CN110966142A - 用于风力发电机组的控制方法及装置 - Google Patents

用于风力发电机组的控制方法及装置 Download PDF

Info

Publication number
CN110966142A
CN110966142A CN201811138812.7A CN201811138812A CN110966142A CN 110966142 A CN110966142 A CN 110966142A CN 201811138812 A CN201811138812 A CN 201811138812A CN 110966142 A CN110966142 A CN 110966142A
Authority
CN
China
Prior art keywords
wind
generating set
optimal
torque
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811138812.7A
Other languages
English (en)
Other versions
CN110966142B (zh
Inventor
赵勇
满国佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Original Assignee
Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Goldwind Science and Creation Windpower Equipment Co Ltd filed Critical Beijing Goldwind Science and Creation Windpower Equipment Co Ltd
Priority to CN201811138812.7A priority Critical patent/CN110966142B/zh
Publication of CN110966142A publication Critical patent/CN110966142A/zh
Application granted granted Critical
Publication of CN110966142B publication Critical patent/CN110966142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1032Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明提供了一种用于风力发电机组的控制方法及装置,所述方法包括以下步骤:计算不同风速段下的风力发电机组的最优输出电功率,其中,所述最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,所述输出电功率为风力发电机组的轴功与铜耗之差;根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。本发明以风力发电机组的实际输出功率最大为目标,在各个风速段上进行转矩的线性控制并考虑风力发电机组的铜耗,使得风力发电机组的实际输出功率得到优化,从而提高了发电功率。

