CN110950660A - 一种提高弛豫铁电薄膜介电和热释电性能的方法 - Google Patents

一种提高弛豫铁电薄膜介电和热释电性能的方法 Download PDF

Info

Publication number
CN110950660A
CN110950660A CN201910939492.3A CN201910939492A CN110950660A CN 110950660 A CN110950660 A CN 110950660A CN 201910939492 A CN201910939492 A CN 201910939492A CN 110950660 A CN110950660 A CN 110950660A
Authority
CN
China
Prior art keywords
pmn
lead
containing compound
precursor solution
uniformly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910939492.3A
Other languages
English (en)
Other versions
CN110950660B (zh
Inventor
林大斌
苏勇铭
周顺
刘卫国
蔡长龙
张德强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201910939492.3A priority Critical patent/CN110950660B/zh
Publication of CN110950660A publication Critical patent/CN110950660A/zh
Application granted granted Critical
Publication of CN110950660B publication Critical patent/CN110950660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种提高弛豫铁电薄膜介电和热释电性能的方法。现有铁电薄膜介电和热释电性能不高,通过A/B位掺杂改性的方式提高弛豫铁电薄膜介电和热释电性能。本发明依次包括下述步骤:一、制备PMN‑PT前驱体溶液:二、利用稀土元素制备均匀掺杂稀土元素的PMN‑PT前驱体溶液;三、将掺杂稀土元素PMN‑PT前驱体溶液在Pt/TiO2/SiO2/Si基底上旋涂均匀,薄膜退火结晶得到掺杂稀土元素PMN‑PT薄膜。本发明通过稀土元素掺杂,显著提高驰豫铁电PMN‑PT薄膜介电和热释电性能。

Description

一种提高弛豫铁电薄膜介电和热释电性能的方法
技术领域
本发明涉及铁电材料制备技术领域,具体涉及一种提高弛豫铁电薄膜介电和热释电性能的方法,尤其是利用A/B位掺杂提高铌镁酸铅-钛酸铅(PMN-PT)薄膜电学性能的方法。
背景技术
弛豫铁电薄膜是指薄膜材料在某一个温度范围内,其自发极化强度在其居里温度Tc附近随时间缓慢的进行衰减。其中的铌镁酸铅-钛酸铅((1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3)薄膜具有很好的铁电性、介电性、热释电性及压电等性能,主要用于MEMS传感器,换能器等领域。薄膜器件响应速度快,可将响应速度提升,易实现大面积器件的制备,成本低。
PMN-PT为铅基ABO3型钙钛矿相结构,其中铅(Pb2+)占据A位,镁(Mg2+)、铌(Nb5+)占据B位。稀土元素掺杂可以使稀土元素均匀分布在PMN-PT中,根据其离子大小取代A/B位,从而提高其PMN-PT电学性能。
目前制备高质量PMN-PT薄膜的方法主要有三种:射频磁控溅射(RF),脉冲激光沉积(PLD)和金属有机物化学气相沉积(MOCVD),但是实践发现,这3种方法只能通过更换靶材来调整PMN-PT的组分。现有技术存在的问题是:1、根据稀土元素掺杂含量不同去制作靶材,成本高昂;2、现有铁电薄膜介电和热释电性能不高。
发明内容
本发明要提供一种提高弛豫铁电薄膜介电和热释电性能的方法,成本降低可实现大面积器件的制备,同时介电和热释电性能得到有效提高。
为达到上述目的,本发明的技术方案是:
一种提高弛豫铁电薄膜介电和热释电性能的方法,依次包括以下步骤:
(1)制备PMN-PT前驱体溶液;
(2)将掺杂稀土元素钐(Sm),镨(Pr),铕(Eu),镱(Yb),钆(Gd)或钕(Nd)以0.1%-3%mol称量后加入PMN-PT前驱体溶液,磁力搅拌15-30min使稀土元素溶于PMN-PT前驱体溶液且搅拌均匀无沉淀,得到均匀掺杂稀土元素的PMN-PT前驱体溶液中,将其过滤后加入乙二醇甲醚及乙酰丙酮(7:3)稀释,室温搅拌至前驱液均匀,通过孔径0.2μm有机膜过滤,静置24h-48h制得均匀掺杂稀土元素的PMN-PT前驱体溶液;
(3)将得到的均匀掺杂稀土元素PMN-PT前驱体溶液通过匀胶的方式在(100-130nm)Pt/(120-150nm)TiO2/SiO2/Si基底上均匀旋涂后放置于快速热退火炉中退火结晶,得到均匀掺杂稀土元素纯钙钛矿相PMN-PT弛豫铁电薄膜。
旋涂方式为低速800r/min,10s;高速3000r/min,30s,快速热退火炉设定阶梯温度为:150-250℃,保温3-6 min;300-450℃,保温3-6 min;600-700℃,保温1-5 min。
上述步骤1)中,是按照待配置(1-x)PMN-xPT各元素物质的量之比称取含铅化合物、含镁化合物、含铌化合物和含钛化合物与溶剂顺序混合得到,其中0.10≤x≤0.35:
先将含铅化合物先和乙二醇甲醚中混合均匀后得到含铅混合溶液;
再将含镁化合物和乙酰丙酮混合后与含铅化合物溶液进行磁力搅拌,待搅拌均匀且无沉淀时得到含铅-镁混合溶液;
然后将含铌化合物和乙酰丙酮混合后与含铅-镁化合物溶液进行磁力搅拌,待搅拌均匀且无沉淀时得到含铅-镁-铌混合溶液;
最后加入含钛化合物和乙酰丙酮混合均匀,待搅拌均匀且无沉淀时得到铅-镁-铌-钛混合溶液即PMN-PT前驱体溶液。
与现有技术相比,本发明的优点是:
利用A/B位掺杂提高铌镁酸铅-钛酸铅(PMN-PT)薄膜电学性能。稀土元素通过Sol-gel法在PMN-PT前驱体溶液中进行A/B位掺杂,简化退火工艺,通过快速热退火炉设置阶梯温度得到掺杂稀土元素的纯钙钛矿相弛豫铁电PMN-PT薄膜,掺杂稀土元素以能控制提高薄膜的介电和热释电性能。
PMN-PT薄膜介电常数在1000-2000以内,热释电系数一般在60-100μC/m2K,2.3%Sm掺杂后PMN-PT薄膜介电常数提高到3500,热释电系数提高到300μC/m2K,提高了3倍;2.3%Pr掺杂后PMN-PT薄膜介电常数提高到2200,热释电系数提高到200μC/m2K,提高了2倍。
附图说明
图1为实施例1/2制备的掺杂钐/镨0.70PMN-0.30PT铁电薄膜的X射线衍射仪(XRD)图;
图2为实施例1/2制备的掺杂钐/镨0.70PMN-0.30PT铁电薄膜的原子力显微镜(AFM)图,其中图a)b)为钐掺杂薄膜,图c)d)为镨掺杂薄膜;
图3为实施例1制备的掺杂钐0.70PMN-0.30PT铁电薄膜的扫描电子显微镜(SEM)图;
图4为实施例1制备的掺杂钐0.70PMN-0.30PT铁电薄膜的电滞回线图;
图5为实施例1制备的掺杂钐0.70PMN-0.30PT铁电薄膜的介电温谱图。
具体实施方式:
下面将结合附图和实施例进行详细地说明。
实施例1
30ml 0.3mol/L,0.7PMN-0.30PT掺杂2.3%钐(Sm)铁电薄膜的制备,步骤如下:
(1)制备PMN-PT前驱体溶液:按照配置0.70PMN-0.30PT中各元素的物质的量称量含铅化合物、含镁化合物、含铌化合物和含钛化合物制备:
其中:制备含铅溶液:称取4.28g三水合醋酸铅,溶解到10-12ml乙二醇甲醚溶液中,在60摄氏度下恒温搅拌使其溶解,无沉淀;
制备铅-镁混合溶液:在含铅溶液中加入0.48g乙酸镁,滴入2-3ml乙酰丙酮,室温搅拌,得到铅-镁混合溶液;
制备铅-镁-铌混合溶液:在铅-镁混合溶液中滴入1.33g乙醇铌,0.85g乙酰丙酮,室温搅拌使其溶解于前驱液中,得到铅-镁-铌混合溶液;
制备铅-镁-铌-钛混合溶液:在铅-镁-铌混合溶液中滴入0.93g钛酸四丁酯,0.54g乙酰丙酮,室温搅拌20分钟,使其均匀溶解,得到铅-镁-铌-钛混合溶液即PMN-PT前驱体溶液。
此过程中,含铅化合物的添加量可以是溶剂的5%-15%,以弥补退火中的铅损失,含镁化合物添加量是含铅溶液的10%以弥补退火中的镁损失。
(2)称取0.092g(2.3%mol)乙酰丙酮钐(Sm),使其溶解于步骤(1)PMN-PT前驱液中,室温搅拌20分钟,至液体澄清无沉淀,得到2.3%Sm均匀掺杂的PMN-PT前驱液,将其过滤后加入乙二醇甲醚及乙酰丙酮(7:3)稀释至30ml,室温搅拌至前驱液均匀,通过孔径0.2μm有机膜过滤,静置24h制得均匀掺杂2.3%Sm的PMN-PT前驱体溶液。
(3)在Pt/TiO2/SiO2/Si基底上滴加步骤(2)的2.3%Sm掺杂的PMN-PT前驱体溶液均匀旋涂成膜,匀胶机设定为低速800r/min,10s;高速3000r/min,30s,将膜置于快速热退火炉中退火结晶得到均匀掺杂2.3%Sm的纯钙钛矿相PMN-PT薄膜,快速热退火炉温度设定为:220℃,保温3min;380℃,保温3min;680℃,保温3min。
此过程中,经历前烘、预烧及退火3个过程使得PMN-PT从有机膜-无机膜-结晶膜的转变。在快速热退火炉中薄膜退火结晶得到纯钙钛矿相Sm掺杂PMN-PT薄膜;
其中前烘是为了薄膜其中的乙二醇甲醚和乙酰丙酮挥发,预烧是为了让有机溶剂完全去除。
图1 XRD图谱表明:Sm掺杂PMN-PT薄膜为纯钙钛矿相,无杂质产生;图2 AFM照片显示薄膜的晶粒分布均匀,且表面粗糙度低;图3 SEM照片显示其薄膜晶粒大小一致,晶粒尺寸为100~200nm;图4电滞回线曲线表明其薄膜铁电特性明显,剩余极化强度为17μC/cm2;图5介电温谱图表明薄膜的介电常数为3500,损耗较低,在2%~4%之间。
实施例2:
30ml 0.3mol/L,0.7PMN-0.30PT掺杂2.3%镨(Pr)铁电薄膜,步骤如下:
(1)制备PMN-PT前驱体溶液:按照配置0.70PMN-0.30PT中各元素的物质的量称量含铅化合物、含镁化合物、含铌化合物和含钛化合物制备:
其中:制备含铅溶液:称取4.28g三水合醋酸铅,溶解到10-12ml乙二醇甲醚溶液中,在60摄氏度下恒温搅拌使其溶解,无沉淀;
制备铅-镁混合溶液:在含铅溶液中加入0.48g乙酸镁,滴入2-3ml乙酰丙酮,室温搅拌,得到铅-镁混合溶液;
制备铅-镁-铌混合溶液:在铅-镁混合溶液中滴入1.33g乙醇铌,0.85g乙酰丙酮,室温搅拌使其溶解于前驱液中,得到铅-镁-铌混合溶液;
制备铅-镁-铌-钛混合溶液:在铅-镁-铌混合溶液中滴入0.93g钛酸四丁酯,0.54g乙酰丙酮,室温搅拌20分钟,使其均匀溶解,得到铅-镁-铌-钛混合溶液即PMN-PT前驱体溶液。
(2)称取0.090g(2.3%mol)乙酰丙酮镨(Pr),使其溶解于步骤(1)PMN-PT前驱体溶液中,室温搅拌20分钟,至液体澄清无沉淀,得到2.3%Pr均匀掺杂的PMN-PT前驱液,将其过滤后加入乙二醇甲醚及乙酰丙酮(7:3)稀释至30ml,室温搅拌至前驱液均匀,通过孔径0.2μm有机膜过滤,静置24h制得2.3%Pr均匀掺杂的PMN-PT前驱体溶液。
(3)在Pt/TiO2/SiO2/Si基底上滴加步骤(2)的2.3%Pr掺杂的PMN-PT前驱体溶液均匀旋涂成膜,匀胶机设定为低速800r/min,10s;高速3000r/min,30s,将膜置于快速热退火炉中退火结晶得到均匀掺杂2.3%Pr的纯钙钛矿相PMN-PT薄膜,快速热退火炉温度设定为:220℃,保温3min;380℃,保温3min;680℃,保温3min。
图1 XRD图谱表明:Pr掺杂的0.70PMN-0.30PT薄膜为纯钙钛矿相,无杂质产生;图2AFM显示其薄膜晶粒分布均匀,且表面粗糙度低;其介电常数为2200。

Claims (3)

1.一种提高弛豫铁电薄膜介电和热释电性能的方法,其特征在于,依次包括以下步骤:
(1)制备PMN-PT前驱体溶液;
(2)将掺杂稀土元素钐(Sm),镨(Pr),铕(Eu),镱(Yb),钆(Gd)或钕(Nd)以0.1%-3%mol称量后加入PMN-PT前驱体溶液,磁力搅拌15-30min使稀土元素溶于PMN-PT前驱体溶液且搅拌均匀无沉淀,得到均匀掺杂稀土元素的PMN-PT前驱体溶液中,将其过滤后加入乙二醇甲醚及乙酰丙酮(7:3)稀释,室温搅拌至前驱液均匀,通过孔径0.2μm有机膜过滤,静置24h-48h制得均匀掺杂稀土元素的PMN-PT前驱体溶液;
(3)将得到的均匀掺杂稀土元素PMN-PT前驱体溶液通过匀胶的方式在(100-130nm)Pt/(120-150nm)TiO2/SiO2/Si基底上均匀旋涂后放置于快速热退火炉中退火结晶,得到均匀掺杂稀土元素纯钙钛矿相弛豫铁电PMN-PT薄膜。
2.如权利要求1所述的提高弛豫铁电薄膜介电和热释电性能的方法,其特征在于,所述步骤3)中旋涂方式为:低速800r/min,10s;高速3000r/min,30s;快速热退火炉设定阶梯温度为:150-250℃,保温3-6 min;300-450℃,保温,3-6 min;600-700℃,保温1-5 min。
3.如权利要求1或2所述的提高弛豫铁电薄膜介电和热释电性能的方法,其特征在于,所述步骤1)中,是按照待配置(1-x)PMN-xPT各元素物质的量之比称取含铅化合物、含镁化合物、含铌化合物和含钛化合物与溶剂顺序混合得到,其中0.10≤x≤0.35:
先将含铅化合物先和乙二醇甲醚中混合均匀后得到含铅混合溶液;
再将含镁化合物和乙酰丙酮混合后与含铅化合物溶液进行磁力搅拌,待搅拌均匀且无沉淀时得到含铅-镁混合溶液;
然后将含铌化合物和乙酰丙酮混合后与含铅-镁化合物溶液进行磁力搅拌,待搅拌均匀且无沉淀时得到含铅-镁-铌混合溶液;
最后加入含钛化合物和乙酰丙酮混合均匀,待搅拌均匀且无沉淀时得到铅-镁-铌-钛混合溶液即PMN-PT前驱体溶液。
CN201910939492.3A 2019-09-30 2019-09-30 一种提高弛豫铁电薄膜介电和热释电性能的方法 Active CN110950660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910939492.3A CN110950660B (zh) 2019-09-30 2019-09-30 一种提高弛豫铁电薄膜介电和热释电性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910939492.3A CN110950660B (zh) 2019-09-30 2019-09-30 一种提高弛豫铁电薄膜介电和热释电性能的方法

Publications (2)

Publication Number Publication Date
CN110950660A true CN110950660A (zh) 2020-04-03
CN110950660B CN110950660B (zh) 2022-03-15

Family

ID=69976336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910939492.3A Active CN110950660B (zh) 2019-09-30 2019-09-30 一种提高弛豫铁电薄膜介电和热释电性能的方法

Country Status (1)

Country Link
CN (1) CN110950660B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062565A (zh) * 2020-09-17 2020-12-11 广西大学 一种psint基高熵陶瓷电卡制冷材料的制备方法
CN113956040A (zh) * 2020-07-20 2022-01-21 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337209A (en) * 1992-09-10 1994-08-09 Martin Marietta Corporation High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof
JPH11180767A (ja) * 1997-12-18 1999-07-06 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
CN101550027A (zh) * 2009-04-30 2009-10-07 哈尔滨工业大学 一种铌镁酸铅-钛酸铅铁电薄膜的制备方法
CN101609689A (zh) * 2009-07-02 2009-12-23 中国科学院宁波材料技术与工程研究所 一种基于多铁性薄膜的磁记录介质及其写入方法
CN102295456A (zh) * 2011-06-15 2011-12-28 中国科学院上海硅酸盐研究所 一种pmn-pzt基透明电光陶瓷材料及其制备方法
WO2018187316A1 (en) * 2017-04-03 2018-10-11 The Penn State Research Foundation Perovskite relaxor-pbti03 based ferroelectric ceramics with ultrahigh dielectric and piezoelectric properties through polar nanoregions engineering
CN110182855A (zh) * 2019-04-24 2019-08-30 南京航空航天大学 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337209A (en) * 1992-09-10 1994-08-09 Martin Marietta Corporation High energy density lead magnesium niobate-based dielectric ceramic and process for the preparation thereof
JPH11180767A (ja) * 1997-12-18 1999-07-06 Kyocera Corp 誘電体磁器および積層セラミックコンデンサ
CN101550027A (zh) * 2009-04-30 2009-10-07 哈尔滨工业大学 一种铌镁酸铅-钛酸铅铁电薄膜的制备方法
CN101609689A (zh) * 2009-07-02 2009-12-23 中国科学院宁波材料技术与工程研究所 一种基于多铁性薄膜的磁记录介质及其写入方法
CN102295456A (zh) * 2011-06-15 2011-12-28 中国科学院上海硅酸盐研究所 一种pmn-pzt基透明电光陶瓷材料及其制备方法
WO2018187316A1 (en) * 2017-04-03 2018-10-11 The Penn State Research Foundation Perovskite relaxor-pbti03 based ferroelectric ceramics with ultrahigh dielectric and piezoelectric properties through polar nanoregions engineering
CN110182855A (zh) * 2019-04-24 2019-08-30 南京航空航天大学 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI FEI等: "Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals", 《SCIENCE》 *
LI FEI等: "Ultrahigh piezoelectricity in ferroelectric ceramics by design", 《NATURE MATERIALS》 *
张德强: "溶胶凝胶法制备PMNT薄膜及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
王歆等: "PMN-PT弛豫铁电粉体和薄膜的无机盐-凝胶法制备", 《硅酸盐学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956040A (zh) * 2020-07-20 2022-01-21 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法
CN113956040B (zh) * 2020-07-20 2022-07-12 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法
CN112062565A (zh) * 2020-09-17 2020-12-11 广西大学 一种psint基高熵陶瓷电卡制冷材料的制备方法
CN112062565B (zh) * 2020-09-17 2022-05-03 广西大学 一种psint基高熵陶瓷电卡制冷材料的制备方法

Also Published As

Publication number Publication date
CN110950660B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
US5614018A (en) Integrated circuit capacitors and process for making the same
CN110950660B (zh) 一种提高弛豫铁电薄膜介电和热释电性能的方法
CN1265224A (zh) 层状超晶格材料和abo3型金属氧化物的制备方法和在不暴露于氧气下制备包括这些材料的电元件的方法
US6454964B1 (en) Metal polyoxyalkylated precursor solutions in an octane solvent and method of making the same
CN110182855A (zh) 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法
CN101811889B (zh) 一种镧系元素掺杂的钛酸铋薄膜及其制备方法
CN101262040B (zh) 氧化物稀磁半导体/铁电体异质结构及其制备方法
JP2003002647A (ja) Plzt強誘電体薄膜、その形成用組成物及び形成方法
CN102683577B (zh) BiFe1-yMnyO3外延复合薄膜及其制备方法
CN105399339A (zh) 一种含掺杂元素的铁酸铋基薄膜及其制备方法
CN101211764A (zh) 一种铬掺杂二氧化钛室温铁磁薄膜的制备方法
KR20140117262A (ko) PNbZT 강유전체 박막의 제조 방법
Choi et al. Effects of donor ion doping on the orientation and ferroelectric properties of bismuth titanate thin films
JP3873125B2 (ja) 強誘電体薄膜の作製方法、及び強誘電体薄膜
CN113774485B (zh) 铌铟酸铅-铌镁酸铅-钛酸铅铁电薄膜材料及制备与应用
CN110357616A (zh) 一种铒掺杂钛酸铋钠-钛酸钡柔性铁电发光薄膜的制备方法
JP2002047011A (ja) 緻密質ペロブスカイト型金属酸化物薄膜の形成方法及び緻密質ペロブスカイト型金属酸化物薄膜
CN112501691B (zh) 一种亚稳相稀土镍氧化物薄膜的金属有机分解生长方法
Liu et al. Structure and electrical properties of Mn doped Bi (Mg1/2Ti1/2) O3-PbTiO3 ferroelectric thin films
CN110937925A (zh) 一种高极化强度和大应变特性的铁酸铋基薄膜及其制备方法
Calzada Sol–gel electroceramic thin films
US5858451A (en) Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O3 thin films and powders
JP4042276B2 (ja) Pb系ペロブスカイト型金属酸化物薄膜の形成方法
JP2001185358A (ja) カプセル化されたel用蛍光体粒子、elディスプレイパネル及びカプセル化されたel用蛍光体粒子の製造方法
CN114956812B (zh) 一种钛酸铅-锆酸铅纳米复合薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant