CN106357178B - 一种低速直驱风电机组电气传动系统效率最优控制方法 - Google Patents

一种低速直驱风电机组电气传动系统效率最优控制方法 Download PDF

Info

Publication number
CN106357178B
CN106357178B CN201610871498.8A CN201610871498A CN106357178B CN 106357178 B CN106357178 B CN 106357178B CN 201610871498 A CN201610871498 A CN 201610871498A CN 106357178 B CN106357178 B CN 106357178B
Authority
CN
China
Prior art keywords
generator
loss
total losses
wind turbines
submodel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610871498.8A
Other languages
English (en)
Other versions
CN106357178A (zh
Inventor
唐建平
李音泉
许力伟
阮向艳
王靛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Zhuzhou Institute Co Ltd
Original Assignee
CRRC Zhuzhou Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Zhuzhou Institute Co Ltd filed Critical CRRC Zhuzhou Institute Co Ltd
Priority to CN201610871498.8A priority Critical patent/CN106357178B/zh
Publication of CN106357178A publication Critical patent/CN106357178A/zh
Application granted granted Critical
Publication of CN106357178B publication Critical patent/CN106357178B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种低速直驱风电机组电气传动系统效率控制方法,步骤包括:1)预先建立风电机组电气传动系统的总损耗模型,总损耗模型包括基于发电机定子电压以及发电机运行转速所分别建立的发电机损耗子模型和变流器损耗子模型;2)执行控制时,输入初始功率控制目标风电机组运行;3)调节发电机定子电压、发电机运行转速,使得按照发电机损耗子模型计算得到的发电机损耗最小,且按照总损耗模型计算得到的总损耗最小,以控制目标风电机组按照最小总损耗运行。本发明具有实现方法简单、所需成本低、能够在全功率运行范围内实现高效率发电,且控制效率高的优点。

Description

一种低速直驱风电机组电气传动系统效率最优控制方法
技术领域
本发明涉及低速直驱风电机组控制技术领域,尤其涉及一种低速直驱风电机组电气传动系统效率最优控制方法。
背景技术
目前,风电机组关键技术指标为发电性能和可靠性,而发电性能作为风电机组运营商最为关心的指标,直接影响风电机组的市场前景。低速直驱风电机组(Direct-drivewindturbine,DDWT)是一种由风轮直接驱动发电机运行的风电机组,其发电机通过全功率变流器直接与电网连接。对于低速直驱风电机组而言,因为是由风轮直接驱动发电机,省去了齿轮箱和高速联轴器、其运行时的传动损耗主要为电气传动系统损耗,为此,降低电气传动系统的损耗、提高其运行效率对整个风电机组的发电效率具有积极的作用。
现有技术中,对低速直驱风电机组电气传动系统通常是基于最优转速对发电机效率进行控制,即发电机转速根据风速大小跟踪最优转速点运行,在发电机额定转速以下,采用恒磁通控制方式来实现对发电机电磁转矩的控制,在额定转速以上,采用弱磁控制方式来对发电机电磁转矩进行控制。对于上述现有的控制方式,在风电机组处于小风阶段时,由于风轮输入至发电机的机械功率较小,电气传动系统的损耗占总功率的比例较大,同时,在小风阶段,风电机组实际转速与最优转速的偏差对发电机输入的机械功率影响不大,为此,在现有的控制方式下,只以风电机组最优转速跟踪(发电机输入机械功率最优)为控制目标,而忽略电气传动系统的电气效率最优控制,导致风电机组在小风阶段整体效率并不高。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种实现方法简单、所需成本低、能够在全功率运行范围内实现高效率发电,且控制效率高的低速直驱风电机组电气传动系统效率最优控制方法。
为解决上述技术问题,本发明提出的技术方案为:
一种低速直驱风电机组电气传动系统效率最优控制方法,步骤包括:
1)预先建立风电机组电气传动系统的总损耗模型,所述总损耗模型包括基于发电机定子电压以及发电机运行转速所分别建立的发电机损耗子模型和变流器损耗子模型。
2)执行控制时,输入初始输入功率控制目标风电机组运行;
3)调节所述发电机定子电压、发电机运行转速,使得按照所述发电机损耗子模型计算得到的发电机损耗最小,且按照所述总损耗模型计算得到的总损耗最小,以控制目标风电机组按照最小总损耗运行。
作为本发明的进一步改进,所述步骤1)中总损耗模型建立的具体步骤为:
1.1)基于发电机定子电压、发电机运行转速以及发电机定子电流发电机电压频率,建立发电机损耗子模型,以及根据由所述发电机定子电压、发电机运行转速转换得到的发电机定子电流和变流器载波频率,建立变流器损耗子模型;
1.2)根据发电机损耗子模型、变流器损耗子模型按下式建立得到所述总损耗模型;
PTloss=fg(U,I,f,ω)+fc(I,fc)
其中,PTloss为风电机组电气传动系统的总损耗,fg(U,I,f,ω)为发电机损耗子模型,fc(I,fc)为变流器损耗子模型,U为发电机定子电压,I为发电机定子电流,f为发电机电压频率,ω为发电机运行转速,fc为变流器载波频率。
作为本发明的进一步改进,所述步骤1.1)中发电机损耗子模型具体基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率,由铁耗、铜耗、机械损耗以及杂散损耗共同建立得到。
作为本发明的进一步改进,所述铁耗计算表达式为:
PFeloss=B2·σH·f+B2·σE·d2·f2
其中,PFeloss为铁耗,B为发电机铁芯磁密,σH为发电机铁芯磁滞损耗系数,f为发电机电压频率,σE为发电机铁芯涡流损耗系数,d为冲片厚度。
所述铜耗Pculoss计算表达式为:
Pculoss=I2·Rs
其中,I为发电机定子电流,Rs为发电机定子电阻。
所述机械损耗计算表达式为:
Pmloss=Kb·ωm+Kw·ω2 m
其中,Pmloss为机械损耗,ωm为发电机运行转速,Kb为轴承摩擦损耗系数,Kw为风摩损耗系数。
所述杂散损耗计算表达式为:
其中,p为发电机实际功率,pn为发电机额定功率。
作为本发明的进一步改进,所述变流器损耗子模型具体建立步骤为:基于发电机定子电流和变流器载波频率,由IGBT通态损耗、IGBT开关损耗、反向并联二极管通态损耗以及反向并联二极管反向恢复损耗共同建立得到。
作为本发明的进一步改进,所述IGBT通态损耗计算表达式为:
其中,D·T为IGBT的周期导通时间,a、b为IGBT通态电压系数。
所述IGBT开关损耗计算表达式为:
其中,fc为变流器载波频率,Eon为IGBT开通能量损耗,Eoff为关断能量损耗。
所述反向并联二极管通态损耗计算表达式为:
其中,c、d为反向并联二极管通态电压系数。
所述反向并联二极管反向恢复损耗计算表达式为:
其中,Er为反向并联二极管恢复开关能量损耗。
作为本发明的进一步改进,所述步骤2)中输入的初始输入功率,具体根据风电机组最优风能跟踪控制方式确定得到。
作为本发明的进一步改进,步骤3)的具体步骤为:
3.1)由所述初始输入功率得到所述发电机定子电压、发电机运行转速的初始值,并按照所述发电机损耗子模型计算得到的发电机损耗作为目标发电机损耗,以及按照所述总损耗模型计算得到的总损耗作为目标总损耗,转入执行步骤3.2);
3.2)增加调整所述发电机定子电压的值,并按照所述发电机损耗子模型计算发电机损耗,得到调整后发电机损耗;判断所述调整后发电机损耗是否小于目标发电机损耗,如果是,由调整后发电机损耗作为目标发电机损耗,返回执行步骤3.2);否则转入执行步骤3.3);
3.3)按照所述总损耗模型计算当前总损耗,并判断当前总损耗是否小于目标总损耗,如果是,由当前总损耗作为目标总损耗,转入执行步骤3.4);否则转入执行步骤3.5);
3.4)增加调整所述发电机运行转速的值,并按照所述总损耗模型计算总损耗,得到调整后总损耗;判断调整后总损耗是否小于目标总损耗,如果是,由调整后总损耗作为目标损耗值,返回执行步骤3.4);否则转入执行步骤3.5);
3.5)由当前发电机定子电压、发电机运行转速作为最优控制参数输出,并控制目标风电机组运行。
作为本发明的进一步改进,步骤3.2)中具体按照定步长增加所述发电机定子电压的值,所述步骤3.4)中具体按照定步长增加所述发电机运行转速的值;或所述步骤3.2)中具体由预先设定步长表通过查表增加所述发电机定子电压的值,所述步骤3.4)中具体按照预先设定步长表通过查表增加所述发电机运行转速的值。
作为本发明的进一步改进,步骤3.2)中具体根据相邻两次调整得到的调整后发电机损耗之间的差值确定增加所述发电机定子电压的值,所述步骤3.4)中具体根据相邻两次调整得到的调整后总损耗之间的差值确定增加所述发电机运行转速的值。
与现有技术相比,本发明的优点在于:
1)本发明低速直驱风电机组电气传动系统效率最优控制方法,通过建立包括发电机及变流器损耗的风电机组电气传动系统的总损耗模型,以总损耗最小为控制目标实现风电机组的控制,充分考虑了低速直驱风电发动机组在各个功率阶段电气传动系统的损耗,有效减小了小风阶段电气传动系统损耗对发电效率的影响,能够在全功率运行范围内实现高效率发电,解决了传统控制方式中因不考虑电气传动系统损耗造成风电机组整体效率不高的问题;
2)本发明低速直驱风电机组电气传动系统效率最优控制方法,通过控制电气传动链总损耗最小,可以有效降低风电机组的损耗,从而进一步降低发电机、变流器的冷却系统成本;
3)本发明低速直驱风电机组电气传动系统效率最优控制方法,进一步基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率作为关联变量建立风电机组发电机损耗子模型,以及基于发电机定子电流、变流器载波频率作为关联变量建立变流器损耗子模型,能够准确表征发电机损耗、变流器损耗,从而依据发电机损耗、变流器损耗实现风电机组效率的精确控制;
4)本发明低速直驱风电机组电气传动系统效率最优控制方法,进一步通过在风电机组最优转速跟踪控制基础上以总损耗最小实现最优控制,满足最优转速,同时考虑电气传动系统损耗,因而能够既兼顾最优转速跟踪控制方式,又能在全功率运行范围内实现电气传动系统总损耗值最小。
附图说明
图1是本实施例低速直驱风电机组电气传动系统效率最优控制方法的实现流程示意图。
图2是本实施例所建立的铁耗模型与关联变量的关系示意图。
图3是本实施例所建立的铜耗模型与关联变量的关系示意图。
图4是本实施例所建立的机械损耗模型与关联变量的关系示意图。
图5是本实施例所建立的杂散模型与关联变量的关系示意图。
图6是本实施例所建立的IGBT通态损耗与关联变量的关系示意图。
图7是本实施例所建立的IGBT开关损耗与关联变量的关系示意图。
图8是本实施例所建立的反向并联二极管通态损耗与关联变量的关系示意图。
图9是本实施例所建立的反向并联二极管反向恢复损耗与关联变量的示意图。
图10是本发明具体实施例中实现电气传动系统效率最优控制的实现流程示意图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
如图1所示,本实施例低速直驱风电机组电气传动系统效率最优控制方法,步骤包括:
1)预先建立风电机组电气传动系统的总损耗模型,总损耗模型包括基于发电机定子电压以及发电机运行转速所分别建立的发电机损耗子模型和变流器损耗子模型;
2)执行控制时,输入初始功率控制目标风电机组运行;
3)调节发电机定子电压、发电机运行转速,使得按照发电机损耗子模型计算得到的发电机损耗最小,且按照总损耗模型计算得到的总损耗最小,以控制目标风电机组按照最小总损耗运行。
由于风电机组在小功率阶段,发电机的损耗主要以铁耗为主,而在大功率阶段,发电机的损耗主要以铜耗为主,而变流器的损耗主要以开关损耗为主,即风电机组在小功率、大功率阶段,发电机的损耗、变流器的损耗程度不同,因而对于发电效率的影响不同。本实施例通过建立包括发电机及变流器损耗的风电机组电气传动系统的总损耗模型,以总损耗最小为控制目标实现风电机组的控制,充分考虑了低速直驱风电发动机组在各个功率阶段电气传动系统的损耗,有效减小了小风阶段电气传动系统损耗对发电效率的影响,能够在全功率运行范围内实现高效率发电,解决了传统控制方式中因不考虑电气传动系统损耗造成风电机组整体效率不高的问题。
本实施例中,步骤1)中电气传动系统总损耗模型具体为:
1.1)基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率,建立发电机损耗子模型,以及根据由所述发电机定子电压、发电机运行转速转换得到的发电机定子电流和变流器载波频率,建立变流器损耗子模型;
1.2)根据发电机损耗子模型、变流器损耗子模型按下式建立得到总损耗模型;
PTloss=fg(U,I,f,ω)+fc(I,fc) (1)
其中,PTloss为风电机组电气传动系统的总损耗,fg(U,I,f,ω)为发电机损耗子模型,fc(I,fc)为变流器损耗子模型,U为发电机定子电压,I为发电机定子电流,f为发电机电压频率,ω为发电机运行转速,fc为变流器载波频率。
本实施例基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率作为关联变量建立上述风电机组发电机损耗子模型,以及基于发电机定子电流、变流器载波频率作为关联变量建立上述变流器损耗子模型,能够准确表征发电机损耗、变流器损耗,从而依据发电机损耗、变流器损耗实现风电机组效率的精确控制。
本实施例中,风电机组发电机损耗子模型具体基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率,由铁耗、铜耗、机械损耗以及杂散损耗共同建立得到。
本实施例中,铁耗PFeloss近似为:
PFeloss=B2·σH·f+B2·σE·d2·f2 (2)
其中,B为发电机铁芯磁密,σH为发电机铁芯磁滞损耗系数,f为发电机电压频率,σE为发电机铁芯涡流损耗系数,d为冲片厚度。
如图2所示,本实施例中按式(2)建立的铁耗模型与发电机电压频率有关,即以发电机电压频率f作为关联变量,由发电机电压U以及发电机电压频率f确定得到发电机损耗中的铁耗。
本实施例中,铜耗Pculoss近似为:
Pculoss=I2·Rs (3)
其中,I为发电机定子电流,Rs为发电机定子电阻。
如图3所示,本实施例中按式(3)建立的铜耗模型与发电机定子电流有关,即以发电机定子电流I作为关联变量,通过输入功率P、发电机电压U即可确定发电机损耗中的铜耗。
本实施例中,机械损耗Pmloss近似为:
Pmloss=Kb·ω+Kw·ω2 (4)
其中,ω为发电机运行转速,Kb为轴承摩擦损耗系数,Kw为风摩损耗系数。
如图4所示,本实施例中按式(4)建立的机械损耗模型与发电机运行转速有关,即以发电机运行转速ω作为关联变量确定发电机损耗中的机械损耗。
本实施例中,杂散损耗Psloss近似为:
其中,p为发电机实际功率,pn为发电机额定功率。
如图5所示,本实施例中按式(5)建立的杂散损耗模型与发电机实际功率有关,即由发电机实际功率p确定得到发电机损耗中的杂散损耗。
本实施例由损耗的主要部分,即机械损耗、铜耗、铁耗及杂散损耗共同建立发电机损耗子模型,同时由发电机运行功率、发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率作为关联变量,能够准确表征风电机组中发电机的损耗。
本实施例中,风电机组变流器损耗基于发电机定子电流和变流器载波频率,由IGBT通态损耗、IGBT开关损耗、反向并联二极管通态损耗以及反向并联二极管反向恢复损耗共同建立得到。
本实施例中,IGBT通态损耗近似为:
其中,D·T为IGBT的周期导通时间,a、b为IGBT通态电压系数。
如图6所示,本实施例中按式(6)建立的IGBT通态损耗模型与发电机定子电流有关,即由发电机定子电流作为关联变量,通过输入功率P、发电机电压U即可确定得到变流器损耗中IGBT通态损耗。
本实施例中,IGBT开关损耗近似为:
其中,fc为变流器载波频率,Eon为IGBT开通能量损耗,Eoff为关断能量损耗。
如图7所示,本实施例中按式(7)建立的IGBT开关损耗模型与变流器载波频率有关,即由变流器载波频率作为关联变量,通过发电机运行转速转换得到变流器载波频率,确定得到变流器损耗中IGBT开关损耗。
本实施例中,反向并联二极管通态损耗近似为:
其中,c、d为反向并联二极管通态电压系数。
本实施例中风电机组的变流器采用IGBT器件,当然也可以为IGCT、IEGT等半导体器件。
如图8所示,本实施例中按式(8)建立的反向并联二极管通态损耗模型与发电机定子电流有关,即以发电机定子电流作为关联变量,通过输入功率P、发电机电压即可确定变流器损耗中反向并联二极管通态损耗。
本实施例中,反向并联二极管反向恢复损耗近似为:
其中,Er为反向并联二极管恢复开关能量损耗。
如图9所示,本实施例中按式(9)建立的反向并联二极管反向恢复损耗模型与变流器载波频率有关,即由变流器载波频率作为关联变量,确定得到变流器模型中反向并联二极管反向恢复损耗。
本实施例由变流器损耗的主要部分,即开关损耗和通态损耗,共同建立变流器损耗的子模型,同时由发电机定子电流、变流器载波频率作为关联变量,能够准确表征风电机组中变流器损耗。
本实施例中,步骤2)中输入的初始输入功率,具体根据风电机组最优风能跟踪控制方式确定得到。通过在风电机组最优转速跟踪控制基础上以总损耗最小实现最优控制,满足最优转速,同时考虑电气传动系统损耗,因而能够既兼顾最优转速跟踪控制方式,又能在全功率运行范围内实现电气传动系统总损耗值最小。
本实施例中,步骤3)的具体步骤为:
3.1)由初始输入功率得到发电机定子电压、发电机运行转速的初始值,并按照发电机损耗子模型计算得到的发电机损耗作为目标发电机损耗,以及按照所述总损耗模型计算得到的总损耗作为目标总损耗,转入执行步骤3.2);
3.2)增加调整发电机定子电压的值,并按照发电机损耗子模型计算发电机损耗,得到调整后发电机损耗;判断调整后发电机损耗是否小于目标发电机损耗,如果是,由调整后发电机损耗作为目标发电机损耗,返回执行步骤3.2);否则转入执行步骤3.3);
3.3)按照总损耗模型计算当前总损耗,并判断当前总损耗是否小于目标总损耗,如果是,由当前总损耗作为目标总损耗,转入执行步骤3.4);否则转入执行步骤3.5);
3.4)增加调整发电机运行转速的值,并按照总损耗模型计算总损耗,得到调整后总损耗;判断调整后总损耗是否小于目标总损耗,如果是,由调整后总损耗作为目标损耗值,返回执行步骤3.4);否则转入执行步骤3.5);
3.5)由当前发电机定子电压、发电机运行转速作为最优控制参数输出,并控制目标风电机组运行。
如图10所示,本实施例具体首先通过根据风电机组最优风能跟踪控制方式,确定相应风速下的风电机组稳态运行的初始参数,包括功率初始值P0、发电机运行转速初始值ω0、发电机运行频率初始值f0、发电机定子电压初始值U0、发电机定子电流初始值I0,由初始参数按照式(2)~(5)计算得到发电机损耗初始值Pgloss0,通过迭代的方式不断修正发电机定子电压值,即Um(k+1)=Umk+△Umk(m=0,1,2….i,k=0,1,2….j),按式(2)~(5)计算当前迭代的发电机损耗值pglossmk,若当前迭代的发电机损耗值pglossmk小于上一次迭代所得到的发电机损耗值pgloss(m-1)k时,即pglossmk<pgloss(m-1)k,则查找得到功率初始值P0以及不同定子电压下的发电机损耗最小值;然后修正迭代发电机运行转速,即ω(m+1)=ωm+△ωm,则对应的修正包括发电机定子电压频率fm、变流器的载波频率fcm,按式(5)~(9)计算当前迭代的变流器损耗pclossmk、以及按式(2)~(5)计算发电机运行转速ω调整后的发电机电机损耗值pglossmk,得到电气传动链的总损耗pTlossmk,若当前迭代的总损耗pTlossmk小于上一次迭代所得到的总损耗pTloss(m-1)k,即pTlossmk<pTloss(m-1)k,则查找到得到功率初始值P0所对应的总损耗最小的最优控制参数ω(m,k)、U(m,k)、以及f(m,k)输出,通过迭代调节关联变量的值,以控制按照总损耗最小实现风电机组最优效率控制。
本实施例中,步骤3)迭代过程中增加迭代量具体可采用以下几种方式:
①定步长方式
该类方式中,步骤3.2)中按照定步长增加发电机定子电压的值,步骤3.4)中具体可按照定步长增加发电机运行转速的值,即迭代过程中按定步长增加迭代量△Umk、△ωm
②变步长方式
该类方式中,步骤3.2)中根据相邻两次调整得到的调整后发电机损耗之间的差值确定增加发电机定子电压的值,步骤3.4)中也可以根据相邻两次调整得到的调整后总损耗之间的差值确定增加发电机运行转速的值,即迭代过程中按变步长自动寻优增加迭代量△Umk、△ωm,以由相邻两次迭代得到的差值自动调整迭代步长,提高迭代效率。
③查表方式
该类方式中,步骤3.2)中由预先设定步长表通过查表增加发电机定子电压的值,步骤3.4)中具体按照预先设定步长表通过查表增加发电机运行转速的值,即迭代过程中按查找方式增加迭代量△Umk、△ωm
本发明风电机组电气传动系统效率最优控制方法,可以适用于永磁同步发电机的风电机组中用于效率控制,当然也可以适用于电励磁同步发电机的风电机组中。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

1.一种低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,步骤包括:
1)预先建立风电机组电气传动系统的总损耗模型,所述总损耗模型包括基于发电机定子电压以及发电机运行转速所分别建立的发电机损耗子模型和变流器损耗子模型;
2)执行控制时,输入初始输入功率控制目标风电机组运行;
3)调节所述发电机定子电压、所述发电机运行转速,使得按照所述发电机损耗子模型计算得到的发电机损耗最小,且按照所述总损耗模型计算得到的总损耗最小,以控制目标风电机组按照最小总损耗运行。
2.根据权利要求1所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述步骤1)中总损耗模型建立的具体步骤为:
1.1)基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率,建立发电机损耗子模型,以及根据由所述发电机定子电压、发电机运行转速转换得到的发电机定子电流和变流器载波频率,建立变流器损耗子模型;
1.2)根据所述发电机损耗子模型、变流器损耗子模型按下式建立得到所述总损耗模型;
PTloss=fg(U,I,f,ω)+fC(I,fc)
其中,PTloss为风电机组电气传动系统的总损耗,fg(U,I,f,ω)为发电机损耗子模型,fC(I,fc)为变流器损耗子模型,U为发电机定子电压,I为发电机定子电流,f为发电机电压频率,ω为发电机运行转速,fc为变流器载波频率。
3.根据权利要求2所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,步骤1.1)中所述发电机损耗子模型具体基于发电机定子电压、发电机运行转速以及发电机定子电流、发电机电压频率,由铁耗、铜耗、机械损耗以及杂散损耗共同建立得到。
4.根据权利要求3所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述铁耗计算表达式为:
PFeloss=B2·σH·f+B2·σE·d2·f2
其中,PFeloss为铁耗,B为发电机铁芯磁密,σH为发电机铁芯磁滞损耗系数,f为发电机电压频率,σE为发电机铁芯涡流损耗系数,d为冲片厚度;
所述铜耗Pculoss计算表达式为:
Pculoss=I2·Rs
其中,I为发电机定子电流,Rs为发电机定子电阻;
所述机械损耗计算表达式为:
Pmloss=Kb·ωm+Kw·ω2 m
其中,Pmloss为机械损耗,ωm为发电机运行转速,Kb为轴承摩擦损耗系数,Kw为风摩损耗系数;
所述杂散损耗计算表达式为:
其中,p为发电机实际功率,pn为发电机额定功率。
5.根据权利要求4所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述变流器损耗子模型具体建立步骤为:基于发电机定子电流和变流器载波频率,由IGBT通态损耗、IGBT开关损耗、反向并联二极管通态损耗以及反向并联二极管反向恢复损耗共同建立得到。
6.根据权利要求5所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述IGBT通态损耗计算表达式为:
其中,D·T为IGBT的周期导通时间,a、b分别为IGBT通态电压系数;
所述IGBT开关损耗计算表达式为:
其中,fc为变流器载波频率,Eon为IGBT开通能量损耗,Eoff为关断能量损耗;
所述反向并联二极管通态损耗计算表达式为:
其中,c、d分别为反向并联二极管通态电压系数;
所述反向并联二极管反向恢复损耗计算表达式为:
其中,Er为反向并联二极管恢复开关能量损耗。
7.根据权利要求1~6任意一项所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述步骤2)中输入的初始输入功率,具体根据风电机组最优风能跟踪控制方式确定得到。
8.根据权利要求1~6任意一项所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于,所述步骤3)的具体步骤为:
3.1)由所述初始输入功率得到所述发电机定子电压、发电机运行转速的初始值,并按照所述发电机损耗子模型计算得到的发电机损耗作为目标发电机损耗,以及按照所述总损耗模型计算得到的总损耗作为目标总损耗,转入执行步骤3.2);
3.2)增加调整所述发电机定子电压的值,并按照所述发电机损耗子模型计算发电机损耗,得到调整后发电机损耗;判断所述调整后发电机损耗是否小于目标发电机损耗,如果是,由调整后发电机损耗作为目标发电机损耗,返回执行步骤3.2);否则转入执行步骤3.3);
3.3)按照所述总损耗模型计算当前总损耗,并判断当前总损耗是否小于目标总损耗,如果是,由当前总损耗作为目标总损耗,转入执行步骤3.4);否则转入执行步骤3.5);
3.4)增加调整所述发电机运行转速的值,并按照所述总损耗模型计算总损耗,得到调整后总损耗;判断调整后总损耗是否小于目标总损耗,如果是,由调整后总损耗作为目标总损耗,返回执行步骤3.4);否则转入执行步骤3.5);
3.5)由当前发电机定子电压、发电机运行转速作为最优控制参数输出,并控制目标风电机组运行。
9.根据权利要求8所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于:所述步骤3.2)中具体按照定步长增加所述发电机定子电压的值,所述步骤3.4)中具体按照定步长增加所述发电机运行转速的值;或所述步骤3.2)中具体由预先设定步长表通过查表增加所述发电机定子电压的值,所述步骤3.4)中具体按照预先设定步长表通过查表增加所述发电机运行转速的值。
10.根据权利要求8所述的低速直驱风电机组电气传动系统效率最优控制方法,其特征在于:所述步骤3.2)中,具体根据相邻两次调整得到的调整后发电机损耗之间的差值确定增加所述发电机定子电压的值,所述步骤3.4)中具体根据相邻两次调整得到的调整后总损耗之间的差值确定增加所述发电机运行转速的值。
CN201610871498.8A 2016-09-30 2016-09-30 一种低速直驱风电机组电气传动系统效率最优控制方法 Active CN106357178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610871498.8A CN106357178B (zh) 2016-09-30 2016-09-30 一种低速直驱风电机组电气传动系统效率最优控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610871498.8A CN106357178B (zh) 2016-09-30 2016-09-30 一种低速直驱风电机组电气传动系统效率最优控制方法

Publications (2)

Publication Number Publication Date
CN106357178A CN106357178A (zh) 2017-01-25
CN106357178B true CN106357178B (zh) 2018-09-18

Family

ID=57865944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610871498.8A Active CN106357178B (zh) 2016-09-30 2016-09-30 一种低速直驱风电机组电气传动系统效率最优控制方法

Country Status (1)

Country Link
CN (1) CN106357178B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696224B (zh) * 2017-04-11 2020-06-12 深圳市道通智能航空技术有限公司 降低电机损耗的方法和装置
CN109555652B (zh) * 2017-09-25 2022-07-12 北京金风科创风电设备有限公司 用于风力发电机组的数据监测系统
CN108131247B (zh) * 2017-12-20 2020-09-29 北京金风科创风电设备有限公司 用于风力发电机组的数据处理方法和装置
CN112311293A (zh) * 2019-07-30 2021-02-02 株洲中车时代电气股份有限公司 用于变频传动系统的效率最优控制方法及装置
CN112152523B (zh) * 2020-09-21 2022-04-01 武汉大学 一种基于nn/ga的直流电机节能调速方法
CN113162494B (zh) * 2021-03-18 2022-05-20 华中科技大学 一种无刷双馈感应发电机效率优化控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521388A (zh) * 2008-02-28 2009-09-02 通用电气公司 风电场集流器系统损耗最优化
CN103151795A (zh) * 2013-01-25 2013-06-12 沈阳工业大学 降低风机损耗的分散式风电场无功优化控制方法及系统
EP2736164A2 (en) * 2012-11-27 2014-05-28 Aristotle University Of Thessaloniki-Research Committee Method for efficiency optimization of a wind generator by controlling the electrical generator and system therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072650B2 (ja) * 2013-08-23 2017-02-01 株式会社日本製鋼所 流体力電力システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521388A (zh) * 2008-02-28 2009-09-02 通用电气公司 风电场集流器系统损耗最优化
EP2736164A2 (en) * 2012-11-27 2014-05-28 Aristotle University Of Thessaloniki-Research Committee Method for efficiency optimization of a wind generator by controlling the electrical generator and system therefor
CN103151795A (zh) * 2013-01-25 2013-06-12 沈阳工业大学 降低风机损耗的分散式风电场无功优化控制方法及系统

Also Published As

Publication number Publication date
CN106357178A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106357178B (zh) 一种低速直驱风电机组电气传动系统效率最优控制方法
Arnalte et al. Direct torque control of a doubly-fed induction generator for variable speed wind turbines
Thongam et al. Wind speed sensorless maximum power point tracking control of variable speed wind energy conversion systems
Borkowski et al. Small hydropower plant with integrated turbine-generators working at variable speed
Eltamaly et al. Maximum power extraction from wind energy system based on fuzzy logic control
Chen et al. Control for power converter of small-scale switched reluctance wind power generator
Mansour et al. Study and control of a variable-speed wind-energy system connected to the grid
CN106169896B (zh) 永磁同步发电机的控制器及转子磁链在线修正方法和装置
Smida et al. Pitch angle control for variable speed wind turbines
Abo-Khalil Model-based optimal efficiency control of induction generators for wind power systems
Bariša et al. Comparison of maximum torque per ampere and loss minimization control for the interior permanent magnet synchronous generator
Hallak et al. Modeling and control of a doubly fed induction generator base wind turbine system
Rajvikram et al. Fault ride-through capability of permanent magnet synchronous generator based wind energy conversion system
Errami et al. Control scheme and power maximisation of permanent magnet synchronous generator wind farm connected to the electric network
Smida et al. Different conventional strategies of pitch angle control for variable speed wind turbines
CN205051611U (zh) 抑制开关磁阻电机转矩脉动的电机驱动系统
Kim et al. RTDS-based real time simulations of grid-connected wind turbine generator systems
Messaoud et al. Modeling and optimization of wind turbine driving permanent magnet synchronous generator
Abo-Khalil et al. Loss minimization control for doubly-fed induction generators in variable speed wind turbines
Reddak et al. Integral backstepping control based maximum power point tracking strategy for wind turbine systems driven DFIG
GB2411252A (en) Controlling a generator with varying speed
Senani et al. Modeling and control of active and reactive powers of wind energy conversion system in variable speed based on DFIG
Yan et al. Study on an optimum design for DC and doubly-controlled DFIG system
Zhu et al. SM-MRAS based sensorless MPPT control for dual power flow wind energy conversion system
Boussiala et al. Novel welding machine based on small PMSG wind turbine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant