CN103745053A - 一种基于有限元的pe电熔管件焊接工艺参数制定方法 - Google Patents

一种基于有限元的pe电熔管件焊接工艺参数制定方法 Download PDF

Info

Publication number
CN103745053A
CN103745053A CN201310749560.2A CN201310749560A CN103745053A CN 103745053 A CN103745053 A CN 103745053A CN 201310749560 A CN201310749560 A CN 201310749560A CN 103745053 A CN103745053 A CN 103745053A
Authority
CN
China
Prior art keywords
welding
pipe fittings
electric melting
melting pipe
heating wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310749560.2A
Other languages
English (en)
Other versions
CN103745053B (zh
Inventor
贾民平
唐�谦
陆宇航
黎世鹏
黄鹏
许飞云
胡建中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU SHUANGTENG PIPE CO Ltd
Southeast University
Original Assignee
JIANGSU SHUANGTENG PIPE CO Ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU SHUANGTENG PIPE CO Ltd, Southeast University filed Critical JIANGSU SHUANGTENG PIPE CO Ltd
Priority to CN201310749560.2A priority Critical patent/CN103745053B/zh
Publication of CN103745053A publication Critical patent/CN103745053A/zh
Application granted granted Critical
Publication of CN103745053B publication Critical patent/CN103745053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种基于有限元的PE电熔管件焊接工艺参数制定方法,包括如下步骤:(1)初步确定PE电熔管件的焊接电压;(2)设定热分析参数;(3)在ANSYS WORKBENCH中建立电熔管件、管材连接的有限元传热模型;(4)设定电熔管件中发热丝与PE材料以及电熔管件与管材间的接触热导系数;(5)设定模型网格的划分类型以及网格的尺寸,然后划分网格;(6)对模型进行载荷加载;(7)设定分析时间以及步长求解;(8)提取求解结果并确定焊接工艺参数。本发明提高了电熔管件焊接参数的制定效率,同时保证了PE电熔管件的焊接质量。

Description

一种基于有限元的PE电熔管件焊接工艺参数制定方法
技术领域
本发明涉及一种基于有限元的PE电熔管件焊接工艺参数制定方法。
背景技术
PE管道以其质量轻、价格便宜、耐磨损、耐腐蚀以及绝缘等优势,广泛用于燃气输送、给水、排污、农业灌溉、油田、矿山、化工及邮电通讯等领域。
电熔焊接是PE管道连接的主要方式,电熔焊接主要通过对PE电熔管件内部嵌入的电阻丝通电后产生热量将PE电熔管件与PE管材焊接区域融化,在内部膨胀压力的作用下,聚乙烯高分子链相互扩散缠结,冷却后形成牢固的连接。PE电熔管件焊接工艺参数直接关系着PE电熔管件焊接的成败。PE电熔管件的焊接工艺参数主要是指在电熔焊接时所使用的焊接电压以及焊接时间,因为老式电熔焊机只能输出39.5V电压,所以不需要设定焊接电压,而现有电熔焊机均为电压可调节,所以焊接电压同样需要设定。
现有电熔管件焊接工艺参数的确定主要有两种方式:一种是直接通过焊接实验确定,即通过尝试不同的焊接工艺参数,然后通过剥离实验检验焊接质量,从而确定出合理的焊接参数;另一种通过数值仿真分析确定,根据材料的热性能参数,仿真出焊接过程中电熔焊接组件内部温度场的情况,根据内部温度场来确定焊接工艺参数。第一种方法目前虽然应用广泛,但是它的缺点也非常突出:(1)这种方法将耗费大量的电熔管件,消耗大量人力,并且时间较长;
(2)这种方法确定出来的焊接参数考虑因素较少,受外界环境因素影响较大,确定的参数在实际应用中容易出现焊接失败的情况。
第二种方法,根据材料的参数、传热学原理等进行数值模拟,从而确定出焊接参数,这种方法的优势显而易见,节省了大量的人力与财力,并且节省了时间。而在第二种方法中,现有技术忽略过多细节,造成焊接工艺参数确定困难,同时有的方法程序实现过于复杂,通用性较差。
发明内容
本发明所要解决的技术问题是:提供一种基于有限元的PE电熔管件焊接工艺参数制定方法,该方法通过简化电熔管件、管材,使用ANSYS软件仿真分析电熔管件焊接过程温度场来制定PE电熔管件焊接工艺参数。
为解决上述技术问题,本发明的技术方案是:一种基于有限元的PE电熔管件焊接工艺参数制定方法,包括顺序相接的如下步骤:
(1)初步确定PE电熔管件的焊接电压;
(2)设定相关材料的热分析参数,包括热传导率、密度、比热容;
(3)在ANSYS WORKBENCH中建立电熔管件、管材连接的有限元传热模型;
(4)设定电熔管件中发热丝与PE材料以及电熔管件与管材间的接触热导系数;
(5)设定模型网格的划分类型以及网格的尺寸,然后划分网格;
(6)利用步骤(1)中确定的焊接电压计算出发热率载荷,然后对模型进行载荷加载;
(7)设定分析时间以及步长,求解;
(8)提取求解结果并确定焊接工艺参数。
其中,步骤(1)中,确定PE电熔管件的焊接电压的方法为:
提出在电熔管件恒压焊接时的焊接电压计算公式:
U = P L L R 0 - - - ( 1 )
其中,PL为焊接开始时发热丝的单位长度功率,单位为W/mm,R0为焊接开始时的电阻,单位为Ω,L为发热丝长度,单位为mm,U为设定的焊接电压;
单位长度功率PL的计算公式为:
PL=0.05*l+b        (2)
其中,l为电熔管件中发热丝布置的间距,单位为mm,b为0-0.5W/mm。
上述b可根据电熔管件配套内管壁厚进行调整,壁厚越厚b可以越小。
本发明根据电熔管件以及焊接过程的特点,将电熔管件、管材简化为轴对称的面单元进行仿真分析,保留发热丝形状细节,将电熔管件焊接过程中发热丝通电发热简化为发热丝的发热属性,电熔管件外壁、管材内壁与外界空气间采用对流传热方式,考虑材料非线性、发热丝电阻随温度变化以及接触热阻等因素。模型的建立及求解在有限元软件ANSYS14.0中完成。
上述步骤(3)中的模型为简化后的CAD模型。
上述步骤(4)中通过设定接触热导系数来模拟接触热阻对接触传热的影响,接触间传热的热流量使用如下公式计算
q=TCC(Tt-TC)        (3)
其中TC是位于接触法向上某接触“节点”的温度,Tt是相应的目标“节点”的温度,TCC为接触导热系数。本发明中仅考虑发热丝与周围PE材料间的接触热阻,而电熔管件与管材之间的接触热阻因其为同种材料且膨胀后完全接触,对于配合正常的焊接组件短时间加热管件与管材就可以完全接触,所以不考虑电熔管件与管材间的接触热阻。
上述步骤(5)中采用手动与自动结合的网格划分方法,根据电脑的运算能力调节网格稀疏,网格越密结果越精确同时耗时也就越多。
上述步骤(6)中的载荷有环境温度、电熔管件外壁与空气间的热对流、管材内壁与空气间的热对流、发热丝的发热率。其中,发热丝的发热率随温度变化情况,通过发热率公式U2R0(1+αΔT)V计算得到,U为焊接的电压,R0为初始温度下的发热丝的电阻,α为发热丝电阻的温度系数,V为发热丝体积,选取ΔT=0:500组成发热率随温度变化的矩阵进行发热率载荷加载。
其中PE电熔管件焊接的优选温度为190-250℃,对步骤(8)提取的求解结果进行分析,当电熔焊接组件焊区温度落在190-250℃范围内,确定模型仿真时间即为焊接所需时间,否则需重新调整焊接工艺参数继续进行仿真求解。
采用了上述技术方案后,本发明的效果是:本发明首先初步设定焊接电压,然后通过简化电熔管件、管材,使用ANSYS软件仿真分析电熔管件焊接过程温度场来制定PE电熔管件焊接工艺参数,不仅提高了电熔管件焊接参数的制定效率,节约了成本,同时保证了PE电熔管件的焊接质量。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是HDPE材料的密度随温度变化图。
图2是HDPE材料的比热容随温度变化图。
图3是HDPE材料的热导率随温度变化图。
图4是对电熔管件、管材简化后的造型图。
图5是图4的网格划分。
图6是电熔管件、管材的载荷图。
图7是电熔管件、管材焊接过程温度仿真梯度图。
图8是电熔管件、管材焊接过程仿真径向温度图。
图4中1.管材,2.电熔管件,3.发热丝。
具体实施方式
下面通过具体实施例对本发明作进一步的详细描述。
(1)获得电熔管件2的各种计算参数,利用公式1,2求出初步设定的焊接电压。本实例中使用dn160法兰型电熔管件2,该电熔管件2电阻丝长度为L=15.2m,电阻丝布置螺距l=2.8mm,初始电阻R0=0.6Ω,b=0W/mm,带入公式1、2计算圆整得到焊接电压U=36V。初步确定PE电熔管件2的焊接电压;步骤(1)中,确定PE电熔管件2的焊接电压的方法为:
提出在电熔管件2恒压焊接时的焊接电压计算公式:
U = P L L R 0 - - - ( 1 )
其中,PL为焊接开始时发热丝3的单位长度功率,单位为W/mm,R0为焊接开始时的电阻,单位为Ω,L为发热丝3长度,单位为mm,U为设定的焊接电压;
单位长度功率PL的计算公式为:
PL=0.05*l+b       (2)
其中,l为电熔管件2中发热丝3布置的间距,单位为mm,b为0-0.5W/mm。上述b可根据电熔管件2配套内管壁厚进行调整,壁厚越厚b可以越小。
(2)设定相关材料的热分析参数,包括热传导率、密度、比热容;在ANSYSWORKBENCH中设定相关材料的热性能参数包括热传导率、密度、比热容。材料热性能参数通过材料相关实验获得,本实例中材料主要有铜电阻丝和HDPE,电阻丝材料的热性能参数如下,密度为8300kg/m3,比热容为385J/kg℃,热传导率400W/m℃,而HDPE的热性能参数随时间变化,如附图1~3所示。
(3)在ANSYS WORKBENCH中建立电熔管件2、管材1连接的有限元传热模型;造型如图4所示,
(4)设定电熔管件2中发热丝3与PE材料以及电熔管件2与管材1间的接触热导系数;根据实验结果,设定发热丝3与周围PE材料间的接触导热系数为900W/m2℃。因电熔管件2与管材1为同种材料且膨胀后完全接触,对于配合正常的焊接组件短时间加热管件与管材1就可以完全接触,所以不考虑电熔管件2与管材1间的接触热阻。
(5)设定模型网格的划分类型以及网格的尺寸,然后划分网格;控制单元尺寸,自动划分网格,网格划分图如图5。
(6)利用步骤(1)中确定的焊接电压计算出发热率,然后对模型进行载荷加载,具体载荷图见图6;电熔管件2外壁、管材1内壁与空气间采用对流传热,设定电熔管件2外壁对流系数为10W/m2℃,管材1内壁对流系数为5W/m2℃。
(7)设定分析时间以及步长,求解;分析时间尽量选择足够长,步长通过设定区间让软件随计算误差自动选择。本实例根据误差大小选择步长区间为5-10s。
(8)提取求解结果并确定焊接工艺参数。
通过温度梯度图见附图7,初步确定焊接时间,然后提取该时间的焊接区域径向温度,绘制温度变化曲线如图8所示。分析温度场仿真结果:
PE电熔焊接的最佳焊接温度为190-250℃,即焊接界面达到最佳焊接温度区间并保持一定的熔接深度,熔接深度根据管件大小选择至少1.5-2mm左右,在熔接深度以内焊接温度需达到最佳焊接温度区间,同时要求发热丝3温度低于380℃。若发热丝3温度高于380℃而熔接深度未达到要求,减小公式2中b参数值,重新计算加载电压并重复步骤(6)到(8)来保证电熔管件2焊接既不出现过焊也不出现冷焊现象。本实例中焊接电压满足要求,所以直接即可确定焊接时间为450s。

Claims (6)

1.一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:包括顺序相接的如下步骤:
(1)初步确定PE电熔管件的焊接电压;
(2)设定相关材料的热分析参数,包括热传导率、密度、比热容;
(3)在ANSYS WORKBENCH中建立电熔管件、管材连接的有限元传热模型;
(4)设定电熔管件中发热丝与PE材料以及电熔管件与管材间的接触热导系数;
(5)设定模型网格的划分类型以及网格的尺寸,然后划分网格;
(6)利用步骤(1)中确定的焊接电压计算出发热率载荷,然后对模型进行载荷加载;
(7)设定分析时间以及步长,求解;
(8)提取求解结果并确定焊接工艺参数。
2.如权利要求1所述的一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:步骤(1)中,确定PE电熔管件的焊接电压的方法为:
提出在电熔管件恒压焊接时的焊接电压计算公式:
U = P L L R 0 - - - ( 1 )
其中,PL为焊接开始时发热丝的单位长度功率,单位为W/mm,R0为焊接开始时的电阻,单位为Ω,L为发热丝长度,单位为mm,U为设定的焊接电压;
单位长度功率PL的计算公式为:
PL=0.05*l+b        (2)
其中,l为电熔管件中发热丝布置的间距,单位为mm,b为0-0.5W/mm。
3.如权利要求2所述的一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:PE电容管件焊接的温度为190-250℃,对步骤(8)提取的求解结果进行分析,当电熔焊接组件焊区温度落在190-250℃范围内,确定模型仿真时间即为焊接所需时间,否则需重新调整焊接工艺参数继续进行仿真求解。
4.如权利要求3所述的一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:步骤(4)中,发热丝与周围PE材料传热的热流量使用如下公式计算
q=TCC(Tt-TC)      (3)
其中TC是位于接触法向上某接触“节点”的温度,Tt是相应的目标“节点”的温度,TCC为接触导热系数。
5.如权利要求4所述的一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:步骤(6)中的载荷包括:环境温度、电熔管件外壁与空气间的对流、管材内壁与空气间的对流、发热丝的发热率。
6.如权利要求5所述的一种基于有限元的PE电熔管件焊接工艺参数制定方法,其特征在于:步骤(6)中,载荷通过发热率公式U2R0(1+αΔT)V计算得到,U为焊接的电压,R0为初始温度下的发热丝的电阻,α为发热丝电阻的温度系数,V为发热丝体积,选取ΔT=0:500组成发热率随温度变化的矩阵进行发热率载荷加载。
CN201310749560.2A 2013-12-31 2013-12-31 一种基于有限元的pe电熔管件焊接工艺参数制定方法 Active CN103745053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310749560.2A CN103745053B (zh) 2013-12-31 2013-12-31 一种基于有限元的pe电熔管件焊接工艺参数制定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310749560.2A CN103745053B (zh) 2013-12-31 2013-12-31 一种基于有限元的pe电熔管件焊接工艺参数制定方法

Publications (2)

Publication Number Publication Date
CN103745053A true CN103745053A (zh) 2014-04-23
CN103745053B CN103745053B (zh) 2016-08-17

Family

ID=50502070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310749560.2A Active CN103745053B (zh) 2013-12-31 2013-12-31 一种基于有限元的pe电熔管件焊接工艺参数制定方法

Country Status (1)

Country Link
CN (1) CN103745053B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478985A (zh) * 2016-01-20 2016-04-13 创美工艺(常熟)有限公司 一种点焊参数的确定方法
CN105677995A (zh) * 2016-01-12 2016-06-15 北京航空航天大学 一种基于全网格配点理论的模糊稳态热传导问题数值求解方法
CN105760586A (zh) * 2016-02-03 2016-07-13 北京航空航天大学 一种基于配点理论的模糊温度响应隶属度函数求解方法
CN106940747A (zh) * 2017-03-17 2017-07-11 中国计量大学 一种pe电熔管件焊接工艺参数制定方法
CN107111893A (zh) * 2014-08-01 2017-08-29 塔塔咨询服务有限公司 用于对仿真制造工艺和产品的网格进行转换的方法和系统
CN110064830A (zh) * 2019-06-06 2019-07-30 马钢(合肥)板材有限责任公司 一种电阻缝焊工艺参数的获取方法及焊接方法
CN110904405A (zh) * 2019-12-31 2020-03-24 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107347A1 (en) * 2003-10-16 2007-05-17 Haynes Andrew L Cladding system
CN101769728A (zh) * 2010-02-02 2010-07-07 浙江大学 聚乙烯管道热熔接头焊接焊缝区检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107347A1 (en) * 2003-10-16 2007-05-17 Haynes Andrew L Cladding system
CN101769728A (zh) * 2010-02-02 2010-07-07 浙江大学 聚乙烯管道热熔接头焊接焊缝区检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖燕: "聚乙烯(PE)管道的电熔焊接", 《工业技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111893A (zh) * 2014-08-01 2017-08-29 塔塔咨询服务有限公司 用于对仿真制造工艺和产品的网格进行转换的方法和系统
CN107111893B (zh) * 2014-08-01 2020-09-01 塔塔咨询服务有限公司 用于对仿真制造工艺和产品的网格进行转换的方法和系统
CN105677995A (zh) * 2016-01-12 2016-06-15 北京航空航天大学 一种基于全网格配点理论的模糊稳态热传导问题数值求解方法
CN105478985A (zh) * 2016-01-20 2016-04-13 创美工艺(常熟)有限公司 一种点焊参数的确定方法
CN105478985B (zh) * 2016-01-20 2016-10-12 创美工艺(常熟)有限公司 一种点焊参数的确定方法
CN105760586A (zh) * 2016-02-03 2016-07-13 北京航空航天大学 一种基于配点理论的模糊温度响应隶属度函数求解方法
CN106940747A (zh) * 2017-03-17 2017-07-11 中国计量大学 一种pe电熔管件焊接工艺参数制定方法
CN110064830A (zh) * 2019-06-06 2019-07-30 马钢(合肥)板材有限责任公司 一种电阻缝焊工艺参数的获取方法及焊接方法
CN110904405A (zh) * 2019-12-31 2020-03-24 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法
CN110904405B (zh) * 2019-12-31 2021-09-28 长沙理工大学 一种提高钛合金表面激光渗锆改性层冶金质量的方法

Also Published As

Publication number Publication date
CN103745053B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN103745053A (zh) 一种基于有限元的pe电熔管件焊接工艺参数制定方法
Wu et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling
CN104834781B (zh) 一种基于平波电抗器多次换向失败时的暂态温度场仿真方法
Huang et al. Study on a liquid cooled battery thermal management system pertaining to the transient regime
CN101769797A (zh) 一种用于预测永磁同步电动机中永磁体温度的温升分析方法
CN104217061A (zh) 低压配电柜的温度场仿真设计方法
CN105045966A (zh) 一种变压器内部温度场的混合计算方法
CN107451381A (zh) 一种基于磁‑热‑流耦合的变压器热稳定计算方法
Kumar et al. Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads
CN112597628A (zh) 一种变压器温升估计的方法及系统
CN106535369A (zh) 一种新型超临界水并联通道分段可调节电加热装置
CN104502827B (zh) 功率器件时控方式间歇寿命试验条件确定及试验方法
Solé et al. Geometry optimization of a heat storage system for concentrated solar power plants (CSP)
Wan Thermal performance of heat pipe array in battery thermal management
CN103413007B (zh) 一种半导体制冷模块优化设计方法
Chen et al. Design methodology of large-scale thermoelectric generation: A hierarchical modeling approach
CN104950261A (zh) 电池的硬件在环仿真测试方法及系统
Peng Research of thermal analysis collaboratively using ANSYS Workbench and SolidWorks Simulation
CN105205269B (zh) 一种预测特殊螺纹接头油套管流固耦合特性的分析方法
CN112182905B (zh) 一种用于综合能源系统的供热管网仿真方法和装置
CN106940747A (zh) 一种pe电熔管件焊接工艺参数制定方法
Li et al. Thermal analysis and stress analysis of the heat-exchange pipe based on ANSYS
CN104890228A (zh) 一种利用电热钽防涨销熔结氟塑管换热器管板的装置
CN205091740U (zh) 三相感应电动机瞬态温升计算模型
CN113276433B (zh) 一种大口径pe电熔管件结构及尺寸、焊接工艺参数制定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant