减少合金表面裂纹的选区激光熔化方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211001A1 (en) * 2002-05-13 2003-11-13 Advanced Materials Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering at variable pressure
DE102011011325A1 (de) * 2011-02-16 2012-08-16 Mtu Aero Engines Gmbh Verfahren zur generativen Herstellung oder Reparatur eines Bauteils sowie Bauteil
CN102962452B (zh) * 2012-12-14 2014-06-25 沈阳航空航天大学 基于红外测温图像的金属激光沉积制造扫描路径规划方法
JP6931545B2 (ja) * 2017-03-29 2021-09-08 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
CN106975749B (zh) * 2017-04-27 2019-05-10 华中科技大学 一种基于増材制造的粉床自适应铺粉方法
EP3446855B1 (en) * 2017-08-25 2021-11-24 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
CN109746441B (zh) * 2017-11-08 2021-07-27 中国科学院沈阳自动化研究所 一种激光冲击强化辅助的激光增材制造复合加工方法

Also Published As

Publication number Publication date
CN108746615A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108746615B (zh) 一种提高激光增材制造钛合金层间结合性能的方法
CN108754373B (zh) 一种实现钛合金表面晶粒形态调控的方法
CN106978577B (zh) 一种非晶合金复合材料的激光3d打印方法
CN107584118B (zh) 增材制造用锻压热处理一体化装置及进行增材制造的方法
CN109746443A (zh) 一种增材制造过程中并行控制零件变形和精度的方法
Javid Multi-response optimization in laser cladding process of WC powder on Inconel 718
CN108620588B (zh) 一种无周期性层带效应的激光金属3d打印方法
CN110560618B (zh) 一种高强轻质合金复杂异形构件电磁辅助成形成性工艺
US8062715B2 (en) Fabrication of alloy variant structures using direct metal deposition
CN210098977U (zh) 一种复合热源同步轧制増材制造设备
CN103088336B (zh) 应用于轧辊的激光熔覆方法
CN110116202B (zh) 一种用于增材制造的铜合金粉末及其制备方法和应用
CN113477927B (zh) 一种钢制零件表面修复方法
CN110306184B (zh) 一种兼顾激光熔注效率、复合层深和冶金质量的方法
CN113814413A (zh) 激光增材制造无裂纹、强度和韧性可控的高温合金的制备方法
CN111172529A (zh) 一种铸造铝合金结构件在激光同轴送粉修复过程中的缺陷控制方法
CN109014230A (zh) 一种钼金属格栅的制备方法
CN103938208A (zh) Q235d激光单道熔覆工艺方法
WO2023142212A1 (zh) 一种闭环控制激光功率改善工件塌边问题的装置和方法
CN114131047B (zh) 一种梯度不锈钢材料及其激光近净成型制造方法
CN106141189B (zh) 一种放电等离子烧结非晶合金涂层的表面改性方法
LU102282B1 (en) A Method for Improving the Metallurgical Quality of a Laser Modified Zr-alloyed Layer on a Titanium Alloy Surface
CN108411227B (zh) 一种表面微结构的晶须增韧加工方法
CN114807797B (zh) 一种钛合金的激光热处理方法
NL2028331B1 (en) A Composite Treatment Process of Titanium Alloy Laser Additive Repair And Surface Nitriding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200110

Termination date: 20200615

CF01 Termination of patent right due to non-payment of annual fee