Description

用于风力发电机组的控制方法及装置
技术领域
本发明涉及风力发电技术领域,具体地讲,涉及一种用于风力发电机组的控制方法及装置。
背景技术
风力发电机组在发电阶段的控制策略主要分为两方面:一是在风力发电机组额定功率以下部分,在不同风速段通过最优转矩控制来实现尽可能多的捕捉风能以用于发电;二是在风力发电机组额定功率以上部分,通过变桨限制发电功率同时控制整个风力发电机组的载荷。
现有技术中,最优的转矩控制是根据风力发电机组的特性曲线来计算不同风速下的最优叶尖速比,并通过控制风力发电机组的转矩来间接控制风力发电机组的转速,使风力发电机组工作在最优叶尖速比的状态,从而实现风力发电机组的最大轴功输出。可见,目前最优的转矩控制是基于最大风能吸收率进行控制以获得风力发电机组的主轴的最大轴功,由此带来风力发电机组的最大发电量。然而,现有的最优转矩控制由于没有考虑到在控制风力发电机组的转矩的同时也控制了风力发电机组的电流,即忽略了对风力发电机组的铜耗的控制。一般情况下,风力发电机组的发电量不仅取决于风力发电机组的轴功,还取决于风力发电机组本身的损耗,也就是说,实际发电量要比在轴功的基础上减去损耗。因此,理论上风力发电机组捕获的最大轴功并非对应的风力发电机组实际输出的最大发电量。
发明内容
本发明针对现有技术存在的弊端,提出了一种用于风力发电机组的控制方法及装置。
本发明的一方面提供了一种风力发电机组的控制方法,所述方法包括以下步骤:计算不同风速段下的风力发电机组的最优输出电功率,其中,所述最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,所述输出电功率为风力发电机组的轴功与铜耗之差;根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。
优选地,所述计算不同风速段下的风力发电机组的最优输出电功率的步骤包括:针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。
优选地,所述计算每个风速点和对应转速下的输出电功率的步骤包括:计算每个风速点和对应转速下的风能捕获系数,并基于所述风能捕获系数计算每个风速点和对应转速下的轴功:确定与所述轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗;计算所述轴功与铜耗的差值,并将所述计算的差值确定为该风速点和对应转速下的输出电功率。
优选地,所述根据确定的转矩来计算对应转矩下的铜耗的步骤包括:根据确定的转矩计算出对应的风力发电机组的电流,并根据所述风力发电机组的电流求取对应转矩下的铜耗。
优选地,所述风力发电机组的电流基于风力发电机组的转子磁链、极对数以及所述确定的转矩计算得出。
优选地,所述根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制的步骤包括:对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线;求取所述最优转矩控制曲线对应的最优转矩控制曲线公式,并通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩;根据所述与风力发电机组的当前转速对应的最优转矩对风力发电机组进行控制。
优选地,当所述当前转速大于并网转速且小于风力发电机组的最大转速时,通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。
本发明的另一方面提供了一种用于风力发电机组的控制装置,所述装置包括:最优输出电功率模块,被配置为计算不同风速段下的风力发电机组的最优输出电功率,其中,所述最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,所述输出电功率为风力发电机组的轴功与铜耗之差;控制模块,被配置为根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。
优选地,所述最优输出电功率模块被配置为:针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。
优选地,所述最优输出电功率模块被配置为包括:轴功计算单元,计算每个风速点和对应转速下的风能捕获系数,并基于所述风能捕获系数计算得出每个风速点和对应转速下的轴功;铜耗计算单元,确定与所述轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗;输出电功率计算单元,计算所述轴功与铜耗的差值,并将所述计算的差值确定为该风速点和对应转速下的输出电功率。
优选地,所述铜耗计算单元被配置为:根据确定的转矩计算出对应的风力发电机组的电流,并根据所述风力发电机组的电流求取对应转矩下的铜耗。
优选地,所述风力发电机组的电流基于风力发电机组的转子磁链、极对数以及所述确定的转矩计算得出。
优选地,所述控制模块被配置为包括:曲线拟合单元,对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线;最优转矩控制曲线公式单元,求取所述最优转矩控制曲线对应的最优转矩控制曲线公式,并通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩;控制单元,根据所述与风力发电机组的当前转速对应的最优转矩对风力发电机组进行控制。
优选地,所述控制模块被配置为:当所述当前转速大于并网转速且小于风力发电机组的最大转速时,通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。
本发明的另一方面提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器运行时,所述处理器执行如上所述的用于风力发电机组的控制方法。
本发明的另一方面提供了一种计算机设备,包括处理器和存储计算机程序的存储器,所述计算机程序被处理器运行时,所述处理器执行如上所述的用于风力发电机组的控制方法。
在本发明中,以风力发电机组的实际输出功率最大为目标,在各个风速段上进行转矩的线性控制,并考虑了在转矩控制过程中风力发电机组的铜耗,使得风力发电机组的实际输出功率得到优化,从而提高了发电功率。
附图说明
下面将结合附图进行本发明的详细描述,本发明的上述特征和其它目的、特点和优点将会变得更加清楚,其中:
图1是本发明的实施例的用于风力发电机组的控制方法的流程图;
图2是本发明的示例性的实施例的计算每个风速点和对应转速下的输出电功率的流程图;
图3是本发明的示例性的实施例的最优转矩控制曲线图;
图4是本发明的示例性的实施例的用于永磁同步发电机转矩控制的原理图;
图5是本发明的示例性的实施例的用于风力发电机组的控制方法与典型最优转矩控制法的仿真对比图;
图6是本发明的实施例的用于风力发电机组的控制装置的框图;
图7是本发明的实施例的输出电功率计算子模块的框图;
图8是本发明的实施例的控制模块的框图。
在附图中,相同的标号将被理解为表示相同的元件、特征和结构。
具体实施方式
提供以下参照附图的描述以帮助全面理解由权利要求及其等同物限定的本发明的示例性实施例。以下参照附图的描述包括各种特定细节以帮助理解,但是所述特定细节将仅被视为示例性的。因此,本领域普通技术人员将意识到,在不脱离本发明的范围和精神的情况下,可对这里描述的实施例进行各种改变和修改。此外,为了清晰和简要,可省略公知功能和结构的描述。
以下描述和权利要求中使用的术语和词语不限于字面含义,而是仅由发明者使用以使得能够清楚和一致地理解本发明。因此,本领域技术人员应该清楚的是,提供本发明的示例性实施例的以下描述仅是说明的目的,而不是限制由权利要求及其等同物限定的本发明的目的。
图1是示出根据本发明的实施例的用于风力发电机组的控制方法的流程图。
如图1所示,在步骤S100,计算不同风速段下的风力发电机组的最优输出电功率。具体地,针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。其中,计算每个风速点和对应转速下的输出电功率包括先计算每个风速点和对应转速下的风能捕获系数,并基于风能捕获系数计算每个风速点和对应转速下的轴功,再确定与轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗。最后,计算轴功与铜耗的差值得出该风速点和对应转速下的输出电功率。
根据本发明的实施例,假设风力发电机组的并网风速为2m/s,其额定风速为12m/s,则针对2m/s-12m/s风速段,在该风速段内设定特定步长为2,则根据设定的特定步长可将该风速段内的风速数据分为2m/s-4m/s、4m/s-6m/s、6m/s-8m/s、8m/s-10m/s和10m/s-12m/s在内的5个风速段。应理解,上述对于特定步长的举例仅是示例性举例,本发明可采用的特定步长不限于此。然后,再分别计算每个风速段内的每个风速点和对应转速下的输出电功率,并将对应得到的输出电功率中的最大值作为该风速段内的最优输出电功率。根据上述举例,分别遍历每个风速段(对应2m/s-4m/s风速段、4m/s-6m/s风速段、6m/s-8m/s风速段、8m/s-10m/s风速段和10m/s-12m/s风速段)下的所有风速点,这里,以2m/s-4m/s风速段为例,风速点可以按照每0.1m/s一个点来选取,即2m/s-4m/s风速段包括从2m/s、2.1m/s、2.2m/s、2.3m/s一直到4m/s多个风速点,可以理解的是,选取多少个风速点可以根据实际需求来确定。然后分别计算每个风速点下对应转速的输出电功率,并将计算的最大的输出电功率作为2m/s-4m/s风速段的最优输出电功率。应理解,上述对于风速点选取的举例仅是示例性举例,本发明可采用的风速点选取的方式不限于此。下面将参照图2来详细说明计算每个风速点和对应转速下的输出电功率的过程。
图2是示出根据本发明的实施例的计算每个风速点和对应转速下的输出电功率的流程图。
如图2所示,在步骤S201,计算每个风速点和对应转速下的风能捕获系数,并基于风能捕获系数计算每个风速点和对应转速下的轴功。具体地,先计算每个风速点和对应转速下的风能捕获系数,其中,计算风能捕获系数的方法有多种,在计算风能捕获系数时风力发电机组的桨距角为默认的最小桨距角值0,也可将桨距角取值为1或-1。然后,再基于风能捕获系数计算风力发电机组的轴功,这里,风力发电机组的轴功的计算公式为:
Figure BDA0001815300860000061
其中,ρ为空气密度,R为叶片半径,Cp为风能捕捉系数,λi为叶尖速比,β为桨距角,vi为固定值,i为大于等于1的正整数。这里,叶尖速比λi=ωiR/vi,风能捕捉系数Cp由叶尖速比λi决定。如上述举例,在2m/s-4m/s这个风速段内,按照每0.1m/s一个点来选取风速点可得出包括从2m/s、2.1m/s、2.2m/s、2.3m/s一直到4m/s在内的31个风速点。假设这31个风速点的对应转速分别为ω1、ω2、ω3、...、ω31,则根据公式(1)分别对每个风速点和对应转速下的风力发电机组的轴功进行计算,由此可得出在风速段2m/s-4m/s内的每个风速点和对应转速下的轴功。这里,可将得出的每个风速点和对应转速下的轴功表示为Pm1、Pm2、Pm3、...、Pm31。应理解,上述对于风速点和对应转速的举例仅是示例性举例,本发明可采用的风速点和对应转速不限于此。
在步骤S202,确定与轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗。具体地,根据计算的轴功求取对应的转矩,并根据求取的转矩计算出对应的风力发电机组的电流,再根据计算的风力发电机组的电流来求取对应转矩下的铜耗。其中,风力发电机组的转矩Tmi、电流Ii和铜耗Pcui的计算公式分别为:
Tmi=Pmii (2)
Figure BDA0001815300860000062
Figure BDA0001815300860000063
在公式(2)中,Pmi为不同风速点和对应转速下的风力发电机组的轴功,ωi为不同风速点的对应转速。在公式(3)中,P为电机极对数,λr为永磁同步电机转子磁链,Tmi为风力发电机组的转矩。这里,电流Ii的求取公式是根据在永磁同步发电机转矩控制中,稳态时发电机的主轴转矩幅值等于电磁转矩幅值,即|Tmi|=|Te|,且电流的控制采用零d轴电流控制而得出的。在公式(4)中,RS为风力发电机组的电阻,Ii为对应转矩下的风力发电机组的电流。这里,公式(4)是在忽略温度对阻值的影响下计算风力发电机组的铜耗。由于在计算铜耗Pcui时忽略了风力发电机组在温度升高时导致的直流阻值的变化情况,因此,一般选择风力发电机组的20℃理论直流电阻作为RS来进行计算。根据上述举例,由步骤S201中得出的每个风速点和对应转速下的轴功Pm1、Pm2、Pm3、...、Pm31以及通过公式(2)可计算得出相应的风力发电机组的转矩Tm1、Tm2、Tm3、...、Tm31。然后,根据公式(2)的计算结果,再通过公式(3)计算得出对应转矩下的风力发电机组的电流I1、I2、I3、...、I31。最后,通过公式(4)来求取出对应转矩下的风力发电机组的铜耗Pcu1、Pcu2、Pcu3、...、Pcu31
在步骤S203,计算轴功与铜耗的差值,并将计算的差值确定为该风速点和对应转速下的输出电功率。具体地,在不考虑风力发电机组的其他损耗的前提下,风力发电机组的输出电功为风力发电机组的轴功与铜耗之差,即风力发电机组的输出电功率Pi=Pmi-Pcui。如上述举例,根据步骤S201和步骤S203中求取的风力发电机组的轴功Pm1、Pm2、Pm3、...、Pm31和风力发电机组的铜耗Pcu1、Pcu2、Pcu3、...、Pcu31,通过公式Pi=Pmi-Pcui来分别求取风力发电机组的输出电功率,即求取在风速段2m/s-4m/s内的31个不同风速点和对应转速下的输出电功率分别为P1、P2、P3、...、P31
返回图1,根据本发明的实施例,最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,因此,对每个风速段内的不同风速点和对应转速下的风力发电机组的输出电功率进行分别求取,并将每个风速段内求取的风力发电机组的输出电功率Pi中的最大值作为该风速段内的最优输出电功率。如图2中步骤S201至步骤S203中的举例,假设求取的风力发电机组的输出电功率P1、P2、P3、...、P31的值依次为500kw、800kw、600kw、1200kw、…、900kw,其中,最大值为P4=1200kw,则可判断出在风速段2m/s-4m/s内的最优输出电功率P*=P4=1200kw。应理解,上述对于风力发电机组的输出电功率取值的举例仅是示例性举例,本发明可采用的风力发电机组的输出电功率不限于此。
在步骤S200,根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。具体地,计算不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速,对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线,然后,求取最优转矩控制曲线对应的最优转矩控制曲线公式,并通过最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩以对风力发电机组进行控制。如上述举例,分别求取风速段2m/s-4m/s、4m/s-6m/s、6m/s-8m/s、8m/s-10m/s和10m/s-12m/s的最优输出电功率P*可得到对应的5个最优输出电功率P*,根据得到的5个最优输出电功率确定对应的5个最优转矩Tm *和5个转速ω*,即得出5个最优转矩值和5个转速值。然后,根据得出的5个最优转矩值和5个转速值进行曲线拟合,例如,将纵坐标设为最优转矩Tm *,将横坐标设为转速ω*,基于最小二乘法对5个离散点进行曲线拟合以得出最优转矩Tm *和转速ω*的关系图,即得出最优转矩控制曲线,具体如图3中所示。这里,曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两个变量之间的关系。如图3中所示,求取的最优转矩控制曲线近乎直线,即曲线直线化,这里,曲线直线化是曲线拟合的重要手段之一,对于非线性的数据可以通过简单的变量变换使之直线化,并用最小二乘法原理求出变换后变量的直线方程,利用此直线方程可绘制数据的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程以实现对数据的曲线拟合。应理解,上述对于曲线拟合的方法的举例仅是示例性举例,本发明可采用的曲线拟合的方法不限于此。
根据本发明的实施例,根据求取的最优转矩控制曲线得出最优转矩控制曲线公式为Tm *=d1ω*-d2,其中,d1和d2为拟合曲线的计算常量,这里,可通过Origin软件对得到的5个离散点进行曲线拟合,根据离散点的分布情况,选择一阶线性拟合的方式,拟合得出最优转矩Tm *和转速ω*的关系图并计算出最优转矩控制曲线公式。例如,曲线拟合得出的计算常量d1=0.08199,d2=1.5791,则最优转矩控制曲线公式为Tm *=0.08199ω*-1.5791。应理解,上述对于进行曲线拟合的软件和计算常量的举例仅是示例性举例,本发明可采用的进行曲线拟合的软件和计算常量不限于此。最后,根据计算得出的最优转矩控制曲线公式来求取当前风速下的风力发电机组的最优转矩,并根据求取的最优转矩来对风力发电机组进行控制。
根据本发明的实施例,将该用于风力发电机组的控制方法应用到实际的永磁同步发电机(PMSG)的转矩控制中,其工作原理如图4中所示。在图4中,通过转速传感器(例如,光电编码器等)测量PMSG得到转速ω,根据最优转矩控制曲线公式计算得出风力发电机组需要控制的转矩Tm *,根据零d轴转矩控制策略,计算出需要控制的风力发电机组q轴电流Iqs。再利用双电流闭环控制PI控制器与电流互感器检测的实际三相电流信号转换的电流Ids与Iqs,求出电压控制量Ud *和Uq *。最后,通过转换器将电压控制量Ud *和Uq *转换成SVPWM所需的控制电压Uα *和Uβ *,SVPWM控制器再将电压Uα *和Uβ *转换成变流器IGBT管(又叫绝缘栅双极型晶体管)所需的控制信号,由此来实现永磁同步发电机PMSG的转矩控制。这里,SVPWM转换器(Space Vector Pulse Width Modulation)是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。IGBT管是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点,驱动功率小而饱和压降低,适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
根据本发明的实施例,将该方法与典型最优转矩控制法进行仿真对比,具体如图5中所示。在图5中,分别示出了风速曲线图、转速曲线图、风力发电机组的输出功率图和转矩控制系统输出功率图,其中,图5(a)为6m/s~12m/s风速区间的风速曲线图,图5(b)、图5(c)、图5(d)为两种转矩控制方法的对比图。在图5(b)中,典型最优转矩控制法把转速控制在风力发电机组的最优叶尖速比附近,而改善后最优功率控制的转速明显比最优叶尖速比情况的转速高,在同样风速的情况下,高转速能够减小风力发电机组的转矩以降低风力发电机组的三相电流,从而降低风力发电机组的铜耗,以达到优化风力发电机组输出电功率的目的。在图5(c)中,典型最优转矩控制下的风力发电机组的输出机械功率比改善后最优功率控制下的输出机械功率多,但在图5(d)中,在最大功率点跟踪控制区间内,由于捕捉到的风能浪费到了发电机的铜耗上,典型最优转矩控制的输出发电功率明显比改善后最优功率控制的输出发电功率低。由此可见,用于风力发电机组的控制方法能紧跟风速变化调节风力发电机组的转速,从而调节转矩控制系统的输出电功率,具有跟踪速率快、鲁棒性强等优点,能够优化风电系统的电功率输出。
图6是示出根据本发明的实施例的用于风力发电机组的控制装置的框图。
如图6所示,用于风力发电机组的控制装置600可包括最优输出电功率计算模块601和控制模块602。根据本发明的实施例,用于风力发电机组的控制装置600可通过各种计算装置(例如,计算机、服务器、工作站等)来实现。具体地,最优输出电功率计算模块601被配置为计算不同风速段下的风力发电机组的最优输出电功率,其中,最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,输出电功率为风力发电机组的轴功与铜耗之差。控制模块602被配置为根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。
根据本发明的实施例,最优输出电功率计算模块601针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。最优输出电功率计算模块601中包括多个针对不同风速点和对应转速下的输出电功率计算子模块700,其中,输出电功率计算子模块700包括轴功计算单元701、铜耗计算单元702和输出电功率计算单元703,具体如图7所所示。在图7中,轴功计算单元701计算每个风速点和对应转速下的风能捕获系数,并基于风能捕获系数计算得出每个风速点和对应转速下的轴功。铜耗计算单元702确定与轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗。输出电功率计算单元703计算轴功与铜耗的差值,并将计算的差值确定为该风速点和对应转速下的输出电功率。
根据本发明的实施例,轴功计算单元701先计算出每个风速点和对应转速下的风能捕获系数,然后,在基于风能捕获系数计算每个风速点和对应转速下的轴功,其中,轴功的计算公式如上文中公式(1)所示。铜耗计算单元702根据轴功计算单元701中计算的轴功来求取与轴功对应的转矩,并根据求取的转矩计算出对应的风力发电机组的电流,并根据风力发电机组的电流来确定在对应转矩下的铜耗,其中,转矩、电流和铜耗的具体求解可通过上文中公式(2)、公式(3)和公式(4)计算得出。最后,输出电功率计算单元703将计算的轴功与铜耗进行差值计算得出每个风速点和对应转速下的输出电功率。
根据本发明的实施例,控制模块602根据最优输出电功率计算模块601得出的不同风速段下的风力发电机组的最优输出电功率确定出对应的最优转矩和转速,并对最优转矩和转速进行曲线拟合以得出最优转矩控制曲线,根据与最优转矩控制曲线对应的最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩,以实现对风力发电机组的控制。控制模块602仅在当前转速大于并网转速且小于风力发电机组的最大转速时,通过最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。下面将参照图8来详细说明控制模块602。
图8是示出根据本发明的实施例的控制模块602的框图。
如图8所示,控制模块602包括曲线拟合单元801、最优转矩控制曲线公式单元802和控制单元803。其中,曲线拟合单元801对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线。最优转矩控制曲线公式单元802求取最优转矩控制曲线对应的最优转矩控制曲线公式,并通过最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。控制单元803根据与风力发电机组的当前转速对应的最优转矩对风力发电机组进行控制。
根据本发明的实施例的用于风力发电机组的控制方法及装置,该方法以风力发电机组的实际输出功率最大为目标,在各个风速段上进行转矩的线性控制,并考虑了在转矩控制过程中风力发电机组的铜耗,使得风力发电机组的实际输出功率得到优化,从而提高了发电功率。
根据本发明的实施例的用于风力发电机组的控制方法可实现为计算机可读记录介质上的计算机可读代码,或者可通过传输介质被发送。计算机可读记录介质是可存储此后可由计算机系统读取的数据的任意数据存储装置。计算机可读存储介质存储有计算机程序,该计算机程序被处理器运行时,处理器执行图1所示的用于风力发电机组的控制方法。计算机可读记录介质的示例包括只读存储器(ROM)、随机存取存储器(RAM)、光盘(CD)-ROM、数字多功能盘(DVD)、磁带、软盘、光学数据存储装置,但不限于此。传输介质可包括通过网络或各种类型的通信通道发送的载波。计算机可读记录介质也可分布于连接网络的计算机系统,从而计算机可读代码以分布方式被存储和执行。
尽管已经参照本发明的特定示例性实施例显示和描述了本发明,但是本领域技术人员将理解,在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可进行各种形式和细节上的各种改变。

Claims (16)

1.一种风力发电机组的控制方法,其特征在于,所述方法包括以下步骤:
计算不同风速段下的风力发电机组的最优输出电功率,其中,所述最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,所述输出电功率为风力发电机组的轴功与铜耗之差;
根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。
2.如权利要求1所述的方法,其特征在于,所述计算不同风速段下的风力发电机组的最优输出电功率的步骤包括:
针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。
3.如权利要求2所述的方法,其特征在于,所述计算每个风速点和对应转速下的输出电功率的步骤包括:
计算每个风速点和对应转速下的风能捕获系数,并基于所述风能捕获系数计算每个风速点和对应转速下的轴功;
确定与所述轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗;
计算所述轴功与铜耗的差值,并将所述计算的差值确定为该风速点和对应转速下的输出电功率。
4.如权利要求3所述的方法,其特征在于,所述根据确定的转矩来计算对应转矩下的铜耗的步骤包括:
根据确定的转矩计算出对应的风力发电机组的电流,并根据所述风力发电机组的电流求取对应转矩下的铜耗。
5.如权利要求4所述的方法,其特征在于,所述风力发电机组的电流基于风力发电机组的转子磁链、极对数以及所述确定的转矩计算得出。
6.权利要求1所述的方法,其特征在于,所述根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制的步骤包括:
对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线;
求取所述最优转矩控制曲线对应的最优转矩控制曲线公式,并通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩;
根据所述与风力发电机组的当前转速对应的最优转矩对风力发电机组进行控制。
7.如权利要求6所述的方法,其特征在于,当所述当前转速大于并网转速且小于风力发电机组的最大转速时,通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。
8.一种用于风力发电机组的控制装置,其特征在于,所述装置包括:
最优输出电功率模块,被配置为计算不同风速段下的风力发电机组的最优输出电功率,其中,所述最优输出电功率为每个风速段内不同风速点对应的不同转速下的风力发电机组的输出电功率的最大值,所述输出电功率为风力发电机组的轴功与铜耗之差;
控制模块,被配置为根据与计算的不同风速段下的风力发电机组的最优输出电功率对应的最优转矩和转速来求取最优转矩控制曲线以对风力发电机组进行控制。
9.如权利要求8所述的装置,其特征在于,所述最优输出电功率模块被配置为:
针对每个风速段,遍历其中所有风速点,并计算每个风速点和对应转速下的输出电功率,并将计算的输出电功率的最大值作为该风速段的最优输出电功率。
10.如权利要求9所述的装置,其特征在于,所述最优输出电功率模块被配置为包括:
轴功计算单元,计算每个风速点和对应转速下的风能捕获系数,并基于所述风能捕获系数计算得出每个风速点和对应转速下的轴功;
铜耗计算单元,确定与所述轴功对应的转矩,并根据确定的转矩来计算对应转矩下的铜耗;
输出电功率计算单元,计算所述轴功与铜耗的差值,并将所述计算的差值确定为该风速点和对应转速下的输出电功率。
11.如权利要求9所述的装置,其特征在于,所述铜耗计算单元被配置为:根据确定的转矩计算出对应的风力发电机组的电流,并根据所述风力发电机组的电流求取对应转矩下的铜耗。
12.如权利要求11所述的装置,其特征在于,所述风力发电机组的电流基于风力发电机组的转子磁链、极对数以及所述确定的转矩计算得出。
13.如权利要求9所述的装置,其特征在于,所述控制模块被配置为包括:
曲线拟合单元,对最优转矩和转速进行曲线拟合以得出用于对风力发电机组进行转矩控制的最优转矩控制曲线;
最优转矩控制曲线公式单元,求取所述最优转矩控制曲线对应的最优转矩控制曲线公式,并通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩;
控制单元,根据所述与风力发电机组的当前转速对应的最优转矩对风力发电机组进行控制。
14.如权利要求13所述的装置,其特征在于,所述控制模块被配置为:
当所述当前转速大于并网转速且小于风力发电机组的最大转速时,通过所述最优转矩控制曲线公式来计算与风力发电机组的当前转速所对应的最优转矩。
15.一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器运行时,所述处理器执行权利要求1-7中任一项所述的方法。
16.一种计算机设备,包括处理器和存储计算机程序的存储器,其特征在于,所述计算机程序被处理器运行时,所述处理器执行如权利要求1-7中任一项所述的方法。
CN201811138812.7A 2018-09-28 2018-09-28 用于风力发电机组的控制方法及装置 Active CN110966142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811138812.7A CN110966142B (zh) 2018-09-28 2018-09-28 用于风力发电机组的控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811138812.7A CN110966142B (zh) 2018-09-28 2018-09-28 用于风力发电机组的控制方法及装置

Publications (2)

Publication Number Publication Date
CN110966142A true CN110966142A (zh) 2020-04-07
CN110966142B CN110966142B (zh) 2021-06-22

Family

ID=70026790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811138812.7A Active CN110966142B (zh) 2018-09-28 2018-09-28 用于风力发电机组的控制方法及装置

Country Status (1)

Country Link
CN (1) CN110966142B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251235A (zh) * 2020-09-22 2022-03-29 新疆金风科技股份有限公司 确定转速和扭矩的关系、以及风能捕获的方法及装置

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504738B2 (en) * 2005-09-29 2009-03-17 General Electric Company Wind turbine and method for operating same
EP2113659A2 (en) * 2008-04-29 2009-11-04 Gamesa Innovation & Technology, S.L. Method of operation of a wind turbine which minimises the oscillations of the tower
US20090302986A1 (en) * 2008-06-10 2009-12-10 Bedea Tiberiu A Minimal-length windings for reduction of copper power losses in magnetic elements
CN101975140A (zh) * 2010-09-08 2011-02-16 南京航空航天大学 基于功率反馈的风力发电机组全风速范围运行控制策略
WO2011034500A1 (en) * 2009-09-18 2011-03-24 Vestas Wind Systems A/S A method of controlling a wind turbine generator and apparatus for controlling electric power generated by a wind turbine generator
CN103066904A (zh) * 2012-12-13 2013-04-24 东南大学 一种永磁风力发电机最大功率跟踪控制方法
CN103296951A (zh) * 2013-05-29 2013-09-11 哈尔滨工业大学 双转子结构变速恒频风力发电系统的控制方法
CN104467586A (zh) * 2013-09-12 2015-03-25 中国计量学院 一种变速双馈异步风力发电系统最大功率输出跟踪控制方法
CN104481804A (zh) * 2014-12-05 2015-04-01 北京金风科创风电设备有限公司 风力发电机组对风矫正控制方法、装置和系统
CN104481803A (zh) * 2014-11-13 2015-04-01 盐城工学院 一种风力发电系统追踪最大输出功率控制方法
CN104675629A (zh) * 2014-12-03 2015-06-03 浙江大学 一种变速风力发电机组的最大风能捕获方法
CN104819098A (zh) * 2015-04-15 2015-08-05 重庆大学 一种无速度传感器的风力发电最大功率跟踪方法
CN104963810A (zh) * 2015-07-02 2015-10-07 国电联合动力技术有限公司 一种风力发电机组低风速发电优化控制方法及系统
JP2016064735A (ja) * 2014-09-24 2016-04-28 日産自動車株式会社 ハイブリッド車両の制御装置
US20160265509A1 (en) * 2015-03-13 2016-09-15 General Electric Company System and method for variable tip-speed-ratio control of a wind turbine
CN106762403A (zh) * 2016-12-29 2017-05-31 科诺伟业风能设备(北京)有限公司 风电变速恒频机组转速控制自适应优化方法
CN106774276A (zh) * 2017-01-18 2017-05-31 河海大学 风电场自动发电控制系统测试平台
CN107100795A (zh) * 2017-07-05 2017-08-29 四川东方电气自动控制工程有限公司 一种低风速下风力发电机组mppt自适应控制方法
CN107191328A (zh) * 2017-06-27 2017-09-22 上海交通大学 风机多模型预测控制方法、系统、存储器及控制器
CN107255062A (zh) * 2016-12-19 2017-10-17 华电电力科学研究院 一种自适应密度的风电机组转矩‑转速控制方法
US10094360B2 (en) * 2014-09-10 2018-10-09 Acciona Windpower, S.A. Control method for a wind turbine

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504738B2 (en) * 2005-09-29 2009-03-17 General Electric Company Wind turbine and method for operating same
EP2113659A2 (en) * 2008-04-29 2009-11-04 Gamesa Innovation & Technology, S.L. Method of operation of a wind turbine which minimises the oscillations of the tower
US20090302986A1 (en) * 2008-06-10 2009-12-10 Bedea Tiberiu A Minimal-length windings for reduction of copper power losses in magnetic elements
WO2011034500A1 (en) * 2009-09-18 2011-03-24 Vestas Wind Systems A/S A method of controlling a wind turbine generator and apparatus for controlling electric power generated by a wind turbine generator
CN101975140A (zh) * 2010-09-08 2011-02-16 南京航空航天大学 基于功率反馈的风力发电机组全风速范围运行控制策略
CN103066904A (zh) * 2012-12-13 2013-04-24 东南大学 一种永磁风力发电机最大功率跟踪控制方法
CN103296951A (zh) * 2013-05-29 2013-09-11 哈尔滨工业大学 双转子结构变速恒频风力发电系统的控制方法
CN104467586A (zh) * 2013-09-12 2015-03-25 中国计量学院 一种变速双馈异步风力发电系统最大功率输出跟踪控制方法
US10094360B2 (en) * 2014-09-10 2018-10-09 Acciona Windpower, S.A. Control method for a wind turbine
JP2016064735A (ja) * 2014-09-24 2016-04-28 日産自動車株式会社 ハイブリッド車両の制御装置
CN104481803A (zh) * 2014-11-13 2015-04-01 盐城工学院 一种风力发电系统追踪最大输出功率控制方法
CN104675629A (zh) * 2014-12-03 2015-06-03 浙江大学 一种变速风力发电机组的最大风能捕获方法
CN104481804A (zh) * 2014-12-05 2015-04-01 北京金风科创风电设备有限公司 风力发电机组对风矫正控制方法、装置和系统
US20160265509A1 (en) * 2015-03-13 2016-09-15 General Electric Company System and method for variable tip-speed-ratio control of a wind turbine
CN104819098A (zh) * 2015-04-15 2015-08-05 重庆大学 一种无速度传感器的风力发电最大功率跟踪方法
CN104963810A (zh) * 2015-07-02 2015-10-07 国电联合动力技术有限公司 一种风力发电机组低风速发电优化控制方法及系统
CN107255062A (zh) * 2016-12-19 2017-10-17 华电电力科学研究院 一种自适应密度的风电机组转矩‑转速控制方法
CN106762403A (zh) * 2016-12-29 2017-05-31 科诺伟业风能设备(北京)有限公司 风电变速恒频机组转速控制自适应优化方法
CN106774276A (zh) * 2017-01-18 2017-05-31 河海大学 风电场自动发电控制系统测试平台
CN107191328A (zh) * 2017-06-27 2017-09-22 上海交通大学 风机多模型预测控制方法、系统、存储器及控制器
CN107100795A (zh) * 2017-07-05 2017-08-29 四川东方电气自动控制工程有限公司 一种低风速下风力发电机组mppt自适应控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
娄尧林;: "基于转矩随动控制的风电机组最优发电研究", 《电工技术学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114251235A (zh) * 2020-09-22 2022-03-29 新疆金风科技股份有限公司 确定转速和扭矩的关系、以及风能捕获的方法及装置

Also Published As

Publication number Publication date
CN110966142B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Zhao et al. A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems
KR101535036B1 (ko) 구동모터의 전류지령에 대한 토크 보상장치 및 방법
US20120212169A1 (en) Method and system controlling an electrical motor with temperature compensation
CN107317532A (zh) 基于滑模的永磁同步电机预测电流控制方法和系统
JP2014513910A (ja) 可変動作速度において可変スイッチング周波数で電気モータを制御する方法およびシステム
WO2022134772A1 (zh) 一种永磁辅助同步磁阻电机的控制方法
CN109194218B (zh) 直流偏置型混合励磁电机的控制装置、控制方法及系统
CN106357178B (zh) 一种低速直驱风电机组电气传动系统效率最优控制方法
EP2736164B1 (en) Method for efficiency optimization of a wind generator by controlling the electrical generator and system therefor
CN110545057A (zh) 基于前馈电压补偿的永磁同步电机基速以下参数补偿方法
Inoue et al. Control method for direct torque controlled PMSG in wind power generation system
CN103427738A (zh) 一种双馈感应发电机优化预测直接功率控制方法
CN112436769A (zh) 一种永磁同步电机低载波比运行的控制系统及其方法
CN111966080A (zh) 一种基于传递函数的永磁同步电机及其机械负载的模拟系统及控制方法
CN112910359A (zh) 一种改进型永磁同步直线电机模型预测电流控制方法
CN110966142B (zh) 用于风力发电机组的控制方法及装置
Chen et al. Comparative investigation of torque-ripple suppression control strategies based on torque-sharing function for switched reluctance motor
CN111082726A (zh) 一种永磁电机伺服系统的电流控制方法
CN109150043B (zh) 交流伺服系统电流环中的电压前馈补偿方法
CN107395080B (zh) 基于级联非奇异终端滑模观测器的无速度传感器转矩控制系统及方法
CN111682814B (zh) 电机系统的外特性参数确定方法、装置、电子设备及介质
Liu et al. Backstepping control with speed estimation of PMSM based on MRAS
CN108649852B (zh) 一种改进电流环的永磁同步电机控制方法
CN111431450A (zh) 一种磁通切换电机转矩脉动抑制控制系统及控制方法
Bagaber et al. Efficiency and Lifetime Analysis of Several Airborne Wind Energy Electrical Drive Concepts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant