CN110945314B - 应变测量条和带有该应变测量条的金属带 - Google Patents

应变测量条和带有该应变测量条的金属带 Download PDF

Info

Publication number
CN110945314B
CN110945314B CN201880035368.8A CN201880035368A CN110945314B CN 110945314 B CN110945314 B CN 110945314B CN 201880035368 A CN201880035368 A CN 201880035368A CN 110945314 B CN110945314 B CN 110945314B
Authority
CN
China
Prior art keywords
grid
measuring
strain gauge
strip
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880035368.8A
Other languages
English (en)
Other versions
CN110945314A (zh
Inventor
杰拉尔德·奥斯贝格尔
诺贝特·格斯拖滕鲍尔
伯恩哈德·雅各比
沃尔夫冈·希尔伯
约翰尼斯·塞尔
赫伯特·恩泽尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of CN110945314A publication Critical patent/CN110945314A/zh
Application granted granted Critical
Publication of CN110945314B publication Critical patent/CN110945314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Abstract

应变测量条(1、100)和带有该应变测量条的金属带,该应变测量条带有第一测量栅格(2、102)、第二测量栅格(3、103)和基质(4),在基质(4)上,两种测量栅格(2、3或102、103)布置在共同的平面(9)内。为了实现廉价的并且能以相对于温度干扰量稳定的方式在测量结果中进行补偿的应变测量条(1、100),提出的是,多层的基质(4)具有金属层(5)和电绝缘层(6),由压阻材料(10.1、10.2)构成的两种测量栅格(2、3或102、103)印制到电绝缘层(6)上。

Description

应变测量条和带有该应变测量条的金属带
技术领域
本发明涉及应变测量条,其带有第一测量栅格、第二测量栅格和基质,在基质上,这两个测量栅格布置在共同的平面内,并且本发明还涉及带有该应变测量条的金属带。
背景技术
从现有技术中已知带有多个在共同的基质上横向并排设置的测量栅格的薄膜应变测量条。应变测量条的测量栅格可以具有相同的或不同的定向方向,其中,定向方向也已知为应变测量花(DMS-Rosette)。所有的薄膜应变测量条都是由电阻元件共同构成的测量栅格,电阻元件例如由康铜薄膜借助蚀刻方法产生,康铜薄膜实现已被层压到塑料基质上。此类薄膜应变测量条在制造上相对昂贵,并且此外根据蚀刻方法要求相对远地彼此间隔开的测量栅格,以避免在电阻元件之间的短路。
此外,此类制造的薄膜应变测量条必须与应测量其应变状态的检测体机械地连接,即粘贴在其上。不利的是,粘合剂层可能导致检测体的实际应变不被充分地传递到应变测量条上。
发明内容
因此,本发明的任务是,在构造上改变带有多个前述类型的测量栅格的应变测量条,使得应变测量条可以廉价地制造,并且其测量结果也可以相对于温度干扰量稳定地被评估。
本发明通过如下方式解决所提出的任务,即,使得多层的基质具有金属层和电绝缘层,由压阻材料构成的这两种测量栅格被印制到电绝缘层上。
如果多层的基质具有金属层和电绝缘层,在该电绝缘层上印制由压阻材料构成的两种测量栅格,则可以实现相对简单的并且可重复地实施的制造方法,通过该制造方法能将测量栅格比较近地横向并排地设置。通过所产生的两种测量栅格的空间靠近,并且特别地也通过在基质的金属层上的相对好的热耦联,进一步的结果是可以在两种测量栅格上导致相同的温度干扰量,带有印制在其上的测量栅格的电绝缘层即处在金属层上。这实现了如下可能性,即通过合适的方法,例如测量电桥或数字方法,执行对应变测量条的测量结果进行精确的温度补偿。
根据本发明的应变测量条因此可以稳定地抵抗温度干扰量,以此可以确保应变测量条的高的测量精度。
特别地,为了印刷测量栅格使用压阻材料,例如银基、石墨基膏体等。对于印刷能构思不同的方法,例如丝网印刷、凹版印刷、电子印刷方法等。
如果将第二测量栅格以与第一测量栅格垂直定向的方式被构造为用于对第一测量栅格的应变测量值进行温度补偿的被动式的测量栅格,则可以进一步降低相对于温度干扰量的敏感性,为此两种测量栅格由相同的压阻材料构成。通过垂直的定向,即可以使得与应变测量条的定向方向正交的那个测量栅格被保持而不受到机械力,并且因此仅用于接收温度干扰量,以此例如可以以半桥或全桥电路从第一测量栅格的测量结果降低或消除温度影响。如果两种测量栅格由相同的压阻材料构成,则测量结果可以被进一步改进。
如果第一测量栅格和第二测量栅格具有相同的额定电阻,则应变测量条的敏感性可以进一步提高。
如果第一测量栅格和第二测量栅格分别具有至少一个曲折地延伸的栅格区段,其中,第一测量栅格的一个栅格区段布置在第二测量栅格的两个栅格区段之间,则在两种测量栅格上的温度加载可以有利地彼此平衡。根据本发明,因此可以进一步降低例如将通过测量电桥检测到的测量结果的相对于温度干扰量的敏感性,这有助于应变测量条的测量精度。
如果每个测量栅格具有多个曲折地延伸的依次交替地布置的栅格区段,则应变测量条的构造可以被简化。此外,栅格区段的均匀的分布可以有助于使得两种测量栅格受到类似的温度加载,以此可以实现在测量数据中的更精确的补偿。
如果第一测量栅格的栅格区段具有多个、特别是两个、并排延伸的曲折行,则所述优点可以特别地明显。
第一栅格区段的至少一个栅格长度与第二栅格区段的至少一个栅格宽度的比如果为1:0.75至1:1.25,则应变测量条可以相对于温度干扰量稳定地被评估。特别地,如果此比为1:0.9至1:1.1,则这特别地能实现,其中优选地表明比可以为1:1。
如果相应的测量栅格的栅格区段被构造为相同地延伸,则可进一步简化应变测量条的构造。如果相应的测量栅格的栅格区段相同则所述构造更简化。
如果第一测量栅格和第二测量栅格相同地定向并且作为主动式的测量栅格分别具有带有彼此不同的温度系数和彼此不同的应变系数的压阻材料,则也可以以在共同的基质上的两个主动式的测量栅格来降低相对于温度干扰量的敏感性。
如果第一测量栅格和第二测量栅格分别具有曲折形地延伸的栅格区段,则应变测量条的构造可进一步简化,或可以因此实现特别廉价的多栅格应变测量条。
如果栅格区段彼此间相同延伸地布置,则可以实现紧凑和稳定的应变测量条。此外,因此可以将两个应变测量条的温度水平彼此匹配,并且因此改进温度补偿。
如果两种测量栅格双重曲折形地延伸,并且因此可以确保两种测量栅格的相同的温度加载,则特别地得到前述的优点。根据本发明的多栅格的应变测量条可以因此在测量数据检测中确保特别高的精度。
优选地,应变测量条可以使用在桥式电路中。在此,能构思将应变测量条接线为半桥或全桥。
优选地,基质的金属层是铝带或钢带或由铝或钢构成的带坯。金属层因此由金属或合金构成。这可以实现在两种测量栅格之间的特别好的热耦联。
优选地,基质的电绝缘层是底漆层或绝缘漆层,或是有机或无机预覆层。
如果金属带构成基质的金属层并且金属带的覆层构成基质的电绝缘层,则用于应变测量条的构造情况可以通过此金属带连同覆层得以简化。由此,不仅可以改进测量栅格之间的热耦联,而且可以不必在检测体与测量栅格之间设置有特殊的粘合剂层。根据本发明,因此应变可以不完全地从检测体被传递到应变测量条上,这可以提高测量精度。
附图说明
在附图中根据多个实施变体示例地详细图示了本发明的对象。其中:
图1示出根据第一实施例的带有多个测量栅格的应变测量条的俯视图,
图1a示出根据图1的I-I的部分剖开的截面图,和
图2示出根据第二实施例的带有多个测量栅格的应变测量条的俯视图。
具体实施方式
根据图1和图1a示例地图示的根据第一实施例的应变测量条1具有第一测量栅格2和第二测量栅格3。第一测量栅格2在两个联接端20.1与20.2之间展开,第二测量栅格3在两个联接端30.1与30.2之间展开,其中,两种测量栅格2、3在联接端20.2和30.2上被短接。两种测量栅格2、3设置在基质4上并且布置在共同的平面9内。如在图1和图1a中可见,测量栅格2、3横向并排地设置在基质4上。
根据本发明,多层的基质4具有金属层5和电绝缘层6,这在图1a中图示。电绝缘层6在此处在金属层5上。
电绝缘层6例如可以是金属层5上的板、带、带坯、缝隙带、载体等的底漆层或底漆、覆层等,板、带、缝隙带、载体等例如由金属层5构成。金属层5、电绝缘层6和两种测量栅格2、3或102、103逐层地相叠布置。优选地,电绝缘层6全面地覆盖了金属层5。
通过多层的基质4可以实现经由基质4的金属层5导致的两种测量栅格2、3或102、103的相对好的热耦联,以此可以进一步导致在两种测量栅格2、3或102、103上的相同的温度干扰量。因此,测量栅格2、3或102、103也通过电绝缘层6相对于金属层5被短路保护。基质4可以具有另外的未图示的层。
此外,将两种测量栅格2、3印制到基质4上,并且印制到电绝缘层6上,以此可以将二者以无短路的方式彼此靠近地设置。为此,电绝缘层6将两种测量栅格2、3相对于基质4的金属层5电绝缘。将压阻材料用于印制,例如使用银基或石墨基的膏体。两种测量栅格2、3因此通过将压阻材料印刷到电绝缘层6上被印制。
在这两种测量栅格2、3或102、103上例如设有覆盖漆11。
因此所制造的应变测量条1相对廉价,并且可以由于其紧凑的实施方案也提供如下的测量数据,以这些测量数据能稳定地补偿温度干扰量,例如通过桥式电路进行所述温度补偿。
如根据图1进一步可见,两种测量栅格2、3具有彼此不同的定向,在此情况中此测量栅格2、3垂直地定向。因此,在沿第一测量栅格2的定向方向O机械加载时,第二测量栅格3作为被动式的测量栅格起作用。两种测量栅格2、3由相同的压阻材料构成,并且优选地具有相同的额定电阻R0[Ω]。因此,不受机械加载的第二测量栅格3被考虑用于第一测量栅格2的应变测量的温度补偿,例如其方式是:两种测量栅格2、3设置在半桥的相同的半桥臂内。
测量栅格2由四个电串联且曲折延伸的栅格区段2.1、2.2、2.3和2.4形成。如此可以实现在沿定向方向O的机械加载时第一测量栅格2的特别高的敏感性。
测量栅格3由四个电串联且曲折延伸的栅格区段3.1、3.2、3.3和3.4组成。通过将第一测量栅格2的栅格区段2.2布置在第二测量栅格3的栅格区段3.1与3.2之间,对于两种测量栅格2和3产生了几乎相同的温度影响,以此在未图示的共同的半桥内使用测量栅格2和3的情况下,可以将对于测量结果的温度干扰量很大程度上最小化。温度干扰量的最小化特别有利地被实现,因为栅格区段2.1、2.2、2.3、2.4和3.1、3.2、3.3、3.4交替地并排且相彼此相接地布置,如在图1中可见。
此外,根据图1可见,第一测量栅格2的栅格区段2.1、2.2、2.3和2.4分别具有两个并排延伸的曲折行7、8。此外,第一栅格区段2.1、2.2、2.3、2.4的栅格长度l2.1、l2.2、l2.3、l2.4基本上与第二栅格区段3.1、3.2、3.3、3.4的栅格宽度b3.1、b3.2、b3.3、b3.4等长,因此实现了优选的前提条件,即两种测量栅格2、3被保持在相同的温度水平下。
此外,相应的测量栅格2、3的栅格区段2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4相同地构造,并且因此具有相同的延伸,这简化了应变测量条1的构造。
根据图2图示了根据第二实施例的应变测量条100。此应变测量条100具有第一测量栅格102和第二测量栅格103,第一测量栅格102和第二测量栅格103交错地布置或在它们延伸上交错地嵌套。
第一测量栅格102在两个联接端120.1与120.2之间展开,并且第二测量栅格103在两个联接端130.1与130.2之间展开。两种测量栅格102、103布置在共同的平面9内,这例如可以是被涂覆以作为电绝缘部5的底漆层或底漆的板6等,如已结合第一实施例所描述。
根据本发明,两种测量栅格102、103被印制到基质4上,并且被印制到基质4的电绝缘层6上,基质4此外还具有金属层5。多层的基质4的结构与第一实施例相同,并且可参见图1a。
由此,两种测量栅格102、103可以以无短路的方式彼此靠近设置。为了印刷,使用压阻材料,例如用于第一测量栅格102的银基膏体和用于第二测量栅格103的石墨基膏体。测量栅格102、103因此通过将压阻材料印刷到电绝缘层6上而被印制。
因此所制造的应变测量条100相对廉价,并且由于其紧凑的实施方案也具有两种测量栅格的特别均匀的温度加载。因此,数字补偿方法可以从应变测量条100的测量结果中稳定地去除温度干扰量。
根据图2,第一测量栅格102和第二测量栅格103被相同地定向,使得这两种测量栅格102、103作为主动式的测量栅格在机械加载时沿相同的定向方向O接收测量数据。两种测量栅格因此受到相同的温度干扰量,并且受到相同的应变。为补偿温度干扰量,测量栅格102、103的压阻材料具有彼此不同的温度系数(α2、α3)和彼此不同的应变系数(k因数:k1、k2)。通过此差异可补偿处理结果中的温度影响。
对于温度干扰量的数字补偿,以合适的方法(在最简单的情况中以电阻测量装置)测量测量栅格102和103的电阻R102和R103
对于其中每个测量栅格,在忽略更高阶次的温度和应变相关性的情况下,其电阻通过如下公式描述:
R(ε,T)=RT0(1+kε+α1(T-T0))
在此,RT0是相应的测量栅格的在无应变情况下在参考温度T0下的额定电阻,k是k因数,α是温度系数,ε是应变,并且T是测量栅格的温度。应用于测量栅格102和103上因此得到了包括两个方程以及温度和应变这两个未知量的方程组:
R102(ε,T)=R102,T0(1+k1ε+α1(T-T0))
R103(ε,T)=R103,T0(1+k2ε+α2(T-T0))
通过求解此方程组,可计算出测量栅格102和103的相同的温度和应变。
因此得到了具有精确的测量数据的应变测量条100。
此外,如从图2中可见,第一测量栅格102和第二测量栅格103分别具有一致的曲折地延伸的栅格区段102.1、103.1。栅格区段102.1、103.1以相同延伸彼此交错地布置,以此两种测量栅格102、103双重曲折形地延伸。

Claims (19)

1.应变测量条,所述应变测量条带有第一测量栅格(2、102)、第二测量栅格(3、103)和基质(4),在所述基质(4)上,两种测量栅格(2、3或102、103)布置在共同的平面(9)内,其中,多层的基质(4)具有金属层(5)和电绝缘层(6),由压阻材料(10.1、10.2)构成的两种测量栅格(2、3或102、103)被直接印制到所述电绝缘层(6)的第一表面上,并且所述电绝缘层(6)的第二表面面朝所述金属层(5),并且其中,所述应变测量条抵抗温度干扰量。
2.根据权利要求1所述的应变测量条,其特征在于,所述第二测量栅格(3)以与所述第一测量栅格(2)垂直定向的方式被构造为用于对所述第一测量栅格(2)的应变测量值进行温度补偿的被动式的测量栅格(3),为此,两种测量栅格(2、3)由相同的压阻材料(10)构成。
3.根据权利要求2所述的应变测量条,其特征在于,所述第一测量栅格(2)和所述第二测量栅格(3)具有相同的额定电阻R0
4.根据权利要求2或3所述的应变测量条,其特征在于,所述第一测量栅格(2)和所述第二测量栅格(3)分别具有至少一个曲折地延伸的栅格区段(2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4),其中,所述第一测量栅格(2)的一个栅格区段(2.1、2.2、2.3)布置在所述第二测量栅格(3)的两个栅格区段(3.1、3.2或3.2、3.3或3.3、3.4)之间。
5.根据权利要求4所述的应变测量条,其特征在于,每个测量栅格(2、3)具有多个曲折地延伸的栅格区段(2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4),所述栅格区段(2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4)依次交替地布置。
6.根据权利要求4所述的应变测量条,其特征在于,所述第一测量栅格(2)的栅格区段(2.1、2.2、2.3、2.4)具有多个并排延伸的曲折行(7、8)。
7.根据权利要求4所述的应变测量条,其特征在于,第一栅格区段(2.1、2.2、2.3、2.4)的至少一个栅格长度l2.1、l2.2、l2.3、l2.4与第二栅格区段(3.1、3.2、3.3、3.4)的至少一个栅格宽度b3.1、b3.2、b3.3、b3.4的比为1:0.75至1:1.25。
8.根据权利要求4所述的应变测量条,其特征在于,相应的测量栅格(2、3)的栅格区段(2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4)相同延伸地构造。
9.根据权利要求1所述的应变测量条,其特征在于,所述第一测量栅格(102)和所述第二测量栅格(103)相同地定向,并且作为主动式的测量栅格(102、103)分别具有带有彼此不同的温度系数α1、α2和彼此不同的应变系数k1、k2的压阻材料。
10.根据权利要求9所述的应变测量条,其特征在于,所述第一测量栅格(102)和所述第二测量栅格(103)分别具有曲折形地延伸的栅格区段(102.1、103.1)。
11.根据权利要求10所述的应变测量条,其特征在于,所述栅格区段(102.1、103.1)彼此间相同延伸地布置。
12.根据权利要求9至11中任一项所述的应变测量条,其特征在于,所述两种测量栅格(102、103)双重曲折形地延伸。
13.根据权利要求1至3中任一项所述的应变测量条,其特征在于,所述基质(4)的金属层(4.1)是铝带或钢带或是由铝或钢构成的带坯。
14.根据权利要求1至3中任一项所述的应变测量条,其特征在于,所述基质(4)的电绝缘层(6)是底漆层或绝缘漆层,或是有机或无机预覆层。
15.根据权利要求4所述的应变测量条,其特征在于,所述第一测量栅格(2)的栅格区段(2.1、2.2、2.3、2.4)具有两个并排延伸的曲折行(7、8)。
16.根据权利要求4所述的应变测量条,其特征在于,第一栅格区段(2.1、2.2、2.3、2.4)的至少一个栅格长度l2.1、l2.2、l2.3、l2.4与第二栅格区段(3.1、3.2、3.3、3.4)的至少一个栅格宽度b3.1、b3.2、b3.3、b3.4的比为1:0.9至1:1.1。
17.根据权利要求4所述的应变测量条,其特征在于,第一栅格区段(2.1、2.2、2.3、2.4)的至少一个栅格长度l2.1、l2.2、l2.3、l2.4与第二栅格区段(3.1、3.2、3.3、3.4)的至少一个栅格宽度b3.1、b3.2、b3.3、b3.4的比为1:1。
18.根据权利要求4所述的应变测量条,其特征在于,相应的测量栅格(2、3)的栅格区段(2.1、2.2、2.3、2.4或3.1、3.2、3.3、3.4)相同地构造。
19.带有覆层和根据权利要求1至18中任一项所述的应变测量条(1、100)的金属带,其中,所述金属带构成所述应变测量条(1、100)的基质(4)的金属层(5),并且所述金属带的覆层构成所述应变测量条(1、100)的基质(4)的电绝缘层(6)。
CN201880035368.8A 2017-05-29 2018-05-29 应变测量条和带有该应变测量条的金属带 Active CN110945314B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17173327.2A EP3410060A1 (de) 2017-05-29 2017-05-29 Dehnungsmessstreifen und metallband mit einer beschichtung für solch einen dehnungsmessstreifen
EP17173327.2 2017-05-29
PCT/EP2018/064120 WO2018219976A1 (de) 2017-05-29 2018-05-29 Dehnungsmessstreifen und metallband mit solch einem dehnungsmessstreifen

Publications (2)

Publication Number Publication Date
CN110945314A CN110945314A (zh) 2020-03-31
CN110945314B true CN110945314B (zh) 2022-07-29

Family

ID=58800725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880035368.8A Active CN110945314B (zh) 2017-05-29 2018-05-29 应变测量条和带有该应变测量条的金属带

Country Status (6)

Country Link
US (1) US11156512B2 (zh)
EP (2) EP3410060A1 (zh)
JP (1) JP2020521975A (zh)
KR (1) KR20200031082A (zh)
CN (1) CN110945314B (zh)
WO (1) WO2018219976A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220133623A (ko) * 2021-03-25 2022-10-05 삼성전자주식회사 변형 측정 센서를 포함하는 디스플레이 및 그를 포함하는 전자 장치
CN114414123B (zh) * 2022-01-24 2023-08-25 上海交通大学 一种异形金属基底上的应变传感器芯片及其原位制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1078217A (en) * 1976-03-31 1980-05-27 Robert C. Whitehead (Jr.) Force transducing cantilever beam and pressure transducer incorporating it
WO2007062813A1 (de) * 2005-12-01 2007-06-07 Hottinger Baldwin Messtechnik Gmbh Dehnungsmessstreifen
CN101046368A (zh) * 2006-03-29 2007-10-03 株式会社日立制作所 力学量测定装置
CN201583247U (zh) * 2010-01-06 2010-09-15 中航电测仪器股份有限公司 双输出应变计
CN102047088A (zh) * 2008-05-29 2011-05-04 诺基亚公司 挠曲变形传感设备和使用挠曲变形传感设备的用户接口
CN103900460A (zh) * 2012-12-28 2014-07-02 华东理工大学 一种半导体薄膜高温变形传感器
WO2015144324A1 (de) * 2014-03-28 2015-10-01 Contitech Ag Flexible sensoranordnung zur erfassung einer druckverteilung
CN105241369A (zh) * 2015-08-17 2016-01-13 王文 一种mems应变计芯片及其制造工艺
CN105841848A (zh) * 2015-01-30 2016-08-10 意法半导体股份有限公司 具有附接板的张应力测量设备及相关的方法
CN105917203A (zh) * 2014-02-26 2016-08-31 苹果公司 基于应变感测镜位置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311980A (en) * 1978-10-12 1982-01-19 Fabrica Italiana Magneti Marelli, S.P.A. Device for pressure measurement using a resistor strain gauge
US4430895A (en) * 1982-02-02 1984-02-14 Rockwell International Corporation Piezoresistive accelerometer
JPH06281511A (ja) * 1993-03-26 1994-10-07 Tokyo Electric Co Ltd 歪センサ
DE4404716A1 (de) * 1994-02-15 1995-08-17 Hottinger Messtechnik Baldwin Dehnungsmeßstreifen und Verfahren zur Herstellung eines Dehnungsmeßstreifens sowie Meßgrößenaufnehmer
DE10228951A1 (de) * 2002-06-28 2004-01-15 Hottinger Baldwin Messtechnik Gmbh Dehnungsmeßstreifen-Ketten
US7204162B2 (en) * 2004-11-23 2007-04-17 Delphi Technologies, Inc. Capacitive strain gauge
JP4887260B2 (ja) * 2006-10-31 2012-02-29 アイシン精機株式会社 車両のシート用乗員荷重センサ
WO2013052919A2 (en) * 2011-10-05 2013-04-11 Mc10, Inc. Cardiac catheter employing conformal electronics for mapping
WO2013174364A2 (de) * 2012-05-21 2013-11-28 Hottinger Baldwin Messtechnik Gmbh Vorrichtung zur temperaturkompensation für fbg-dehnungssensoren
US9308649B2 (en) * 2013-02-25 2016-04-12 LuxVue Techonology Corporation Mass transfer tool manipulator assembly
JP2015094607A (ja) * 2013-11-08 2015-05-18 株式会社共和電業 ひずみゲージおよびひずみ解析システム
US9863823B2 (en) * 2015-02-27 2018-01-09 Bebop Sensors, Inc. Sensor systems integrated with footwear
FR3037138B1 (fr) * 2015-06-05 2019-06-07 Safran Aircraft Engines Procede de fabrication d'un dispositif de controle de contrainte et installation permettant la mise en œuvre d'un tel procede
CN105091731B (zh) * 2015-08-13 2017-07-25 浙江工业大学 可测量表面应变轴向偏导的轴向偏差双敏感栅叉指型金属应变片
CN105352431B (zh) * 2015-12-04 2017-12-29 浙江工业大学 可测量单侧片外横向偏导的横向分布五敏感栅中密叉指金属应变片
CN105698744B (zh) * 2015-12-25 2018-05-29 中国空气动力研究与发展中心超高速空气动力研究所 一种带补偿应变计的高温静态应变计
US20170254795A1 (en) * 2016-03-03 2017-09-07 Lawrence Livermore National Security, Llc Cardiac platform for electrical recording of electrophysiology and contractility of cardiac tissues
KR102632730B1 (ko) * 2016-03-23 2024-02-06 삼성디스플레이 주식회사 전자 장치
US10209830B2 (en) * 2016-03-31 2019-02-19 Apple Inc. Electronic device having direction-dependent strain elements
US10209840B2 (en) * 2016-04-20 2019-02-19 Lg Innotek Co., Ltd. Touch window and touch device
CN106370097A (zh) * 2016-08-26 2017-02-01 中航电测仪器股份有限公司 一种用于复合材料的应变计及其制备方法
JP6715145B2 (ja) * 2016-09-27 2020-07-01 株式会社ジャパンディスプレイ タッチセンサ及びタッチセンサ付表示装置
US10287958B2 (en) * 2016-12-20 2019-05-14 Denso International America, Inc. Substrate and filter with stress/strain detection and method of use
KR101837999B1 (ko) * 2016-12-21 2018-03-14 재단법인 포항산업과학연구원 압력센서 및 그 제조방법
KR20180080739A (ko) * 2017-01-04 2018-07-13 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 터치 센싱 시스템
CN109141697B (zh) * 2017-06-15 2020-04-10 上海微创电生理医疗科技股份有限公司 应变片、压力传感器以及介入医疗导管
US10694999B2 (en) * 2017-10-13 2020-06-30 Case Western Reserve University Conductive layer formed strain gauge and method of making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1078217A (en) * 1976-03-31 1980-05-27 Robert C. Whitehead (Jr.) Force transducing cantilever beam and pressure transducer incorporating it
WO2007062813A1 (de) * 2005-12-01 2007-06-07 Hottinger Baldwin Messtechnik Gmbh Dehnungsmessstreifen
CN101046368A (zh) * 2006-03-29 2007-10-03 株式会社日立制作所 力学量测定装置
CN102047088A (zh) * 2008-05-29 2011-05-04 诺基亚公司 挠曲变形传感设备和使用挠曲变形传感设备的用户接口
CN201583247U (zh) * 2010-01-06 2010-09-15 中航电测仪器股份有限公司 双输出应变计
CN103900460A (zh) * 2012-12-28 2014-07-02 华东理工大学 一种半导体薄膜高温变形传感器
CN105917203A (zh) * 2014-02-26 2016-08-31 苹果公司 基于应变感测镜位置
WO2015144324A1 (de) * 2014-03-28 2015-10-01 Contitech Ag Flexible sensoranordnung zur erfassung einer druckverteilung
CN105841848A (zh) * 2015-01-30 2016-08-10 意法半导体股份有限公司 具有附接板的张应力测量设备及相关的方法
CN105241369A (zh) * 2015-08-17 2016-01-13 王文 一种mems应变计芯片及其制造工艺

Also Published As

Publication number Publication date
CN110945314A (zh) 2020-03-31
EP3631354B1 (de) 2023-09-27
EP3631354A1 (de) 2020-04-08
EP3410060A1 (de) 2018-12-05
EP3631354C0 (de) 2023-09-27
US11156512B2 (en) 2021-10-26
KR20200031082A (ko) 2020-03-23
JP2020521975A (ja) 2020-07-27
US20200191666A1 (en) 2020-06-18
WO2018219976A1 (de) 2018-12-06

Similar Documents

Publication Publication Date Title
CN108139283B (zh) 柔性触角传感器及其制造方法
US6278051B1 (en) Differential thermopile heat flux transducer
CN110945314B (zh) 应变测量条和带有该应变测量条的金属带
US4901051A (en) Platinum temperature sensor
US20060189201A1 (en) Printed circuit board with integral strain gage
US8661911B2 (en) Piezo-resistive pressure sensor
US20180259315A1 (en) Multipoint-measurement strain sensor and method for producing the same
US10955301B2 (en) Two-dimensional center of pressure sensor systems, devices, and methods
EP3467528A1 (en) Magnetic sensor sensitivity matching calibration
US20090158856A1 (en) Capacitive strain gauge system and method
JP5108757B2 (ja) 導電層の電気的応答を最適化する方法、及びその装置
SE461177B (sv) Anordning foer maetning av termiska egenskaper hos en provsubstans
US5990412A (en) Differential thermopile heat flux transducer formed by depositing metals and non-metals from liquids onto a substrate
CN206531462U (zh) 一种温度自补偿应变计
JP6835475B2 (ja) 面圧センサ
KR101303970B1 (ko) 기판 상의 일 세트의 도전층에 대한 전기 응답을최적화하기 위한 방법 및 장치
JP5995840B2 (ja) 層の厚みの測定
KR20160125451A (ko) 배선 기판 및 측온체
US11828827B2 (en) Magnetic sensor sensitivity matching calibration
EP3617683A1 (en) Method of insulating a strain gauge against moisture penetration
EP3023804B1 (en) Magnetic induction measuring device and method
KR101096463B1 (ko) 로고스키코일을 이용한 전류감지센서
US9995639B2 (en) Sensor element, thermometer as well as method for determining a temperature
RU186702U1 (ru) Емкостной датчик влажности грунта
Majcherek et al. Silicon based in-situ measurement system for flex loads on MLCCs in PCB manufacturing chain

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant