CN110967386B - 基于核酸适配体的镉离子电化学传感方法 - Google Patents
基于核酸适配体的镉离子电化学传感方法 Download PDFInfo
- Publication number
- CN110967386B CN110967386B CN201911314732.7A CN201911314732A CN110967386B CN 110967386 B CN110967386 B CN 110967386B CN 201911314732 A CN201911314732 A CN 201911314732A CN 110967386 B CN110967386 B CN 110967386B
- Authority
- CN
- China
- Prior art keywords
- aptamer
- cadmium
- titanium
- cadmium ion
- cobaltosic oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 18
- 108091008104 nucleic acid aptamers Proteins 0.000 title claims abstract description 6
- 108091023037 Aptamer Proteins 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims abstract description 17
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002086 nanomaterial Substances 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 7
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims abstract description 6
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000002244 precipitate Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910001385 heavy metal Inorganic materials 0.000 claims description 11
- 238000002484 cyclic voltammetry Methods 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 8
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 8
- 239000012498 ultrapure water Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 238000007650 screen-printing Methods 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000012488 sample solution Substances 0.000 claims description 2
- -1 titanium modified cobaltosic oxide Chemical class 0.000 claims description 2
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000000707 layer-by-layer assembly Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1813—Specific cations in water, e.g. heavy metals
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nanotechnology (AREA)
- Food Science & Technology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
一种基于核酸适配体的镉离子电化学传感方法,将六水硝酸钴的水溶液和钛酸四丁基酯的乙醇溶液混合并搅拌,收集滴入氨水后的沉淀并煅烧制备得到钛修饰的四氧化三钴;然后将钛修饰的四氧化三钴纳米材料悬浊液滴加至丝网印刷碳电极上,与涂有镉离子核酸适配体层的工作电极组成电化学传感器;最后通过检测核酸适配体特异性捕捉作为靶标的镉离子并产生的电流信号,实现镉离子的定量检测。本发明检测限为0.027ng/mL,线性范围为0.01‑0.1,0.1‑15ng/mL,同时具有很好的重现性和稳定性。
Description
技术领域
本发明涉及的是一种传感分析领域的技术,具体是一种基于核酸适配体的镉离子电化学传感方法。
背景技术
自通过SELEX首次筛选所得以来,核酸适配体aptamer在近三十年受到了广泛关注。一般而言,核酸适配体是一段核苷酸数量小于100的寡核苷酸序列,具有灵敏识别靶标的功能。因其特异性强,生物兼容性好,无毒,易于合成和修饰而被广泛应用于检测各类靶标。
纳米材料受益于分子尺寸效应,在理化性质上的表现出超出一般材质(如具有更高的比表面积,更强的催化能力,更好的导电性等),其在生物传感器领域的应用,能显著提高检测性能。
发明内容
本发明针对现有技术存在的上述不足,提出一种基于核酸适配体的镉离子电化学传感方法,能精确且灵敏的检测镉离子的含量,并绘制了相应的工作曲线。用该传感器检测水溶液中的镉离子,检测限为0.027ng/mL,线性范围为0.01-0.1,0.1-15ng/mL。该方法还具有很好的重现性和稳定性。通过实际水样加标回收率实验,进一步验证了该方法在检测镉离子的实际应用中具有可行性。
本发明是通过以下技术方案实现的:
本发明将六水硝酸钴的水溶液和钛酸四丁基酯的乙醇溶液混合并搅拌,收集滴入氨水后的沉淀并煅烧制备得到钛修饰的四氧化三钴;然后将钛修饰的四氧化三钴纳米材料悬浊液滴加至丝网印刷碳电极上,与涂有镉离子核酸适配体层的工作电极组成电化学传感器;最后通过检测核酸适配体特异性捕捉作为靶标的镉离子并产生的电流信号,实现镉离子的定量检测。
所述的混合是指:钴:钛质量比为2:1的六水硝酸钴的水溶液与钛酸四丁基酯的乙醇溶液混合,并持续搅拌3h。
所述的煅烧制备,具体包括:将沉淀洗净、抽虑并后以90℃干燥10h,再以500℃煅烧3h,即可得到钛修饰四氧化三钴纳米材料。
所述的悬浊液,通过将钛修饰的四氧化三钴纳米材料加入得到超纯水然后超声处理形成,其浓度为1mg/mL。
所述的工作电极是指:在丝网印刷碳材质的工作电极上均匀地涂覆2.5μL 2.0μmol/L镉离子核酸适配体孵育1.5h后用超纯水冲洗该工作电极,洗去未结合的核酸适配体得到。
所述的检测,通过预制循环伏安法曲线后,再对待测样品溶液进行检测,比照得到的峰值电流的变化程度得到重金属离子浓度,具体为:通过设置扫描电位范围为-0.65~0V,扫描速度为0.1V/S,对已知浓度的重金属离子进行检测,扫描后根据重金属离子添加前后还原峰值电流的变化程度与重金属离子浓度的关系,绘制工作曲线。
技术效果
与现有技术相比,本发明整体所解决的技术问题是:对低浓度(ng/mL)重金属镉离子的高灵敏高特异性的原位快速检测;由此产生的技术效果包括:基于修饰有导电材料的电极所建立的电化学传感器,灵敏度高,检出限低,且操作简单,重现性好,在原位监测环境样品重金属方面具有一定应用价值。
附图说明
图1为本发明中传感器的层层组装及检测Cd2+示意图;
图2A为钛修饰四氧化三钴纳米材料的扫描电镜图
图2B为钛修饰四氧化三钴纳米材料的透射电镜图;
图3为循环伏安法(CV)测定的电极修饰过程示意图;
图中:(a)裸电极,(b)纳米材料修饰电极,(c)纳米材料/核酸适配体修饰电极,(d)纳米材料/核酸适配体/镉离子修饰电极;
图4A为循环伏安法测定不同浓度的镉离子与CV关系示意图;
图4B为循环伏安法测定不同浓度的镉离子与电流差值关系示意图;
图中:(a)0.01,(b)0.02,(c)0.03,(d)0.05,(e)0.1,(f)0.2,(g)0.5,(h)1.0,(i)2.0,(j)3.0,(k)5.0,(l)7.5,(m)10,(n)12.5,(o)15.0ng/mL。
具体实施方式
如图1所示,为本实施例涉及一种基于钛修饰四氧化三钴纳米材料的镉离子检测方法,包括以下步骤:
①将钴:钛质量比为2:1的六水硝酸钴的水溶液与钛酸四丁基酯的乙醇溶液混合,并持续搅拌3h后,逐滴加入10mL氨水并再持续搅拌2h。收集所得沉淀,用超纯水洗净并抽滤分离,再90℃干燥10h,最后500℃煅烧3h,即可得到如图2所示的钛修饰四氧化三钴纳米材料。
②基于核酸适配体的电化学传感:
2.1)称量5mg钛修饰四氧化三钴纳米材料加入到5mL超纯水中,超声10分钟使其形成均匀悬浊液。然后取2.5μL该悬浊液均匀涂到丝网印刷碳电极的工作电极表面,最后在室温下干燥2h;
2.2)在工作电极上均匀的涂覆2.5μL 2.0μmol/L镉离子核酸适配体,其核苷酸序列如Seq ID No.1所示,具体为5’-GGACTGTTGTGGTATTATTTTTGGTTGTGCAGTCC-3’,后静置在室温下孵育1.5h后用超纯水冲洗修饰电极,洗脱未结合的核酸适配体,即制得电化学传感器,最后放置于冰箱中保存。如图3所示,在电极修饰的每一步中,都用电化学循环伏安法(CV)进行了扫描电位范围为-0.65~0V,扫描速度为0.1V/S的信号检测。用钛修饰四氧化三钴纳米材料修饰电极后,其电流信号显著增强,为电化学传感器的高灵敏度奠定了坚实基础。
③镉离子含量的检测:
3.1)用电化学工作站(上海辰华仪器公司,CHI1030A)的循环伏安法(CV)测定电流,扫描电位范围为-0.65~0V,扫描速度为0.1V/S,记录数据I。
3.2)将2.5μL 2.0μmol/L镉离子核酸适配体均匀涂覆到工作电极后孵育30min,再次用循环伏安法(CV)测定电流,扫描电位范围为-0.65~0V,扫描速度为0.1V/S,记录数据I’。
3.3)根据电流的差值ΔI(I与I’的差值)绘制工作曲线。其检测限为0.027ng/mL,线性范围为0.01-0.1,0.1-15ng/mL,表明基于该生物传感器的电化学方法检测性能优良,在检测重金属镉离子方面行之有效。
经过具体实际实验,应用上述电化学传感方法检测实际环境样品(河水/自来水)中外源加标的镉离子(ng/mL),回收率可达94.89%-107.21%,相对误差小于5%。
与现有技术相比,本方法灵敏准确,检出限低,相比于常规大型仪器设备(如ICP,AAS),操作简便灵活,更适用于原位快速检测。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。
序列表
<110> 上海交通大学
<120> 基于核酸适配体的镉离子电化学传感方法
<130> fnb848e
<141> 2019-12-19
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 21
<212> DNA
<213> 人工序列()
<400> 1
ggactgttgt ggtattattt ttggttgtgc agtcc 35
Claims (4)
1.一种基于核酸适配体的镉离子电化学传感方法,其特征在于,将六水硝酸钴的水溶液和钛酸四丁基酯的乙醇溶液混合并搅拌,收集滴入氨水后的沉淀并煅烧制备得到钛修饰的四氧化三钴;然后将钛修饰的四氧化三钴纳米材料悬浊液滴加至丝网印刷碳电极上,与涂有镉离子核酸适配体层的工作电极组成电化学传感器;最后通过检测核酸适配体特异性捕捉作为靶标的镉离子并产生的电流信号,实现镉离子的定量检测;
所述的工作电极是指:在丝网印刷碳材质的工作电极上均匀地涂覆2.5μL2.0μmol/L镉离子核酸适配体孵育1.5h后用超纯水冲洗该工作电极,洗去未结合的核酸适配体得到;
所述的镉离子核酸适配体,其核苷酸序列如Seq ID No.1所示,具体为5’-GGACTGTTGTGGTATTATTTTTGGTTGTGCAGTCC-3’;
所述的检测,通过预制循环伏安法曲线后,再对待测样品溶液进行检测,比照得到的峰值电流的变化程度得到重金属离子浓度,具体为:通过设置扫描电位范围为-0.65~0V,扫描速度为0.1V/S,对已知浓度的重金属离子进行检测,扫描后根据重金属离子添加前后还原峰值电流的变化程度与重金属离子浓度的关系,绘制工作曲线。
2.根据权利要求1所述的基于核酸适配体的镉离子电化学传感方法,其特征是,所述的混合是指:钴:钛质量比为2:1的六水硝酸钴的水溶液与钛酸四丁基酯的乙醇溶液混合,并持续搅拌3h。
3.根据权利要求1所述的基于核酸适配体的镉离子电化学传感方法,其特征是,所述的煅烧制备,具体包括:将沉淀洗净、抽虑并后以90℃干燥10h,再以500℃煅烧3h,即可得到钛修饰四氧化三钴纳米材料。
4.根据权利要求1所述的基于核酸适配体的镉离子电化学传感方法,其特征是,所述的悬浊液,通过将钛修饰的四氧化三钴纳米材料加入到超纯水然后超声处理形成,其浓度为1mg/mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911314732.7A CN110967386B (zh) | 2019-12-19 | 2019-12-19 | 基于核酸适配体的镉离子电化学传感方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911314732.7A CN110967386B (zh) | 2019-12-19 | 2019-12-19 | 基于核酸适配体的镉离子电化学传感方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110967386A CN110967386A (zh) | 2020-04-07 |
CN110967386B true CN110967386B (zh) | 2022-06-10 |
Family
ID=70035030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911314732.7A Active CN110967386B (zh) | 2019-12-19 | 2019-12-19 | 基于核酸适配体的镉离子电化学传感方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110967386B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113355400B (zh) * | 2021-04-06 | 2023-08-22 | 南京师范大学 | 一种基于t3 dna连接酶的镉离子检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387621A (zh) * | 2018-01-10 | 2018-08-10 | 暨南大学 | 镉离子核酸适配体及丝网印刷电极电化学生物传感器 |
CN110133082A (zh) * | 2019-06-05 | 2019-08-16 | 郑州轻工业学院 | 一种适体传感器用电极材料,电化学适体传感器及其制备方法 |
CN110501408A (zh) * | 2019-07-09 | 2019-11-26 | 江苏大学 | 一种基于比率原理的光电致变色可视化生物传感器及其制备方法和应用 |
-
2019
- 2019-12-19 CN CN201911314732.7A patent/CN110967386B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108387621A (zh) * | 2018-01-10 | 2018-08-10 | 暨南大学 | 镉离子核酸适配体及丝网印刷电极电化学生物传感器 |
CN110133082A (zh) * | 2019-06-05 | 2019-08-16 | 郑州轻工业学院 | 一种适体传感器用电极材料,电化学适体传感器及其制备方法 |
CN110501408A (zh) * | 2019-07-09 | 2019-11-26 | 江苏大学 | 一种基于比率原理的光电致变色可视化生物传感器及其制备方法和应用 |
Non-Patent Citations (3)
Title |
---|
Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism;Jian Mei 等;《Journal of Colloid and Interface Science》;20170623;第505卷;第870-882页 * |
Preparation and properties of Co3O4-doped TiO2 nanotube array electrodes;Xiaoliu Wang 等;《Journal of Applied Electrochemistry》;20190103;第49卷;第305-314页 * |
Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles;Yuangen Wu 等;《Analyst》;20131216;第139卷;第1550-1561页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110967386A (zh) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lai et al. | Molecular imprinting polymers electrochemical sensor based on AuNPs/PTh modified GCE for highly sensitive detection of carcinomaembryonic antigen | |
Toghill et al. | The determination of methanol using an electrolytically fabricated nickel microparticle modified boron doped diamond electrode | |
CN104007155B (zh) | 一种用于检测水体中痕量汞的电化学传感器及其制备方法和应用 | |
Lai et al. | A sandwich-type electrochemical immunosensor using polythionine/AuNPs nanocomposites as label for ultrasensitive detection of carcinoembryonic antigen | |
CN104020204A (zh) | 一种用于检测铅的电化学传感器及其制备方法和应用 | |
CN110161100B (zh) | 心肌肌钙蛋白I的免标记电化学传感器制备方法及对cTnI的检测方法 | |
CN110133072B (zh) | 一种痕量磷酸盐与pH联合检测仪及其方法 | |
CN103616418A (zh) | 一种dna电化学生物传感器及其制备方法 | |
CN110006977A (zh) | 一种CuFe2O4纳米微球电化学传感器的制备及对溶菌酶的检测方法 | |
CN110967386B (zh) | 基于核酸适配体的镉离子电化学传感方法 | |
Liu et al. | A label-free electrochemical aptasensor based on leaf-like vanadium disulfide-Au nanoparticles for the sensitive and selective detection of platelet-derived growth factor BB | |
CN104152449A (zh) | miRNA捕获探针及其修饰电极与捕获探针互补链及其修饰碳纳米管-金磁纳米粒复合物 | |
CN109490387B (zh) | 基于核酸适配体的铅离子电化学传感器的制备方法 | |
CN107860805B (zh) | 一种比率电化学多巴胺适体传感器的制备方法 | |
Liu et al. | Experimental and finite element method studies for femtomolar cobalt ion detection using a DHI modified nanochannel | |
CN104483362A (zh) | 捕获探针与信号探针修饰的电极及其制备方法和应用 | |
Hu et al. | Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode | |
Zhou et al. | Electrochemical determination of levofloxacin with a Cu–metal–organic framework derivative electrode | |
CN113484390B (zh) | 一种基于微电极的肿瘤标志物快速高灵敏检测方法 | |
Li et al. | Magnetic bead-based electrochemical aptasensor doped with multi-wall carbon nanotubes for the detection of ampicillin in milk | |
CN112730559B (zh) | 检测pcb72的光电适配体传感器的制备方法及应用 | |
Yin et al. | Ultra-sensitive electrochemical detection of ampicillin with hollow tubular mesoporous In2O3@ Au@ Apta nanofibers as electrode materials | |
CN110988095A (zh) | 一种纳米材料修饰电极的制备方法及检测重金属离子和酚类化合物的方法 | |
CN109828010B (zh) | 检测氯离子的电化学传感器的制备方法及其检测方法 | |
Galandova et al. | Investigation of a DNA‐Based Biosensor with Chitosan‐Carbon Nanotubes Interface by Cyclic and Elimination Voltammetry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |