CN107451381A - 一种基于磁‑热‑流耦合的变压器热稳定计算方法 - Google Patents

一种基于磁‑热‑流耦合的变压器热稳定计算方法 Download PDF

Info

Publication number
CN107451381A
CN107451381A CN201710840949.6A CN201710840949A CN107451381A CN 107451381 A CN107451381 A CN 107451381A CN 201710840949 A CN201710840949 A CN 201710840949A CN 107451381 A CN107451381 A CN 107451381A
Authority
CN
China
Prior art keywords
transformer
temperature
transformer body
heat
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710840949.6A
Other languages
English (en)
Other versions
CN107451381B (zh
Inventor
万信书
王爽
王录亮
高泽华
梁钰
陈林聪
王曙鸿
李元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Electric Power Research Institute of Hainan Power Grid Co Ltd
Original Assignee
Xian Jiaotong University
Electric Power Research Institute of Hainan Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Electric Power Research Institute of Hainan Power Grid Co Ltd filed Critical Xian Jiaotong University
Priority to CN201710840949.6A priority Critical patent/CN107451381B/zh
Publication of CN107451381A publication Critical patent/CN107451381A/zh
Application granted granted Critical
Publication of CN107451381B publication Critical patent/CN107451381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Protection Of Transformers (AREA)

Abstract

一种基于磁‑热‑流耦合的变压器热稳定计算方法,对任意一般变压器建立磁—热—流多物理场全耦合模型;分析计算变压器本体稳态温度场分布,并以此作为短路故障发生时的瞬态初值;计算出短路故障后2s内变压器本体产生的焦耳热。再以单位体积的焦耳热作为热源,对瞬态温度场进行分析,并考虑油流速和温度的相互作用以及变压器本体的物理参数对温度的依赖关系,随着温度变化不断修正材料参数,得到故障发生2s后的温度场分布作为判别变压器本体热稳定性的依据。

Description

一种基于磁-热-流耦合的变压器热稳定计算方法
技术领域
本发明属于电力变压器技术领域,涉及的是一种基于磁-热-流耦合的变压器热稳定计算方法。
背景技术
变压器是电力系统能量传输和转换的关键枢纽设备。在运行工程中变压器的高损耗所引起的变压器的局部过热和温升过高,将会直接影响变压器的绝缘特性和使用寿命。
现阶段研究变压器温度场的方法主要有经验公式法、热路模型法和数值分析法。经验公式法可快速得到变压器的热点温度,在常规变压器的实际运行中具有一定的指导意义,但不适用于特殊结构的变压器,如立体卷芯变压器和新型变阻抗变压器。热路模型法以热电类比法为基础,用电路模型的方法简化变压器内部传热过程,将变压器内热交换过程简化为热路。该方法可直接得到反映变压器热交换物理过程的热路模型,并得到变压器热点温度的计算公式,计算结果的精度与热路参数的准确性密切相关。目前传统的热点温升的计算研究均假设其绕组热源的产热是均匀分布,实际上各个线饼的位置不同,每匝线圈的产热量并不相同。数值计算法是利用电磁场、传热学以及流体力学原理,通过建立变压器实体模型,研究绕组、铁心和变压器油之间的热量传递问题,并作适当简化,通过三个物理场之间的相互关系,联立求解微分方程组,得变压器温度场分布,变压器电磁损耗的计算直接影响温度场计算的准确性。
目前大多数的数值计算方法都是采用经验公式计算损耗,计算存在一定误差,其次磁-热-流三种物理场耦合分析时,将材料参数设置为常数,如铜的电导率、变压器油的比热容、热导率和粘度等,均未考虑材料属性对温度变化的依赖关系,从而温度场的计算精度无法保证。故对变压器本体在短路状况下的温度场分析时,有必要采用有限元方法计算变压器绕组、铁心和油箱等产生的电磁损耗,考虑温度变化对材料参数的影响,并且进一步采用磁-热-流耦合场的方法分别计算变压器本体的稳态温度场和暂态温度场分布。
发明内容
本发明的目的在于提供一种基于磁-热-流耦合的变压器热稳定计算方法,可直接应用于实际系统中,具有较强的实用性。
本发明技术方案如下:
一种基于磁-热-流耦合的变压器热稳定计算方法,包括以下步骤:
步骤一:首先将变压器正常运行情况下的稳态电流值作为磁场的激励,进行稳态磁场计算,得出其各部件的单位体积的电磁损耗(电磁热);
步骤二:将各部件单位体积的电磁热作为温度场分析的热源,温度场分布受变压器油流速的影响,油流速又受温度场的控制,同时计及变压器本体的物理参数,如油的热导率、动力粘度、比热容以及铜导线的电阻率依据温度变化的特性。如此循环迭代多次,直至温度和流速均不随时间变化,达到稳态,停止计算;
步骤三:将上述稳态计算的结果作为暂态初值,暂态磁场计算的瞬态激励取为流过变压器绕组的短路电流,磁场计算得到故障发生后2s内变压器本体产生的焦耳热;
步骤四:将单位体积的焦耳热作为温度场的热源,进行瞬态温度场的分析,同时考虑流速和温度的相互作用,计算过程中计及变压器本体的物理参数对温度的依赖关系,根据温度变化不断修正其材料参数;
步骤五:由电力变压器手册可知,计算变压器短路热稳定能力的持续时间是 2s,故瞬态计算结束的判据是时间t>2s,最终得到变压器本体在短路故障发生 2s后的温度场分布作为判别变压器本体热稳定性的依据。
本发明进一步的改进在于,在对变压器本体温度场进行模型仿真分析时,由于三绕组三相变压器绕组在结构上的对称性,且变压器的温度场沿铁心和绕组在圆周方向变化不大,所以取单相建立二维轴对称模型进行变压器本体的磁-热-流耦合场仿真计算。
本发明进一步的改进在于,将变压器本体正常工作电流的作为稳态磁场的激励,通过COMSOL有限元软件计算变压器本体发热和冷却过程,得到其热平衡状态的温度场。
本发明进一步的改进在于,通过采用有限元软件建立场路耦合模型。
与现有技术相比,本发明具有以下有益的技术效果:本发明采用多物理场全耦合的方式对变压器的温度场进行求解。首先将正常情况下的稳态电流值作为磁场的激励,计算得出变压器各部件单位体积的电磁热,再将其作为温度场分析的热源,考虑温度场和油流速的相互影响以及铜导线的电阻率等变压器本体的物理参数随温度变化的特性,计算得出达到稳态时温度和流速的具体数值。再以稳态计算的结果作为暂态计算的初值,暂态磁场计算的瞬态激励取为流过变压器绕组的短路电流,计算得到故障发生后2s内变压器本体产生的焦耳热。以单位体积的焦耳热作为温度场的热源,对瞬态温度场进行分析,并考虑流速和温度的相互作用;最终可得变压器本体在短路故障发生2s后的温度场分布作为判别变压器本体热稳定性的依据。
附图说明
图1为变压器本体对称模型;
图2为变压器本体2维温度场仿真模型;
图3为变压器本体稳态温度场计算流程图;
图4为变压器热交换示意图;
图5为当短路电流达到第1个峰值时的磁通密度分布;
图6为当短路电流达到第1个峰值时的电流密度分布。
具体实施方式
下面结合附图对本发明进行详细说明。
本发明为一种基于磁-热-流耦合的变压器热稳定计算方法,包括下述步骤:
因变压器本体短路温度场的初始状态是正常运行当变压器达到稳定状态的温度场,故首先对变压器正常工作状态下的稳态温度场进行计算,即以热平衡状态的温度场和速度场作为暂态耦合场的初值。再计算短路故障下变压器的暂态温升,最后得到变压器本体在短路故障发生2s后的温度场分布并以此作为判别变压器热稳定性的依据。
下面通过一个实例对本发明的步骤进行详细说明。
S01、由于三绕组三相变压器绕组在结构上的对称性,并且变压器的温度场沿铁心和绕组在圆周方向变化不大,所以取单相建立2维轴对称模型进行变压器本体的磁-热-流耦合场仿真计算,在极大的降低计算量的同时对计算精度亦不会有太大的影响,变压器本体对称模型如图1所示,仿真模型如图2所示。首先计算变压器本体正常工作下的稳态温度场,将正常情况下的稳态电流值作为磁场的激励进行稳态磁场计算,得到各部件的单位体积的电磁损耗。
S02、将各部件单位体积的电磁损耗作为温度场分析的热源,温度场分布受到变压器油流速的影响,油流速又受温度场的控制。与此同时,变压器本体的物理参数如油的热导率、动力粘度、比热容等也会随温度产生变化。经过不断循环迭代,温度和流速均不再变化,达到稳态,其过程如图3所示。
变压器油的主要物理参数如表1:
表1变压器油的主要物理参数
S03、将稳态计算的结果作为暂态初值,以流过变压器绕组的短路电流作为暂态磁场计算的瞬态激励,当短路电流达到第1个峰值t=0.02s时的磁通密度和电流密度分布分别如图5和图6所示,磁通密度主要分布在高压绕组和中压绕组之间,和三维仿真结果一致,电流密度的分布由短路电流和每匝线圈的截面积共同决定。计算得到故障发生后2s内变压器本体产生的焦耳热。
S04、以单位体积的焦耳热作为温度场的热源,进行瞬态温度场的分析,同时考虑流速和温度的相互作用以及变压器本体的物理参数对温度的依赖关系,根据温度变化不断修正材料参数,最终可得变压器本体在短路故障发生2s后的温度场分布作为判别变压器本体热稳定性的依据。
本发明结合有限元软件,采用磁—热—流多物理场全耦合的方式对变压器的温度场进行求解,并以此为依据对变压器的热稳定性加以判断。本发明可直接应用于实际系统中,具有较强的实用性。

Claims (3)

1.一种基于磁-热-流耦合的变压器热稳定计算方法,其特征在于包括:
步骤1:将变压器正常运行情况下的稳态电流值作为磁场的激励,进行稳态磁场计算,得出其各部件的单位体积的电磁损耗;
步骤2:将各部件单位体积的电磁损耗作为温度场分析的热源,温度场分布受变压器油流速的影响,油流速又受温度场的控制,同时计及变压器本体的物理参数,如此循环迭代多次,直至温度和流速均不随时间变化,达到稳态,停止计算;其中变压器本体的物理参数包括以下至少之一:油的热导率、动力粘度、比热容以及铜导线的电阻率依据温度变化的特性;
步骤3:将上述稳态计算的结果作为暂态初值,暂态磁场计算的瞬态激励取为流过变压器绕组的短路电流,磁场计算得到故障发生后2s内变压器本体产生的焦耳热;
步骤4:将单位体积的焦耳热作为温度场的热源,进行变压器本体的瞬态温度场的模型仿真分析,同时考虑流速和温度的相互作用,计算过程中计及变压器本体的物理参数对温度的依赖关系,根据温度变化不断修正其材料参数;
步骤5:将变压器本体在短路故障发生2s后的温度场分布作为判别变压器本体热稳定性的依据。
2.根据权利要求1中所述的一种基于磁-热-流耦合的变压器热稳定计算方法,其特征在于,在对变压器本体的瞬态温度场进行模型仿真分析时,取单相建立二维轴对称模型进行仿真计算。
3.根据权利要求1中所述的一种基于磁-热-流耦合的变压器热稳定计算方法,其特征在于,变压器本体的瞬态温度场的模型仿真分析包括:将变压器本体正常工作电流作为稳态磁场的激励,运用COMSOL有限元软件计算变压器本体发热和冷却过程,得到其热平衡状态的温度场分布。
CN201710840949.6A 2017-09-18 2017-09-18 一种基于磁-热-流耦合的变压器热稳定计算方法 Active CN107451381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710840949.6A CN107451381B (zh) 2017-09-18 2017-09-18 一种基于磁-热-流耦合的变压器热稳定计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710840949.6A CN107451381B (zh) 2017-09-18 2017-09-18 一种基于磁-热-流耦合的变压器热稳定计算方法

Publications (2)

Publication Number Publication Date
CN107451381A true CN107451381A (zh) 2017-12-08
CN107451381B CN107451381B (zh) 2020-12-18

Family

ID=60496484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710840949.6A Active CN107451381B (zh) 2017-09-18 2017-09-18 一种基于磁-热-流耦合的变压器热稳定计算方法

Country Status (1)

Country Link
CN (1) CN107451381B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108875218A (zh) * 2018-06-21 2018-11-23 西安交通大学 一种基于sinc函数的变压器涡流场有限元求解方法
CN109101673A (zh) * 2018-06-14 2018-12-28 沈阳工业大学 高频变压器磁芯损耗计算方法
CN109596926A (zh) * 2018-12-30 2019-04-09 国网北京市电力公司 变压器试验温度的修正方法及装置
CN111597748A (zh) * 2020-05-22 2020-08-28 中国矿业大学 一种基于gil热特性实现故障判定的方法
CN112115628A (zh) * 2020-08-18 2020-12-22 河海大学 基于油浸式变压器温度场分布计算的热点温度检测方法
CN112597628A (zh) * 2020-11-30 2021-04-02 广西电网有限责任公司电力科学研究院 一种变压器温升估计的方法及系统
CN112818572A (zh) * 2021-01-19 2021-05-18 三峡大学 一种油浸式变压器绕组区域结构参数的优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217061A (zh) * 2014-07-08 2014-12-17 国家电网公司 低压配电柜的温度场仿真设计方法
CN104834781A (zh) * 2015-05-08 2015-08-12 国网河南省电力公司电力科学研究院 一种基于平波电抗器多次换向失败时的暂态温度场仿真方法
CN106202736A (zh) * 2016-07-14 2016-12-07 华北电力大学(保定) 一种换流变压器电磁场‑流体‑温度场耦合计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104217061A (zh) * 2014-07-08 2014-12-17 国家电网公司 低压配电柜的温度场仿真设计方法
CN104834781A (zh) * 2015-05-08 2015-08-12 国网河南省电力公司电力科学研究院 一种基于平波电抗器多次换向失败时的暂态温度场仿真方法
CN106202736A (zh) * 2016-07-14 2016-12-07 华北电力大学(保定) 一种换流变压器电磁场‑流体‑温度场耦合计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
樊益平,张军,张海龙,贺好艳,马奎,丁培: "变阻抗节能变压器的动热稳定性能研究", 《高压电器》 *
王青于,杨熙,彭宗仁,刘鹏: "应用三维电磁–热–流耦合场分析法计算换流变压器干式套管的温度场分布", 《中国电机工程学报》 *
田颢亮,李建军,付海燕: "GB1094.5《电力变压器第5部分承受短路能力》—变压器突发短路后热稳定平均温度计算公式的推导", 《变压器》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101673A (zh) * 2018-06-14 2018-12-28 沈阳工业大学 高频变压器磁芯损耗计算方法
CN109101673B (zh) * 2018-06-14 2023-06-20 沈阳工业大学 高频变压器磁芯损耗计算方法
CN108875218A (zh) * 2018-06-21 2018-11-23 西安交通大学 一种基于sinc函数的变压器涡流场有限元求解方法
CN108875218B (zh) * 2018-06-21 2020-07-28 西安交通大学 一种基于sinc函数的变压器涡流场有限元求解方法
CN109596926A (zh) * 2018-12-30 2019-04-09 国网北京市电力公司 变压器试验温度的修正方法及装置
CN111597748A (zh) * 2020-05-22 2020-08-28 中国矿业大学 一种基于gil热特性实现故障判定的方法
CN111597748B (zh) * 2020-05-22 2024-05-17 中国矿业大学 一种基于gil热特性实现故障判定的方法
CN112115628A (zh) * 2020-08-18 2020-12-22 河海大学 基于油浸式变压器温度场分布计算的热点温度检测方法
CN112115628B (zh) * 2020-08-18 2022-07-29 河海大学 基于油浸式变压器温度场分布计算的热点温度检测方法
CN112597628A (zh) * 2020-11-30 2021-04-02 广西电网有限责任公司电力科学研究院 一种变压器温升估计的方法及系统
CN112818572A (zh) * 2021-01-19 2021-05-18 三峡大学 一种油浸式变压器绕组区域结构参数的优化方法

Also Published As

Publication number Publication date
CN107451381B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN107451381A (zh) 一种基于磁‑热‑流耦合的变压器热稳定计算方法
CN104834781B (zh) 一种基于平波电抗器多次换向失败时的暂态温度场仿真方法
CN106407608B (zh) 一种考虑热耦合的压接igbt模块稳态结温预测模型
CN109086514B (zh) 一种基于多物理场耦合的电抗器温度场计算方法
CN101587507B (zh) 一种高压大功率晶闸管电热模型的建立方法
CN104036125A (zh) 一种油浸式变压器内部温度场的精确计算方法
Liu et al. Optimal design of liquid cooling structure with bionic leaf vein branch channel for power battery
CN108008308A (zh) 一种锂离子电池发热量的测试系统和方法
CN107871037B (zh) 一种35kV干式电抗器内部温度估算方法
CN109543246A (zh) 一种确定变压器直流偏磁温度场分布的方法和系统
CN105045966A (zh) 一种变压器内部温度场的混合计算方法
Zhang et al. A new stepped-channel liquid cooling plate thermal management system combined with composite phase change materials
CN108956690B (zh) 一种微小通道内高温熔盐换热特性的测量装置及测量方法
CN105004949A (zh) 一种在线运行耐张线夹最大载流量的测试方法和测试装置
Liu et al. Constructal design of a rectangular porous fin considering minimization of maximum temperature difference and pumping power consumption
Miao et al. Improving the ability of thermoelectric generators to absorb industrial waste heat through three-dimensional structure optimization
Sun et al. Research on thermal equilibrium performance of liquid-cooled lithium-ion power battery system at low temperature
CN117272762B (zh) 水冷磁体线圈对流换热系数确定方法及系统
CN115034042B (zh) 一种变物性变压器油对流换热系数的修正方法
Ma et al. Development and Validation of a Battery Thermal Management Model for Electric Vehicles under Cold Driving
Thorat Experimental investigation of change in performance parameters on cooling of lithium‐ion battery pack using nanofluids
Anwar et al. Influence of Heat Transfer under Different Geometrical Design of Inner Pipe of Heat Exchanger
Ding et al. Calculation and analysis of fluid flow and heat transfer for large doubly-fed wind generator
CN101697291A (zh) 利用改进综合法计算opgw光缆短路电流热效应的方法
Liu et al. Transient Heat Transfer From Single Horizontal Heaters in Forced Flow of Helium Gas at Exponentially Increasing Heat Inputs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant