CN110954421A - 一种测量纳米晶粒梯度材料中梯度层厚度的方法 - Google Patents

一种测量纳米晶粒梯度材料中梯度层厚度的方法 Download PDF

Info

Publication number
CN110954421A
CN110954421A CN201911242906.3A CN201911242906A CN110954421A CN 110954421 A CN110954421 A CN 110954421A CN 201911242906 A CN201911242906 A CN 201911242906A CN 110954421 A CN110954421 A CN 110954421A
Authority
CN
China
Prior art keywords
meshes
thickness
gradient
layer
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911242906.3A
Other languages
English (en)
Inventor
张金旭
龚玉兰
朱心昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201911242906.3A priority Critical patent/CN110954421A/zh
Publication of CN110954421A publication Critical patent/CN110954421A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/008Residual indentation measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明公开一种测量纳米晶粒梯度材料中梯度层厚度的方法,属于金属材料加工技术领域;通过退火和表面纳米化处理的材料获得从处理表面沿着厚度方向为梯度结构层,依次为纳米晶粒层、超细晶粒层、变形粗晶粒层和粗晶粒层,该纳米晶粒梯度结构材料的高强度和高延展性并存;本发明所述方法采用纳米压痕的方法测量纳米晶粒梯度材料中梯度层厚度,所述方法操作过程操作简单,容易实现;在迅速发展的电子通信、航空航天、武器装备等行业有很大的应用空间。

Description

一种测量纳米晶粒梯度材料中梯度层厚度的方法
技术领域
本发明涉及一种测量纳米晶粒梯度材料中梯度层厚度的方法,属于金属材料加工技术领域。
背景技术
铜和铜合金因具有优秀的导电性、导热性、观赏性、耐蚀性和良好的机械性能等优点而大规模应用于信息通讯、机械制造、电气、电子、建筑、化工、能源、国防工业等现代工程技术领域。各种电子产品、家用电器、工业设施等都离不开铜和铜合金产品,它们已经是生产及生活中不可替代的重要工程材料。
铜和铜合金有良好的力学性能、工艺性能和耐蚀性,有的还有较高的导电性及切削加工性能,是铜和铜合金中用途最广泛的材料。随着工业技术的快速发展,传统的加工方法已经逐渐难以满足对高性能材料的需求,对铜和铜合金的强度和塑性也提出了更高的指标。目前常用大塑性变形方法如等径角挤压、高压扭转、叠轧等来制备超细晶粒金属材料,通过大幅细化晶粒尺寸,形成大量晶界有效地阻碍位错运动,使得强度可以得到极大提高,但块体超细晶材料室温拉伸塑性却很低。高强度和高塑性是一对互相矛盾的关系,目前的制备方法通常在一定程度上以牺牲塑性或强度的方式来提高其部分力学性能,而无法真正达到二者的优化结合。
表面机械研磨处理是通过采用非平衡处理方法来增加多晶材料表面的自由能,从而使表面晶粒尺寸逐渐减小,在外加载荷的重复作用下,经过不同方向的强烈塑性变形,材料表面的粗晶粒组织逐渐细化,最终达到纳米量级。表面机械研磨处理后的材料的晶粒尺寸沿着厚度方向逐渐增大,材料的外形尺寸基本保持不变,而且表面纳米层与基体之间不存在明显的界面,不会出现界面污染和剥离等现象,为纳米技术和常规材料相结合提供了更优的途径。然而如何准确、快速、有效的衡量梯度层的厚度是现有技术存在的难题。
发明内容
本发明的目的在于提供一种通过纳米压痕技术测量纳米晶粒梯度板材中梯度层厚度的方法,该方法加工工艺简单,容易实现,具体包括以下步骤:
(1)将待测板材切成尺寸为5 × 5 × 5 mm3的小方块,将具有梯度层变化的那一面朝上进行镶样,得到的圆柱体镶样试样;
(2)将步骤(1)得到的待测试样进行表面抛光,依次用粒度大小分别为400目、800目、1200目、2000目、3000目、5000目、7000目的金刚石砂纸进行表面抛光,最后用粒径大小为500nm的金刚石悬浮液抛光1~2h,最终整个圆柱体的厚度误差控制在0.1mm范围内;
(3)用型号为KLA iMicro的纳米压痕机进行测试,载荷为45mN,泊松比0.35,相邻压痕点的间距10μm,测试面积300μm × 300μm;
(4)最终一共得到900个测试压痕点,在将这些数据点用计算机软件进行统计得出一个立体图形,根据图形颜色变化判断试样硬度值大小的变化趋势进而判断出梯度层的厚度。
优选的,本发明步骤(3)中所述镶样试样尺寸为直径30mm,厚度10mm。
本发明的有益效果:本发明所述方法采用纳米压痕法测量纳米晶粒梯度材料中梯度层厚度的过程准确性高,通过纳米压痕技术可以快速准确的测量出试样的硬度值,通过硬度值的变化可以判断出梯度架构层的厚度;该方法测量速度快,操作简单,容易实现。
附图说明
图1为实施例1中测量的纳米晶粒梯度材料中梯度层厚度的示意图;
图2为实施例2中测量的纳米晶粒梯度材料中梯度层厚度的示意图;
图3为实施例3中测量的纳米晶粒梯度材料中梯度层厚度的示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)将纯Cu板材在真空中于600℃的温度下退火3小时,板材厚度为5mm;
(2)将步骤(1)所得板材进行表面抛光去除表面的氧化层,随即对抛光后的纯铜板材在液氮环境中进行双侧表面机械研磨处理,试验频率50Hz,直径8mm的钢球180颗,处理时间15min。
(3)将步骤(2)中所得的板材切成尺寸为5 × 5 × 5 mm3的小方块,将TD面朝上进行镶样,尺寸为直径30mm,厚度10mm的圆柱体。
(4)将步骤(3)中试样进行表面抛光,首先用粒度大小分别为400目,800目,1200目,2000目,3000目,5000目,7000目的金刚石砂纸进行表面抛光,最后用粒径大小为500nm的金刚石悬浮液抛光1h,最终整个圆柱体的厚度误差控制在0.1mm范围内;
(5)用型号为KLA iMicro的纳米压痕机进行测试,载荷为45mN,泊松比0.18,相邻压痕点的间距10μm,测试面积300μm × 300μm,一共900个压痕点,将这些数据点用计算机软件进行统计得出一个立体图形,如图1中示意图所示,根据图形颜色变化判断试样硬度值大小的变化趋势进而判断出梯度层的厚度。由图可以看出当测试深度到达大约270μm处可以看出硬度值趋于平衡,即梯度结构层的厚度是270μm。
实施例2
(1)将Cu-6.9wt%Al合金板材在真空中于650℃的温度下退火2小时,板材厚度为5mm。
(2)将步骤(1)所得Cu-6.9wt%Al合金板材进行表面抛光去除表面的氧化层,随即对抛光后的合金板材在液氮环境中进行双侧表面机械研磨处理,试验频率60Hz,直径8mm的钢球208颗,处理时间2min。
(3)将步骤(2)中所得的板材切成尺寸为5 × 5 × 5 mm3的小方块,将TD面朝上进行镶样,尺寸为直径30mm,厚度10mm的圆柱体。
(4)将步骤(3)中试样进行表面抛光,首先用粒度大小分别为400目,800目,1200目,2000目,3000目,5000目,7000目的金刚石砂纸进行表面抛光,最后用粒径大小为500nm的金刚石悬浮液抛光1.5h,最终整个圆柱体的厚度误差控制在0.1mm范围内。
(5)用型号为KLA iMicro的纳米压痕机进行测试,载荷为45mN,泊松比0.35,相邻压痕点的间距10μm,测试面积300μm × 300μm,一共900个压痕点;将这些数据点用计算机软件进行统计得出一个立体图形,如图2中示意图所示,根据图形颜色变化判断试样硬度值大小的变化趋势进而判断出梯度层的厚度。由图可以看出当测试深度到达大约300μm处可以看出硬度值趋于平衡,即梯度结构层的厚度是300μm。
实施例3
(1)将Cu-1.08wt%Al-2.6wt%Zn合金板材在真空中于700℃的温度下退火2小时,板材厚度为5mm。
(2)将步骤(1)所得Cu-1.08wt%Al-2.6wt%Zn合金板材进行表面抛光去除表面的氧化层,随即对抛光后的合金板材在液氮环境中进行双侧表面机械研磨处理,试验频率80Hz,直径8mm的钢球250颗,处理时间2min。
(3)将步骤(2)中所得的板材切成尺寸为5 × 5 × 5 mm3的小方块,将TD面朝上进行镶样,尺寸为直径30mm,厚度10mm的圆柱体。
(4)将步骤(3)中试样进行表面抛光,首先用粒度大小分别为400目,800目,1200目,2000目,3000目,5000目,7000目的金刚石砂纸进行表面抛光,最后用粒径大小为500nm的金刚石悬浮液抛光2h,最终整个圆柱体的厚度误差控制在0.1mm范围内。
(5)用型号为KLA iMicro的纳米压痕机进行测试,载荷为45mN,泊松比0.35,相邻压痕点的间距10μm,测试面积300μm × 300μm,一共900个压痕点,将这些数据点用计算机软件进行统计得出一个立体图形,如图3中示意图所示,根据图形颜色变化判断试样硬度值大小的变化趋势进而判断出梯度层的厚度。由图3可以看出当测试深度到达大约250μm处可以看出硬度值趋于平衡,即梯度结构层的厚度是250μm。

Claims (2)

1.一种测量纳米晶粒梯度材料中梯度层厚度的方法,其特征在于,具体包括以下步骤:
(1)将待测板材切成尺寸为5 × 5 × 5 mm3的小方块,将具有梯度层变化的那一面朝上进行镶样,得到的圆柱体镶样试样;
(2)将步骤(1)得到的待测试样进行表面抛光,依次用粒度大小分别为400目、800目、1200目、2000目、3000目、5000目、7000目的金刚石砂纸进行表面抛光,最后用粒径大小为500nm的金刚石悬浮液抛光1~2h,最终整个圆柱体的厚度误差控制在0.1mm范围内;
(3)用型号为KLA iMicro的纳米压痕机进行测试,载荷为45mN,泊松比0.35,相邻压痕点的间距10μm,测试面积300μm × 300μm;
(4)最终一共得到900个测试压痕点,在将这些数据点用计算机软件进行统计得出一个立体图形,根据图形颜色变化判断试样硬度值大小的变化趋势进而判断出梯度层的厚度。
2.根据权利要求1所述测量纳米晶粒梯度材料中梯度层厚度的方法,其特征在于,步骤(3)中所述镶样试样尺寸为直径30mm,厚度10mm。
CN201911242906.3A 2019-12-06 2019-12-06 一种测量纳米晶粒梯度材料中梯度层厚度的方法 Pending CN110954421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911242906.3A CN110954421A (zh) 2019-12-06 2019-12-06 一种测量纳米晶粒梯度材料中梯度层厚度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911242906.3A CN110954421A (zh) 2019-12-06 2019-12-06 一种测量纳米晶粒梯度材料中梯度层厚度的方法

Publications (1)

Publication Number Publication Date
CN110954421A true CN110954421A (zh) 2020-04-03

Family

ID=69980211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911242906.3A Pending CN110954421A (zh) 2019-12-06 2019-12-06 一种测量纳米晶粒梯度材料中梯度层厚度的方法

Country Status (1)

Country Link
CN (1) CN110954421A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328373A (zh) * 2014-10-22 2015-02-04 人本集团有限公司 一种高碳铬轴承钢碳氮共渗有效硬化层深度检测方法
CN109932262A (zh) * 2019-04-12 2019-06-25 中国原子能科学研究院 材料不同深度处的力学性能的测量方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328373A (zh) * 2014-10-22 2015-02-04 人本集团有限公司 一种高碳铬轴承钢碳氮共渗有效硬化层深度检测方法
CN109932262A (zh) * 2019-04-12 2019-06-25 中国原子能科学研究院 材料不同深度处的力学性能的测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李登禄: "医用镁合金的高压扭转组织演变及热压缩变形行为研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *
杨新诚 等: "不同温度下表面机械研磨对纯铜组织及性能的影响", 《金属热处理》 *

Similar Documents

Publication Publication Date Title
CN103572224B (zh) 镍靶材及镍靶材组件的制造方法
Wei et al. Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding
CN109097708B (zh) 一种提高单相高熵合金表面性能的方法
KR102009755B1 (ko) 구리합금선재 및 그 제조방법
CN103572225B (zh) 钽靶材及钽靶材组件的制造方法
CN105063524A (zh) 一种铜锌合金的表面强化处理方法
JP2006505101A (ja) 超高強度及び導電率を有するナノ結晶銅材料ならびにその製造方法
CN109266984A (zh) 一种梯度纯铜材料的表面强化处理方法
Imantalab et al. Electrochemical and passive behaviors of pure copper fabricated by accumulative roll-bonding (ARB) process
Fan et al. Effect of jet electrodeposition conditions on microstructure and mechanical properties of Cu–Al 2 O 3 composite coatings
CN111530961A (zh) 一种短流程制备超高纯镍带的方法
CN105220089A (zh) 一种提高6061铝合金性能的制备工艺
CN102453811A (zh) 挤出成型品及其制造方法
Naseri et al. Effect of grain refinement on mechanical and electrochemical properties of severely deformed pure copper through equal channel angular pressing
CN107937842B (zh) 一种Al-Zn-Mg-Cu铝合金的热处理方法
CN110954421A (zh) 一种测量纳米晶粒梯度材料中梯度层厚度的方法
CN102417961A (zh) 一种利用高能电脉冲提高高硅钢制备加工能力的方法
CN104372275A (zh) 一种铜镁合金的组合加工方法
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN103695617A (zh) 一种金属材料表层组织超细化处理方法
Yin et al. Micro forming of metallic composites
Zhao et al. Influence of tensile twinning on electrochemical and corrosion behavior of Mg alloy
Rongchang et al. Improvement of the matrix and the interface quality of a Cu/Al composite by the MARB process
Sklenika et al. Mechanical and creep properties of electrodeposited nickel and its particle-reinforced nanocomposite
CN111663091B (zh) 一种提高工业纯铜耐腐蚀性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200403