CN110904405B - 一种提高钛合金表面激光渗锆改性层冶金质量的方法 - Google Patents

一种提高钛合金表面激光渗锆改性层冶金质量的方法 Download PDF

Info

Publication number
CN110904405B
CN110904405B CN201911421432.9A CN201911421432A CN110904405B CN 110904405 B CN110904405 B CN 110904405B CN 201911421432 A CN201911421432 A CN 201911421432A CN 110904405 B CN110904405 B CN 110904405B
Authority
CN
China
Prior art keywords
laser
titanium alloy
zirconium
modified layer
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911421432.9A
Other languages
English (en)
Other versions
CN110904405A (zh
Inventor
李聪
陈汪林
谢盼
陈荐
黄伟颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201911421432.9A priority Critical patent/CN110904405B/zh
Publication of CN110904405A publication Critical patent/CN110904405A/zh
Priority to LU102282A priority patent/LU102282B1/en
Application granted granted Critical
Publication of CN110904405B publication Critical patent/CN110904405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种提高钛合金表面激光渗锆改性层冶金质量的方法,首先在脉冲激光输出模式下对激光渗锆工艺窗口进行初步优化;利用有限元传热模型对初步优化参数下熔池三维温度场进行计算,获得熔池瞬时温度变化曲线;分别提取熔池瞬时温度曲线峰值温度的平均值Tmax,计算单个脉冲周期温度曲线与液相线截距t及熔池冷却阶段的平均冷却速率ξ;根据1.5Tm≤Tmax≤1.6Tm,45ms≤t≤90ms,1.0×103℃/s≤ξ≤5.0×104℃/s原则对工艺参数进行优化,获得的优化工艺窗口,按优化工艺参数进行激光3D打印,获得致密、高冶金质量的表面渗锆改性层。本发明能有效提高表面渗锆改性层质量,进而提高力学性能。

Description

一种提高钛合金表面激光渗锆改性层冶金质量的方法
技术领域
本发明涉及激光金属材料加工领域,尤其涉及一种提高钛合金表面激光渗锆改性层冶金质量的方法。
背景技术
钛合金因具有密度小、比强度高、耐蚀性好等优良特性,已广泛应用于航空航天、航海、能源及化工等领域。然而,钛合金表面硬度低、耐磨性差等缺点,使钛合金难以满足实际应用的要求,阻碍了钛合金的进一步应用。
目前,钛合金表面改性技术主要包括微弧氧化、离子注入、化学镀、气相沉积、激光熔覆及等离子喷涂等。其中,激光熔覆改性技术是将粉末与激光束同步输送,通过高能量密度激光束辐照基材表面,使粉末材料熔化,经快速凝固后形成良好冶金结合的改性层。如Weng等人在TC4钛合金表面熔覆SiC,通过与基体反应生成Si5Si3和TiC,进而提高钛合金表面的硬度和耐磨性。姜爱龙等人为提高TC11钛合金摩擦磨损性能,对钛合金表面进行了渗锆处理。其结果表明,渗层厚度约为25μm,且渗锆层组织均匀,主要由α-Ti相组成。吴红艳等人采用双层辉光等离子渗金属技术在TC4钛合金表面制备渗锆层,发现渗锆层的组织连续、均匀、致密,与基体结合良好,锆含量由表层向基体内部呈梯度分布;渗锆层的摩擦因数和比磨损率约为TC4钛合金基体的45.9%和13.6%,摩擦磨损性能明显提高。此外,研究表明,采用激光熔覆技术在钛合金表面熔覆或渗入锆颗粒,可以有效提高摩擦磨损性能。然而,目前激光渗锆技术仍存在一些问题,如渗层内部容易产生气孔、裂纹等缺陷。这限制了该技术的进一步应用。因此,需要对钛合金激光渗锆过程中冶金质量进行有效控制。
本发明提出方法可对钛合金表面激光渗锆改性层冶金质量进行有效控制,进而提高渗层的力学性能。
发明内容
本发明的目的是提供一种提高钛合金表面激光渗锆改性层冶金质量的方法。
一种提高钛合金表面激光渗锆改性层冶金质量的方法,其特征在于包括以下步骤:
步骤一:将激光器设置为脉冲激光输出模式,对激光表面渗锆工艺窗口进行初步优化,获得初步优化的工艺窗口:激光波形为方波,光斑直径0.5~2.5mm,离焦量-2.5mm,激光峰值功率为700~1000W,重复频率为10~40Hz,占空比为0.6~0.9,扫描速度为6~13mm/s,送粉量为2~7g/min;
步骤二:任意选取一组初步优化的工艺参数,利用有限元传热模型对该参数下熔池三维温度场进行计算,提取激光加载1.5秒后熔池中心瞬时温度变化曲线;提取并计算熔池瞬时温度变化曲线波峰温度的平均值Tmax,计算瞬时温度变化曲线中单个脉冲周期内温度变化曲线与钛合金液相线的截距t,再对单个脉冲周期内温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即获得熔池平均冷却速率ξ,其中Tmax、t及ξ的单位分别为℃、s及℃/s;
步骤三:根据1.5Tm≤Tmax≤1.6Tm,45ms≤t≤90ms,1.0×103℃/s≤ξ≤5.0×104℃/s原则对激光光斑直径、激光峰值功率、重复频率、占空比、离焦量、扫描速度及送粉量工艺参数进行优化,其中Tm为钛合金的熔点;
步骤四:按上述各个参数的由小至大顺序重复步骤二至步骤三,直到完成所有工艺参数匹配,获得的优化工艺窗口:激光波形为方波,激光光斑直径1.0~1.5mm,激光峰值功率为700~850W,重复频率为10~25Hz,占空比为0.75~0.9,离焦量-2.5mm,扫描速度为7~12mm/s,送粉量为3~6g/min;
步骤五:按上述工艺参数进行钛合金表面激光渗锆,获得致密、高冶金质量的表面渗锆改性层。
所述钛合金包括α钛合金、α+β钛合金及β钛合金。
在步骤四中,所述的工艺窗口的扫描路径为单向路径或双向路径。
通过本发明方法获得优化工艺窗口:激光波形为方波,激光光斑直径1.0~1.5mm,激光峰值功率为700~850W,重复频率为10~25Hz,占空比为0.75~0.9,离焦量-2.5mm,扫描速度为7~12mm/s,送粉量为3~6g/min;在此条件进行钛合金表面激光渗锆,获得致密、高冶金质量的表面渗锆改性层。
附图说明
图1为本发明获得的钛合金表面激光渗锆试样的金相图;
图2为已有方法获得的钛合金表面激光渗锆试样的金相图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的说明。
实施例1
一种提高钛合金表面激光渗锆改性层冶金质量的方法,包括以下步骤:
一种提高钛合金表面激光渗锆改性层冶金质量的方法,其特征在于包括以下步骤:
步骤一:将激光器设置为脉冲激光输出模式,对激光表面渗锆工艺窗口进行初步优化,获得初步优化的工艺窗口:激光波形为方波,光斑直径0.5~2.5mm,离焦量-2.5mm,激光峰值功率为700~1000W,重复频率为10~40Hz,占空比为0.6~0.9,扫描速度为6~13mm/s,送粉量为2~7g/min;
步骤二:任意选取一组初步优化的工艺参数,利用有限元传热模型对该参数下熔池三维温度场进行计算,提取激光加载1.5秒后熔池中心瞬时温度变化曲线;提取并计算熔池瞬时温度变化曲线波峰温度的平均值Tmax,计算瞬时温度变化曲线中单个脉冲周期内温度变化曲线与钛合金液相线的截距t,再对单个脉冲周期内温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即获得熔池平均冷却速率ξ,其中Tmax、t及ξ的单位分别为℃、s及℃/s;
步骤三:根据1.5Tm≤Tmax≤1.6Tm,45ms≤t≤90ms,1.0×103℃/s≤ξ≤5.0×104℃/s原则对激光光斑直径、激光峰值功率、重复频率、占空比、离焦量、扫描速度及送粉量工艺参数进行优化,其中Tm为钛合金的熔点;
步骤四:按上述各个参数的由小至大顺序重复步骤二至步骤三,直到完成所有工艺参数匹配,获得的优化工艺窗口:激光波形为方波,激光光斑直径1.0~1.5mm,激光峰值功率为700~850W,重复频率为10~25Hz,占空比为0.75~0.9,离焦量-2.5mm,扫描速度为7~12mm/s,送粉量为3~6g/min;
步骤五:按上述工艺参数进行钛合金表面激光渗锆,获得致密、高冶金质量的表面渗锆改性层。
图1为采用所获得的钛合金表面激光渗锆试样的金相图。从图中可以看出,试样几乎完全致密,内部冶金质量良好。因为采用本方法,由于激光能量的周期性输入,会导致熔池周期性重熔,有利于气孔的去除;另一方面,采用本专利方法能保证单个脉冲周期内熔池有足够的温度及时间(1.5Tm≤Tmax≤1.6Tm,45ms≤t≤90ms)处于熔化状态,有利于锆颗粒的充分润湿及熔化。上述结果表明,采用本专利方法可以有效地提高渗锆改性层的冶金质量,进而提高改性层的力学性能。
图2为采用已有方法所获得的钛合金表面激光渗锆试样经机械研磨、抛光后的金相图,从图中可以看出,试样中存在大量的气孔及不规则孔洞,表明试样内部质量较差。这可能与加工过程气体的卷入或锆颗粒与钛合金基体的湿润性差所导致。

Claims (3)

1.一种提高钛合金表面激光渗锆改性层冶金质量的方法,其特征在于包括以下步骤:
步骤一:将激光器设置为脉冲激光输出模式,对激光表面渗锆工艺窗口进行初步优化,获得初步优化的工艺窗口:激光波形为方波,光斑直径0.5~2.5mm,离焦量-2.5mm,激光峰值功率为700~1000W,重复频率为10~40Hz,占空比为0.6~0.9,扫描速度为6~13mm/s,送粉量为2~7g/min;
步骤二:任意选取一组初步优化的工艺参数,利用有限元传热模型对该参数下熔池三维温度场进行计算,提取激光加载1.5秒后熔池中心瞬时温度变化曲线;提取并计算熔池瞬时温度变化曲线波峰温度的平均值Tmax,计算瞬时温度变化曲线中单个脉冲周期内温度变化曲线与钛合金液相线的截距t,再对单个脉冲周期内温度变化曲线右侧温度下降部分进行求导,再计算出导数的平均值ξ,即获得熔池平均冷却速率ξ,其中Tmax、t及ξ的单位分别为℃、s及℃/s;
步骤三:根据1.5Tm≤Tmax≤1.6Tm,45ms≤t≤90ms,1.0×103℃/s≤ξ≤5.0×104℃/s原则对激光光斑直径、激光峰值功率、重复频率、占空比、离焦量、扫描速度及送粉量工艺参数进行优化,其中Tm为钛合金的熔点;
步骤四:按上述各个参数的由小至大顺序重复步骤二至步骤三,直到完成所有工艺参数匹配,获得的优化工艺窗口:激光波形为方波,激光光斑直径1.0~1.5mm,激光峰值功率为700~850W,重复频率为10~25Hz,占空比为0.75~0.9,离焦量-2.5mm,扫描速度为7~12mm/s,送粉量为3~6g/min;
步骤五:按上述工艺参数进行钛合金表面激光渗锆,获得致密、高冶金质量的表面渗锆改性层。
2.根据权利要求1所述的一种提高钛合金表面激光渗锆改性层冶金质量的方法,其特征在于:所述钛合金选自α钛合金、α+β钛合金或β钛合金。
3.根据权利要求1所述的一种提高钛合金表面激光渗锆改性层冶金质量的方法,其特征在于:在步骤四中,所述的工艺窗口的扫描路径为单向路径或双向路径。
CN201911421432.9A 2019-12-31 2019-12-31 一种提高钛合金表面激光渗锆改性层冶金质量的方法 Active CN110904405B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911421432.9A CN110904405B (zh) 2019-12-31 2019-12-31 一种提高钛合金表面激光渗锆改性层冶金质量的方法
LU102282A LU102282B1 (en) 2019-12-31 2020-12-15 A Method for Improving the Metallurgical Quality of a Laser Modified Zr-alloyed Layer on a Titanium Alloy Surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911421432.9A CN110904405B (zh) 2019-12-31 2019-12-31 一种提高钛合金表面激光渗锆改性层冶金质量的方法

Publications (2)

Publication Number Publication Date
CN110904405A CN110904405A (zh) 2020-03-24
CN110904405B true CN110904405B (zh) 2021-09-28

Family

ID=69813978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911421432.9A Active CN110904405B (zh) 2019-12-31 2019-12-31 一种提高钛合金表面激光渗锆改性层冶金质量的方法

Country Status (2)

Country Link
CN (1) CN110904405B (zh)
LU (1) LU102282B1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548103B (zh) * 2020-12-23 2021-10-12 长沙理工大学 一种钛合金激光增材修复与表面渗氮复合处理工艺
CN113059188B (zh) * 2021-06-03 2021-10-01 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844759A1 (de) * 1998-09-29 2000-04-06 Siemens Ag Hüllrohre und Strukturteile aus Zirkonium-Legierungen mit einem Konzentrationsgradienten der gelösten Legierungsbestandteile und deren Herstellung
CN101199994A (zh) * 2006-12-15 2008-06-18 湖南大学 智能化激光熔覆成型金属零件
CN103745053A (zh) * 2013-12-31 2014-04-23 江苏双腾管业有限公司 一种基于有限元的pe电熔管件焊接工艺参数制定方法
WO2016107661A1 (de) * 2014-12-30 2016-07-07 Merck Patent Gmbh Laserdotierung von halbleiter
CN105868461A (zh) * 2016-03-28 2016-08-17 中国科学院力学研究所 一种激光熔覆多组分合金涂层的成分计算方法
CN106077647A (zh) * 2016-07-27 2016-11-09 湖南大学 一种激光增材制造镍基高温合金过程中控制脆性Laves相的方法
CN106978577A (zh) * 2017-04-10 2017-07-25 大连交通大学 一种非晶合金复合材料的激光3d打印方法
JP2018040028A (ja) * 2016-09-06 2018-03-15 国立大学法人 東京医科歯科大学 金属積層造形用ジルコニウム合金粉末、及びそれを使用したインプラントの製造方法
CN108559994A (zh) * 2018-02-28 2018-09-21 东北大学 一种圆弧面上激光熔覆工艺参数优化的方法
CN108620588A (zh) * 2018-06-15 2018-10-09 湖南大学 一种无周期性层带效应的激光金属3d打印方法
CN108746615A (zh) * 2018-06-15 2018-11-06 长沙理工大学 一种提高激光增材制造钛合金层间结合性能的方法
CN108754373A (zh) * 2018-06-15 2018-11-06 湖南大学 一种实现钛合金表面晶粒形态调控的脉冲激光表面熔凝方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790717B (zh) * 2017-11-05 2019-06-14 湖南大学 一种实现镍基合金晶体学织构调控的准连续激光金属3d打印方法
CN108480640B (zh) * 2018-06-15 2019-11-19 长沙理工大学 一种实现激光增材制造钛合金β晶粒调控的方法
CN109797360A (zh) * 2019-03-14 2019-05-24 太原理工大学 一种提高钛合金表面耐磨性的处理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844759A1 (de) * 1998-09-29 2000-04-06 Siemens Ag Hüllrohre und Strukturteile aus Zirkonium-Legierungen mit einem Konzentrationsgradienten der gelösten Legierungsbestandteile und deren Herstellung
CN101199994A (zh) * 2006-12-15 2008-06-18 湖南大学 智能化激光熔覆成型金属零件
CN103745053A (zh) * 2013-12-31 2014-04-23 江苏双腾管业有限公司 一种基于有限元的pe电熔管件焊接工艺参数制定方法
WO2016107661A1 (de) * 2014-12-30 2016-07-07 Merck Patent Gmbh Laserdotierung von halbleiter
CN105868461A (zh) * 2016-03-28 2016-08-17 中国科学院力学研究所 一种激光熔覆多组分合金涂层的成分计算方法
CN106077647A (zh) * 2016-07-27 2016-11-09 湖南大学 一种激光增材制造镍基高温合金过程中控制脆性Laves相的方法
JP2018040028A (ja) * 2016-09-06 2018-03-15 国立大学法人 東京医科歯科大学 金属積層造形用ジルコニウム合金粉末、及びそれを使用したインプラントの製造方法
CN106978577A (zh) * 2017-04-10 2017-07-25 大连交通大学 一种非晶合金复合材料的激光3d打印方法
CN108559994A (zh) * 2018-02-28 2018-09-21 东北大学 一种圆弧面上激光熔覆工艺参数优化的方法
CN108620588A (zh) * 2018-06-15 2018-10-09 湖南大学 一种无周期性层带效应的激光金属3d打印方法
CN108746615A (zh) * 2018-06-15 2018-11-06 长沙理工大学 一种提高激光增材制造钛合金层间结合性能的方法
CN108754373A (zh) * 2018-06-15 2018-11-06 湖南大学 一种实现钛合金表面晶粒形态调控的脉冲激光表面熔凝方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Finite Element Modeling of Microstructure in Laser-Deposited Multiple Layer Inconel 718 Parts";A.M.Kamara et al.;《Materials and Manufacturing Processes》;20140910;第1245-1252页 *
"Prediction of temperature fields during laser Welding of Al-Ti Sheets Using Numerical Simulation";Maria Behulova et al.;《38th meeting of departments of fluid mechanics and thermodaynamics》;20190627;第030005-1-030005-4页 *
"激光熔覆工艺参数优化及其自适应有限元分析";郝明仲;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20121015;第B022-416页 *
"钛合金激光熔覆钴基涂层的制备及数值模拟";张珊;《中国优秀硕士学位论文全文数据库》;20160315;第B022-342页 *
"钛板表面激光熔覆锆基合金涂层的组织结构";王彦芳等;《复合材料学报》;20030630;第20卷(第3期);第89-92页 *

Also Published As

Publication number Publication date
LU102282B1 (en) 2021-06-18
CN110904405A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN108754373B (zh) 一种实现钛合金表面晶粒形态调控的方法
CN110904405B (zh) 一种提高钛合金表面激光渗锆改性层冶金质量的方法
CN102676981B (zh) 一种钛及钛合金表面激光制备氮化钛梯度涂层的方法
Zhang et al. Synthesis of Y2O3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding
CN112570732B (zh) 一种降低激光增材制造镍基高温合金热裂敏感性的方法
CN109365803B (zh) 一种粉末表面稀土改性的铝合金复杂构件增材制造方法
Liu et al. Microstructure and high-temperature wear and oxidation resistance of laser clad γ/W2C/TiC composite coatings on γ-TiAl intermetallic alloy
Lu et al. Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel
CN111560611A (zh) 一种钛合金表面激光熔覆制备镍基涂层的过渡层方法
Wang et al. Wear and corrosion behavior of laser clad Cr3Si reinforced intermetallic composite coatings
CN114411056A (zh) 一种铁基合金粉末、激光熔覆涂层及其制备方法
Erinosho et al. Influence of processing parameters on laser metal deposited copper and titanium alloy composites
CN101545087B (zh) 微复合Fe-Al/Al2O3陶瓷涂层及其制备方法
Luo et al. The effect of laser shock peening on the microstructure and wear resistance of micro-arc oxidation coatings on TC4 alloy
CN110760845A (zh) 一种钛合金表面抗氧化高硬耐磨涂层及制备方法
CN111058038B (zh) 一种提高钛合金表面硬度与耐磨性的激光表面渗锆方法
Ye et al. Retracted: Effect of High‐Energy Electropulsing on the Phase Transition and Mechanical Properties of Two‐Phase Titanium Alloy Strips
Tyagi et al. Electrical discharge coating a potential surface engineering technique: a state of the art
CN112548103B (zh) 一种钛合金激光增材修复与表面渗氮复合处理工艺
Weglowski et al. Remelting of thermal spraying coatings-technologies, properties and applications
CN105063692A (zh) 一种Fe-V梯度材料及其制备方法
Li et al. Microstructure and properties of Ti-6Al-4V alloy coating prepared by laser composite process
CN112779533B (zh) 一种在不锈钢表面制备金属基复合涂层的方法
CN204953874U (zh) 一种高结合强度的超声波复合发射杆及其超声波设备
AU2021102393A4 (en) Surface Zirconizing Method for Improving Surface Hardness and Wear Resistance of Titanium Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant