CN110975853A - 一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法 - Google Patents

一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法 Download PDF

Info

Publication number
CN110975853A
CN110975853A CN201911200602.0A CN201911200602A CN110975853A CN 110975853 A CN110975853 A CN 110975853A CN 201911200602 A CN201911200602 A CN 201911200602A CN 110975853 A CN110975853 A CN 110975853A
Authority
CN
China
Prior art keywords
transition metal
sized spherical
micron
metal doped
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911200602.0A
Other languages
English (en)
Inventor
陈丹
沈华瑶
吴双
石静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201911200602.0A priority Critical patent/CN110975853A/zh
Publication of CN110975853A publication Critical patent/CN110975853A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法,该催化剂中过渡金属与微米级球形二氧化硅的摩尔比为1:10~20,制备方法为在表面活性剂中依次加入水、乙醇,搅拌,得到表面活性剂溶液;在所述表面活性剂溶液中加入氨水,搅拌,加入硅源、过渡金属前驱盐溶液、乙醇,搅拌10~24h,制得胶体混合液;将所述胶体混合液在80~100℃温度条件下晶化10~24h;冷却、抽滤、洗涤至中性,在80~100℃下干燥10~24h,500~800℃下焙烧,焙烧时间为4~8h,本发明的催化剂合成方法简单、快速、成本低、污染小、孔道规则有序,具有较好的甲醛催化降解效果。

Description

一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备 方法
技术领域
本发明涉及一种催化剂及其制备方法,尤其涉及一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法,属于材料制备领域。
背景技术
目前制备二氧化硅材料主要有以下几种工艺:溶胶-凝胶法、模板法、沉淀法、微乳液法以及气相方法等。这些方法主要从制备工艺简化,提高产物纯度,降低材料制备成本以及制备二氧化硅粒径尺寸有效控制等方面进行优化改进。其中
Figure BDA0002295785770000011
过程是目前最简单、最高效合成二氧化硅纳米颗粒的经典方法(J.Colloid Interface Sci 1968,62.),其在乙醇-水二元溶剂体系中以氨水为催化剂,以正硅酸四乙酯为硅源合成了分散性良好的二氧化硅。通过改进的
Figure BDA0002295785770000012
方法(J.Phys.Chem.B 2004,108,20122.),以乙醇作为CTAB阳离子表面活性剂的共表面活性剂可以制备高度分散的介孔二氧化硅颗粒。但是这些合成出的二氧化硅纳米颗粒形状不规则,并且尺度分布非常不均一,因此大量研究集中在球形颗粒的制备合成中,例如中国专利CN103601201A用硅源、模板剂、铵类化合物、膨胀剂,表面修饰剂、和水制备出均一孔道的介孔硅球。中国专利CN104307566A中采用采用DPEN、对甲基苯磺酰氯硅源、TEOS和TsDPEN硅源在含有十六烷基三甲基对甲基苯磺酸铵(CTATos)和三乙醇胺的水中,二者在表面活性剂的作用下有规则的水解共聚,生成有序介孔硅球材料。但是这些方法合成的成本相对较高,存在制备工艺复杂,制作周期漫长不易制备等问题,而且表面活性剂昂贵的价格限制了其广泛应用。
发明内容
发明目的:本发明的第一目的旨在提供一种降解效率高、合成方法简单、快速、成本低、污染小的过渡金属掺杂的微米级球形二氧化硅催化剂,本发明的第二目的旨在提供该催化剂的制备方法。
技术方案:本发明的过渡金属掺杂的微米级球形二氧化硅催化剂,催化剂中过渡金属与微米级球形二氧化硅的摩尔比为1:10~20。
进一步地,过渡金属前驱盐可以是Fe(Fe(NO3)3·9H2O)、Cu(Cu(NO3)2·3H2O)、Mn(KMnO4)、Ce(Ce(NO3)3·6H2O)或Al(C9H21·AlO3)中的一种。
进一步地,微米级球形二氧化硅直径为0.2~0.4μm。
本发明的过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,包括如下步骤:
(1)在表面活性剂中依次加入水、乙醇,搅拌,得到表面活性剂溶液;
(2)在表面活性剂溶液中加入氨水,搅拌,加入硅源、过渡金属前驱盐溶液、乙醇,搅拌10~24h,制得胶体混合液;
(3)将胶体混合液在80~100℃温度条件下晶化10~24h;
(4)冷却、抽滤、洗涤至中性,在80~100℃下干燥10~24h,500~800℃下焙烧,焙烧时间为4~8h。
进一步地,过渡金属前驱盐溶液在硅源水解后加入。
进一步地,硅源为正硅酸乙酯(TEOS)。
进一步地,表面活性剂为十六烷基三甲基溴化铵(CTAB)。
进一步地,硅源与表面活性剂的摩尔比1~7:1。
进一步地,硅源与过渡金属的摩尔比为10~30:1。
进一步地,步骤(2)中硅源与乙醇的摩尔比为1:10~30。
优选的,步骤(1)中搅拌为磁力搅拌,磁力搅拌速度为100~2000r/min,搅拌时的温度为10~80℃。
优选的,步骤(2)中氨水、硅源、过渡金属前驱盐溶液和乙醇的加入方式为滴加。
优选的,步骤(3)的晶化过程在反应釜中进行。
优选的,氨水浓度为0.1%~1%moL/L氨水溶液。
有益效果:与现有技术相比,本发明具有如下显著优点:
本发明的催化剂形状规则、颗粒尺寸孔径均一,粒径分布为200~400nm,形状近似球形,孔道为2~3nm,属于介孔材料,孔道规则有序,具有较好的甲醛催化降解效果。
本发明的制备方法简单,易于操作同时可以通过硅源与掺杂金属比例,精准调控其中过渡金属掺杂含量和种类,所用表面活性剂相对价格低廉,使用量较,并且过滤洗涤过程中容易被去除。
附图说明
图1为本发明的制备流程示意图;
图2为实施例1制备的Ce金属掺杂SiO2微球催化剂的甲醛催化反应活性图;
图3为实施例1制备的Ce金属掺杂SiO2微球催化剂的透射电镜TEM图;
图4为实施例2制备的Mn金属掺杂SiO2微球催化剂的透射电镜TEM图。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到十六烷基三甲基溴化铵溶液;
(2)将30mL0.5 moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加TEOS,TEOS与十六烷基三甲基溴化铵的摩尔比1:1,待TEOS水解后加入过渡金属前驱盐Ce(Ce(NO3)3·6H2O),TEOS与Ce的摩尔比为10:1,随后继续滴加15mL乙醇,TEOS与乙醇的摩尔比为1:10,继续磁力搅拌24h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在100℃温度条件下放入反应釜晶化24h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在100℃干燥24h,随后将得到的过渡金属掺杂的球形SiO2催化剂550℃焙烧4h后得到样品,微米级球形二氧化硅直径为0.2~0.4μm。
本实施例的催化剂在200℃下降解甲醛,甲醛转化率为100%。
实施例2
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到十六烷基三甲基溴化铵溶液;
(2)将30mL0.5 moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加TEOS,TEOS与十六烷基三甲基溴化铵的摩尔比7:1,待TEOS水解后加入过渡金属前驱盐Fe(Fe(NO3)3·9H2O),TEOS与Fe的摩尔比为30:1,随后继续滴加15mL乙醇,TEOS与乙醇的摩尔比为1:30,继续磁力搅拌10h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在80℃温度条件下放入反应釜晶化10h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在80℃干燥10h,随后将得到的过渡金属掺杂的球形SiO2催化剂500℃焙烧8h后得到样品,微米级球形二氧化硅直径为0.2~0.4μm。
本实施例的催化剂在150℃下降解甲醛,甲醛转化率为100%。
实施例3
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到十六烷基三甲基溴化铵溶液;
(2)将30mL0.5 moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加TEOS,TEOS与十六烷基三甲基溴化铵的摩尔比4:1,待TEOS水解后加入过渡金属前驱盐Cu(Cu(NO3)·3H2O),TEOS与Cu的摩尔比为20:1,随后继续滴加15mL乙醇,TEOS与乙醇的摩尔比为1:20,继续磁力搅拌15h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在100℃温度条件下放入反应釜晶化15h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在90℃干燥15h,随后将得到的过渡金属掺杂的球形SiO2催化剂800℃焙烧6h后得到样品,微米级球形二氧化硅直径为0.2~0.4μm。
本实施例的催化剂在170℃下降解甲醛,甲醛转化率为100%。
实施例4
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到十六烷基三甲基溴化铵溶液;
(2)将30mL0.5 moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加TEOS,TEOS与十六烷基三甲基溴化铵的摩尔比1:1,待TEOS水解后加入过渡金属前驱盐Al(C9H21·AlO3),TEOS与Al的摩尔比为10:1,随后继续滴加15mL乙醇,TEOS与乙醇的摩尔比为1:10,继续磁力搅拌24h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在90℃温度条件下放入反应釜晶化24h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在100℃干燥24,随后将得到的过渡金属掺杂的球形SiO2催化剂550℃焙烧4h后得到样品,微米级球形二氧化硅直径为0.2~0.4μm。
本实施例的催化剂在130℃下降解甲醛,甲醛转化率为100%。
实施例5
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到十六烷基三甲基溴化铵溶液;
(2)将30mL0.5 moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加TEOS,TEOS与十六烷基三甲基溴化铵的摩尔比1:1,待TEOS水解后加入过渡金属前驱盐Mn(KMnO4),TEOS与Mn的摩尔比为10:1,随后继续滴加15mL乙醇,TEOS与乙醇的摩尔比为1:10,继续磁力搅拌24h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在100℃温度条件下放入反应釜晶化24h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在100℃干燥24h,随后将得到的过渡金属掺杂的球形SiO2催化剂550℃焙烧4h后得到样品,微米级球形二氧化硅直径为0.2~0.4μm。
本实施例的催化剂在200℃下降解甲醛,甲醛转化率为100%。
本发明中,甲醛催化反应性能评价试验在U管式固定床连续流动微分反应器中进行,催化剂装填量为100~400mg,反应气组成为含有200~700ppm甲醛的空气。
本发明以过渡金属掺杂SiO2微球以及其为载体负载贵金属银为催化剂,对甲醛催化氧化有较高的活性,最低能使甲醛在100~160℃完全转化为CO2,微米级球形二氧化硅直径为0.2~0.4μm。
如图1所示,一种过渡金属掺杂的球形SiO2催化剂的制备方法,其包括以下步骤:
(1)首先依次将1.5g十六烷基三甲基溴化铵、30mL水、30mL乙醇加入烧杯中,磁力搅拌直至完全溶解,得到表面活性剂溶液;
(2)将35mL 0.5moL/L氨水缓慢滴加至步骤一所得到的胶体混合液,继续搅拌溶解后滴加6mL TEOS,过渡金属前驱盐Fe(Fe(NO3)3·9H2O)、Cu(Cu(NO3)2·3H2O)、Mn(KMnO4)、Ce(Ce(NO3)3·6H2O)、Al(C9H21·AlO3),随后继续滴加10~30mL乙醇,继续磁力搅拌24h;
(3)将得步骤二所得到的胶体混合液倒入反应釜中,在100℃温度条件下放入反应釜晶化24h;
(4)将得步骤三所得到的产物冷却至室温后,抽滤、洗涤至中性,在100℃干燥24h,随后将得到的过渡金属掺杂的微球SiO2催化剂550℃焙烧后得到样品。
如图2所示,负载Ag后的Ce掺杂微球SiO2和Ce掺杂微球SiO2材料上甲醛催化氧化性能评价图。Ce掺杂球形SiO2材料在225℃能够使甲醛达到80%的转化率。当继续负载活性金属银Ag后,在170℃可以达到90%以上的转化率。
如图3所示,制备的Ce金属掺杂SiO2微球催化剂负载Ag的透射电镜TEM图中可以明显的看出合成的微球载体直径为0.2-0.4μm。负载的金属Ag组分均匀分布在SiO2微球上。
如图4所示,制备的Ce金属掺杂SiO2微球负载Ag催化剂的透射电镜TEM图中可以明显的看出合成的微球载体直径为0.2-0.4μm。负载的金属Ag组分均匀分布在SiO2微球上。

Claims (10)

1.一种过渡金属掺杂的微米级球形二氧化硅催化剂,其特征在于:所述催化剂中过渡金属与微米级球形二氧化硅的摩尔比为1:10~20。
2.根据权利要求1所述的过渡金属掺杂的微米级球形二氧化硅催化剂,其特征在于:所述过渡金属前驱盐可以是Fe(Fe(NO3)3·9H2O)、Cu(Cu(NO3)2·3H2O)、Mn(KMnO4)、Ce(Ce(NO3)3·6H2O)或Al(C9H21·AlO3)中的一种。
3.根据权利要求1所述的过渡金属掺杂的微米级球形二氧化硅催化剂,其特征在于:所述微米级球形二氧化硅直径为0.2~0.4μm。
4.一种权利要求1所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于,包括如下步骤:
(1)在表面活性剂中依次加入水、乙醇,搅拌,得到表面活性剂溶液;
(2)在所述表面活性剂溶液中加入氨水,搅拌,加入硅源、过渡金属前驱盐溶液、乙醇,搅拌10~24h,制得胶体混合液;
(3)将所述胶体混合液在80~100℃温度条件下晶化10~24h;
(4)冷却、抽滤、洗涤至中性,在80~100℃下干燥10~24h,500~800℃下焙烧,焙烧时间为4~8h。
5.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:所述过渡金属前驱盐溶液在硅源水解后加入。
6.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:所述硅源为正硅酸乙酯。
7.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:所述表面活性剂为十六烷基三甲基溴化铵。
8.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:所述硅源与表面活性剂的摩尔比1~7:1。
9.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:所述硅源与过渡金属的摩尔比为10~30:1。
10.根据权利要求5所述过渡金属掺杂的微米级球形二氧化硅催化剂的制备方法,其特征在于:步骤(2)中所述硅源与乙醇的摩尔比为1:10~30。
CN201911200602.0A 2019-11-29 2019-11-29 一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法 Pending CN110975853A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911200602.0A CN110975853A (zh) 2019-11-29 2019-11-29 一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911200602.0A CN110975853A (zh) 2019-11-29 2019-11-29 一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN110975853A true CN110975853A (zh) 2020-04-10

Family

ID=70088251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911200602.0A Pending CN110975853A (zh) 2019-11-29 2019-11-29 一种过渡金属掺杂的微米级球形二氧化硅催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110975853A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412521A (zh) * 2008-10-29 2009-04-22 扬州大学 掺杂mcm-41型介孔分子筛的制备方法
CN104211078A (zh) * 2013-05-30 2014-12-17 中国科学院大连化学物理研究所 一种金属掺杂的介孔硅基分子筛纳米球及其制备方法
CN105107524A (zh) * 2015-09-24 2015-12-02 杭州钛合智造电器有限公司 一种常温催化甲醛分解的纳米复合材料及其制备方法
CN109999890A (zh) * 2019-04-17 2019-07-12 青岛科技大学 一种钴铁双金属原位掺杂mcm-41催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412521A (zh) * 2008-10-29 2009-04-22 扬州大学 掺杂mcm-41型介孔分子筛的制备方法
CN104211078A (zh) * 2013-05-30 2014-12-17 中国科学院大连化学物理研究所 一种金属掺杂的介孔硅基分子筛纳米球及其制备方法
CN105107524A (zh) * 2015-09-24 2015-12-02 杭州钛合智造电器有限公司 一种常温催化甲醛分解的纳米复合材料及其制备方法
CN109999890A (zh) * 2019-04-17 2019-07-12 青岛科技大学 一种钴铁双金属原位掺杂mcm-41催化剂及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LING ZHANG,ET AL: "Mn-promoted Ag supported on pure siliceous Beta zeolite (Ag/Beta-Si) for catalytic combustion of formaldehyde", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 268, 25 November 2019 (2019-11-25), pages 126, XP086075532, DOI: 10.1016/j.apcatb.2019.118461 *
O.A. GONZÁLEZ VARGAS, ET AL: "Cerium incorporating into MCM-41 mesoporous materials for CO oxidation", 《MATERIALS CHEMISTRY AND PHYSICS》 *
O.A. GONZÁLEZ VARGAS, ET AL: "Cerium incorporating into MCM-41 mesoporous materials for CO oxidation", 《MATERIALS CHEMISTRY AND PHYSICS》, vol. 139, 31 December 2013 (2013-12-31), pages 1 - 6 *
刘玉荣: "《介孔碳材料的合成及应用》", 30 June 2012, 国防工业出版社, pages: 26 - 27 *
吴功德,等: "环境催化基础及应用", 中国环境出版集团, pages: 270 - 271 *

Similar Documents

Publication Publication Date Title
CN109433205B (zh) 一种草酸二甲酯加氢的铜基催化剂及其制备方法与应用
CN102836710B (zh) 二氧化硅核/介孔二氧化硅壳支持金纳米粒子微球的制备方法
CN113247941B (zh) 一种低温合成均一球形纳米氧化铈材料的方法
CN108906040B (zh) 一种贵金属掺杂的二氧化钛纳米复合材料及其制备方法
CN108126687B (zh) 钼及钼钒共掺杂纳米氧化硅基催化剂、其制备方法及应用
CN107570155A (zh) 多孔氧化铁/氧化石墨烯纳米复合材料在催化费托合成中的应用
CN104211078A (zh) 一种金属掺杂的介孔硅基分子筛纳米球及其制备方法
CN108479834A (zh) 一种费托合成催化剂及其制备方法
CN109092326B (zh) 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN108889303B (zh) 二氧化碳制甲醇的负载型高分散铜基催化剂及制法和应用
CN113548684B (zh) 一种介孔氧化铝基核壳复合材料及其单胶束导向界面组装方法和应用
CN106475127A (zh) 一种氮掺杂石墨烯量子点/介孔二氧化钛光催化剂及其制备方法
CN102513151A (zh) 一种高性能纳米金催化剂的制备方法
CN109078642B (zh) 一种花型纳米金复合金属氧化物催化剂及其制备方法和应用
CN109621961B (zh) 一种生长二维纳米片原位制备金属高分散催化剂的方法
CN114260027B (zh) 一种制备金属氧化物@金属有机骨架核壳材料的方法
CN102350348A (zh) 用于草酸酯加氢制备乙二醇的铜基催化剂及其制备方法
CN111013603A (zh) 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法
CN111686721A (zh) 钯钌合金催化剂及其制备方法、应用
CN108405879A (zh) 一种纳米零价铁@介孔氧化硅材料的制备方法
CN107185522A (zh) 一种单斜晶型氧化钨复合钒酸铋高性能光催化材料及其制备方法和应用
WO2022142709A1 (zh) 负载型复合氧化物催化剂及其制备和应用
CN108906038A (zh) 一种Au-TiO2蛋黄结构纳米复合材料及其制备方法
CN115254171B (zh) 一种具有空心核壳结构的高分散铜基酯加氢催化剂及其制备方法和应用
CN110064752B (zh) 一种介孔金属铂纳米球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200410