CN110934830B - 一种超分子载药囊泡及其制备方法和用途 - Google Patents

一种超分子载药囊泡及其制备方法和用途 Download PDF

Info

Publication number
CN110934830B
CN110934830B CN201911374838.6A CN201911374838A CN110934830B CN 110934830 B CN110934830 B CN 110934830B CN 201911374838 A CN201911374838 A CN 201911374838A CN 110934830 B CN110934830 B CN 110934830B
Authority
CN
China
Prior art keywords
supramolecular
vesicle
drug
water
arene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911374838.6A
Other languages
English (en)
Other versions
CN110934830A (zh
Inventor
韩莹
陈晓霖
韩杰
孙晓环
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201911374838.6A priority Critical patent/CN110934830B/zh
Publication of CN110934830A publication Critical patent/CN110934830A/zh
Application granted granted Critical
Publication of CN110934830B publication Critical patent/CN110934830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1273Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种超分子载药囊泡及其制备方法和用途,利用水溶性柱[5]芳烃(WP5)与苯胺四聚体(G)之间的主客体识别相互作用,构建出一种具有光热性能并且可用来载药的超分子囊泡。该超分子囊泡可实现抗癌药物阿霉素(DOX)的高效负载,并能在肿瘤组织酸性微环境中快速释放。利用水溶性柱[5]芳烃(WP5)和苯胺四聚体(G)之间的主客体作用构筑的超分子囊泡,在近红外激光的照射下,可以作为肿瘤光热治疗剂,并且可以协同促进抗癌药物在肿瘤组织中的释放,实现光热/化疗的协同治疗。该新型超分子囊泡载药体系,生物相容性良好,能显著提高肿瘤细胞的抑制效果,具有很好的临床应用前景。

Description

一种超分子载药囊泡及其制备方法和用途
技术领域
本发明属于纳米医药技术领域,具体涉及一种超分子载药囊泡及其制备方法和用途。
背景技术
目前,癌症严重威胁人类的健康。化学疗法依然是主要的治疗手段,但是传统化疗对人体正常组织毒副作用大,疗效不显著。刺激响应性的超分子囊泡可以被用来减少化疗对人体正常组织的毒副作用。除此之外,光热疗法作为一种新型的抗癌治疗方法,利用光热材料在近红外光激光照射下产生热量,促使肿瘤细胞的凋亡,引起了人们的广泛关注。但是,目前的光热材料大都为金纳米粒子、碳纳米粒子及其复合物等无机材料,无机光热材料的缺点是材料消耗大、难以降解代谢,因此有机光热材料的研究应用很迫切。此外,相比于第一红外光区生物窗(808nm),第二红外光区生物窗(1064nm)具有更高的顺应性,具有更广泛的应用潜力。
发明内容
目的:为解决现有技术的不足,本发明提供一种超分子载药囊泡及其制备方法和用途,该超分子载药囊泡具有光热作用,可以增强靶向性,减少毒副作用,增强治疗效果。
基于主客体分子间相互作用的超分子自组装,构建新型多功能纳米粒子,其中囊泡因为其具有独特的空腔而被广泛应用于抗癌药物的转运中。柱芳烃作为新一代大环主体化合物,由于其柱状结构、富电子空腔、易于功能化以及生物相容性良好的特点。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
第一方面,提供一种超分子囊泡,其特征在于,
以水溶性柱[5]芳烃(WP5)为主体,以苯胺四聚体(G)为客体,通过主体与客体之间的分子间作用力在水溶液中自组装而成;所述水溶性柱[5]芳烃(WP5)结构如下:
Figure BDA0002340647360000021
所述苯胺四聚体(G)结构如下:
Figure BDA0002340647360000022
在一些实施例中,所述超分子囊泡的制备方法包括;
将水溶性柱[5]芳烃(WP5)溶于水中,并将pH调至5~7,得水溶性柱[5]芳烃的水溶液;
取苯胺四聚体(G)溶于四氢呋喃中,超声助溶,得苯胺四聚体(G)的四氢呋喃溶液;
超声条件下,将苯胺四聚体(G)的四氢呋喃溶液加入水溶性柱[5]芳烃(WP5)的水溶液中,超声使其充分混合,得混合溶液;
进一步的,利用旋转蒸发仪除去有机溶剂四氢呋喃,浓缩至混合溶液中苯胺四聚体(G)和水溶性柱[5]芳烃(WP5)的浓度均为0.55mmol/L,将pH调至7~8,即得超分子囊泡水溶液。
更为优选的,制备过程中,加入的苯胺四聚体(G)与水溶性柱[5]芳烃的摩尔比为1:1。经过实验验证,此摩尔比为1:1下制备得到的超分子囊泡具有更好的形态和效果。
第二方面,提供所述的超分子囊泡在制备抗肿瘤药物中的应用。
第三方面,提供一种超分子载药囊泡,为所述的超分子囊泡包载有抗癌药物。
在一些实施例中,所述抗癌药物包括阿霉素(DOX)。
超分子载药囊泡的制备方法,包括:取设定量的抗癌药物加入超分子囊泡水溶液中,搅拌使抗癌药物载入超分子囊泡的空腔内,得超分子载药囊泡溶液。
进一步的,还包括:将所得超分子载药囊泡溶液通过透析法,除去未包载的抗癌药物,持续更换透析袋外的溶液进行透析,直至透析袋外的溶液中检测不到抗癌药物。
第四方面,提供所述的超分子囊泡在制备抗肿瘤药物中的应用。
本发明的超分子囊泡及超分子载药囊泡的作用机理:利用水溶性柱[5]芳烃(WP5)与苯胺四聚体(G)之间的主客体识别作用构建具有光热作用的超分子囊泡,可以实现抗肿瘤药物的高效负载。其中苯胺四聚体(G)具有近红外光热转换性能,与水溶性柱[5]芳烃(WP5)构筑的超分子囊泡可以作为光热治疗剂。这种超分子囊泡在生理环境下可以稳定存在,但在肿瘤酸性微环境和近红外激光照射下可快速释放出所包载的药物。重要的是,在近红外二区(1064nm)激光照射下,超分子囊泡表现出更好的光热作用。光热升温不仅可以导致癌细胞的凋亡,还可以促使抗肿瘤药物阿霉素(DOX)的释放,增强化疗效果,实现化疗/光疗的协同治疗。
有益效果:本发明提供的一种超分子载药囊泡及其制备方法和用途,具有以下优点:本发明的具有光热作用的超分子载药囊泡,将化疗和光热疗法结合,具有协同作用,成为抗肿瘤治疗的有效疗法之一。其突破了目前基于柱芳烃的超分子囊泡仅涉及单独化疗的局限和目前光热纳米材料大多局限在近红外一区激光照射下的现状,使得治疗效果进一步提高并减少对人体正常组织的毒副作用。基于良好的生物相容性,其有望开发为可应用于联合疗法的超分子药物传递系统,具有很好的临床应用价值和前景。
附图说明
图1为本发明实施例制备得到的稳定超分子囊泡透射电镜(TEM)照片;
图2为本发明实施例超分子囊泡在不同波长相同功率密度激光照射下的升温曲线图。
图3为超分子载药囊泡在酸性微环境及激光照射条件下的药物释放浓度曲线图。
图4为超分子载药囊泡在不同苯胺四聚体(G)的相对浓度下,对正常细胞(L02)和癌细胞(CT26)的毒性实验结果图。
图5为实施例5中被激光照射过的小鼠的红外热相图;
图6为实施例5中治疗结束后各组小鼠肿瘤成像及小鼠活体成像结果;
图7为实施例5中治疗中各组小鼠的肿瘤体积变化;
图8为实施例5中治疗中各组小鼠的体重变化;
图9为实施例5中治疗结束后各组小鼠肿瘤质量结果。
具体实施方式
下面结合实施例对本发明作进一步描述。以下实施例只是用于更加清楚地说明本发明的性能,而不能仅局限于下面的实施例。
实施例1
本实施例中基于水溶性的十个羧酸钠取代的柱[5]芳烃(WP5)和苯胺四聚体的超分子囊泡的制备方法,其步骤为:
(1)首先,将19.37mg水溶性柱[5]芳烃(WP5)用50mL水溶解于圆底烧瓶中,加入缓冲溶液将其pH调至6.50。将5mg苯胺四聚体(G)超声8min溶于2mL四氢呋喃中。将苯胺四聚体(G)的四氢呋喃溶液与水溶性柱[5]芳烃(WP5)的水溶液混合,继续超声8min使其充分混合,使用旋转蒸发仪除去有机溶剂四氢呋喃并持续浓缩定容至25mL,其中苯胺四聚体(G)和水溶性柱[5]芳烃(WP5)的浓度为0.55mM,加入缓冲溶液最终将其pH调至7.4。
(2)通过透射电子显微镜照片,可以看出WP5与G的聚集体为规则的空心球囊泡结构(图1)。
实施例2:超分子载药囊泡的制备:
以水溶性柱[5]芳烃(WP5)为主体,苯胺四聚体(G)为客体,药物为抗癌药阿霉素(DOX)。
取10mL上述制备的超分子囊泡溶液,称取一定量抗癌药物阿霉素(与超分子囊泡摩尔比为1:2),加入超分子囊泡溶液中,搅拌一天使其载入超分子囊泡空腔内。将所得超分子载药囊泡溶液通过透析(截留分子量8000)除去未包载的抗癌药阿霉素(DOX),持续更换透析袋外的溶液透析,直至透析袋外的溶液中检测不到抗癌药物阿霉素(DOX)。
实施例3:超分子载药囊泡在抗肿瘤协同治疗中的应用:
(1)光热治疗剂光热性能的测试:
利用热电偶温度计分别测量近红外808nm和1064nm激光照射时,超分子囊泡的光热转换效果。
首先,将含3mL上述制备的超分子囊泡溶液的比色皿,分别在808nm和1064nm激光器下照射,光照功率为3W/cm2,利用热电偶温度计测量10min内温度变化。
如图2所示,这种超分子囊泡在经过激光照射后,升温现象显著,分别达到17℃和22℃。说明该超分子囊泡不仅在近红外一区激光照下有良好的光热性能,在近红外二区激光照下光热性能更好。
(2)载药性能的测试:
按实施例2制备超分子载药囊泡。根据测得的紫外吸收强度从阿霉素(DOX)紫外特征峰480nm处的“紫外强度-浓度”标准曲线(纯水:y=0.02124x+0.00144,x=0.1mg/L~32mg/L)算出透析出的游离的药物总量,并计算出负载药物的载药率和包封率。最终计算得到的载药率和包封率分别为13.2%和91.7%,说明该材料载药性能良好。
(3)酸性微环境和近红外激光照射下抗癌药DOX的释放行为测试:
酸性微环境下化疗药物的释放测试实验,分别在0.1M磷酸缓冲盐(pH=7.4,pH=5.3)水溶液中进行,用以模拟生理学环境和肿瘤微酸性环境。化疗药物的释放测试实验的具体操作步骤为:将含3mL载药囊泡的透析袋,浸入含有30mL缓冲溶液的离心管中。将离心管,放入恒温摇床(37℃;118rpm)震荡。每隔一定时间取出3mL溶液,采用紫外可见分光光度仪测定阿霉素(DOX)在480nm的紫外吸收强度,然后再倒回母液中继续震荡,根据测得的紫外吸收强度,从阿霉素(DOX)紫外特征峰480nm处的“紫外强度-浓度”标准曲线(pH=5.3:y=0.01806x+0.0033;pH=7.4:y=0.02123x+0.00625,x=0.1mg/L~32mg/L)算出药物浓度,进而进一步得出化疗药物的释放率如图3所示。可以看出:在pH=5.3的酸性环境下,阿霉素(DOX)释放速度更快,释放率更高。
激光照射条件下药物的释放测试实验,在0.1M磷酸缓冲盐(pH=5.3)水溶液中进行,分别给以808nm和1064nm的激光照射,用以模拟对肿瘤部位的光热治疗。激光照射条件下药物的释放测试实验的具体操作步骤为:将含3mL载药囊泡的透析袋,浸入含有30mL缓冲溶液的离心管中。将离心管放入恒温摇床(37℃;118rpm)震荡,再分别给以808nm和1064nm的激光照射(持续照射30min,暂停30min,以此循环,总时间4h)。每隔一定时间取出3mL溶液,采用紫外可见分光光度仪测定阿霉素(DOX)在480nm的紫外吸收强度,然后再倒回母液中继续震荡,根据测得的紫外吸收强度,从阿霉素(DOX)紫外特征峰480nm处的“紫外强度-浓度”标准曲线(pH=5.3:y=0.01806x+0.0033,x=0.1mg/L~32mg/L)算出药物浓度,得出化疗药物的释放率如图3所示。可以看出:在激光照射条件下,阿霉素(DOX)释放速率和释放率得到提高,且在1064nm激光照射下释放速率和释放率更高。
实施例4:超分子囊泡的细胞毒性分析:
为了测定超分子囊泡的生物相容性,利用两种细胞L02(人体正常细胞),CT26(鼠结肠癌细胞)通过MTT法测定其细胞毒性。细胞在每孔104数量级的96孔板中进行种植培养。生长环境为含有5%二氧化碳的空气气氛,温度为37℃。在对数级增长阶段进行收割,然后将细胞分组,分别用88μM,154μM,220μM浓度的超分子囊泡与细胞作用,培养24小时后,加入MTT的PBS溶液(20μL,5mg/mL),继续培养4h。除去残留的培养基,向每组中加入100μLDMSO,通过酶标仪在490nm处检测每组细胞。
细胞毒性分析结果见图4。由细胞毒性实验可见,即使在较高浓度下,人体正常细胞L02的存活性依然很高,可以达到80%以上,而鼠结肠癌细胞CT26存活性却很低。说明超分子囊泡对癌细胞具有选择性毒性,而对正常细胞生物相容性良好。
实施例5:超分子载药囊泡对结肠癌小鼠的治疗
结肠癌小鼠被用来评估超分子载药囊泡的体内抗肿瘤效果。结肠癌小鼠模型的建立:将CT26细胞(1×107细胞悬浮于50μL的0.9%NaCl中)注射到载体裸鼠BALB/c裸鼠的腿部。当其肿瘤体积增长到约200mm3时,开始进行实验。小鼠称重并随机分为7组(每组6只):PBS、囊泡、囊泡+808nm激光、载药囊泡、载药囊泡+808nm激光、囊泡+1064nm激光、载药囊泡+1064nm激光。小鼠每两天治疗一次,经尾静脉注射,每只小鼠剂量为2.2mM、200μL,注射三小时后进行光照,光照时间为10min/只,利用红外热像仪,拍摄激光照射部位温度变化(图5)。每次治疗前测量并计算小鼠肿瘤体积相对变化(图7),记录小鼠体重(图9)。第14天治疗终止,小鼠肿瘤部位拍照,将小鼠处死,取出肿瘤清洗、拍照并称重(图6,图8)。通过此实验说明:(1)超分子载药囊泡使小鼠的肿瘤部位在激光照射下温度显著升高,并且1064nm的激光照射温度升高更强烈;(2)载药囊泡组在小鼠体内发挥化疗效果,使得肿瘤体积明显缩小;(3)808nm激光照射组小鼠,肿瘤在治疗结束后显著缩小并部分治愈;(4)1064nm激光照射组小鼠,肿瘤在一次治疗结束后便消失;(5)各组小鼠治疗过程中体重没有发生显著变化,生物相容性良好。
综上所述,本发明提供的具有光热作用的超分子载药囊泡制备方法简单,拓展性强,效果显著,在化疗/光热联合抗癌治疗领域有很好的应用前景。
以上已以较佳实施例公开了本发明,然其并非用以限制本发明,凡采用等同替换或者等效变换方式所获得的技术方案,均落在本发明的保护范围之内。

Claims (10)

1.一种超分子囊泡,其特征在于,
以水溶性柱[5]芳烃为主体,以苯胺四聚体为客体,通过主体与客体之间的分子间作用力在水溶液中自组装而成;所述水溶性柱[5]芳烃结构如下:
Figure FDA0002340647350000011
所述苯胺四聚体结构如下:
Figure FDA0002340647350000012
2.根据权利要求1所述的超分子囊泡,其特征在于,所述超分子囊泡的制备方法包括;
将水溶性柱[5]芳烃溶于水中,并将pH调至5~7,得水溶性柱[5]芳烃的水溶液;
取苯胺四聚体溶于四氢呋喃中,超声助溶,得苯胺四聚体的四氢呋喃溶液;
超声条件下,将苯胺四聚体的四氢呋喃溶液加入水溶性柱[5]芳烃的水溶液中,超声使其充分混合,得混合溶液;
利用旋转蒸发仪除去有机溶剂四氢呋喃,浓缩,将pH调至7~8,即得超分子囊泡水溶液。
3.根据权利要求2所述的超分子囊泡,其特征在于,
制备过程中,加入的苯胺四聚体与水溶性柱[5]芳烃的摩尔比为1:1;
和/或,浓缩至混合溶液中苯胺四聚体和水溶性柱[5]芳烃的浓度均为0.55mmol/L。
4.根据权利要求1所述的超分子囊泡,其特征在于,所述超分子囊泡的粒径为95~110nm。
5.权利要求1-4任一项所述的超分子囊泡在制备抗肿瘤药物中的应用。
6.一种超分子载药囊泡,其特征在于,为权利要求1-4任一项所述的超分子囊泡包载有抗癌药物。
7.根据权利要求6所述的超分子载药囊泡,其特征在于,所述抗癌药物包括阿霉素。
8.根据权利要求6所述的超分子载药囊泡,其特征在于,超分子载药囊泡的制备方法,包括:取设定量的抗癌药物加入超分子囊泡水溶液中,搅拌使抗癌药物载入超分子囊泡的空腔内,即得。
9.根据权利要求8所述的超分子载药囊泡,其特征在于,药物制剂的制备方法,还包括:将所得超分子载药囊泡溶液通过透析法,除去未包载的抗癌药物。
10.权利要求6-9任一项所述的超分子载药囊泡在制备抗肿瘤药物中的应用。
CN201911374838.6A 2019-12-27 2019-12-27 一种超分子载药囊泡及其制备方法和用途 Active CN110934830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911374838.6A CN110934830B (zh) 2019-12-27 2019-12-27 一种超分子载药囊泡及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911374838.6A CN110934830B (zh) 2019-12-27 2019-12-27 一种超分子载药囊泡及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN110934830A CN110934830A (zh) 2020-03-31
CN110934830B true CN110934830B (zh) 2022-04-12

Family

ID=69913643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911374838.6A Active CN110934830B (zh) 2019-12-27 2019-12-27 一种超分子载药囊泡及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN110934830B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209310B (zh) * 2021-05-17 2023-09-05 扬州大学 一种具有细胞成像和药物递送功能的复合超分子纳米粒子
CN113499312A (zh) * 2021-07-08 2021-10-15 扬州大学 超分子核壳复合物、超分子载药核壳复合物、二者的制备方法和应用
CN114712499B (zh) * 2022-03-18 2023-08-01 南通大学 一种负载no的超分子聚肽纳米药物及其制备方法和应用
CN115745757B (zh) * 2022-11-07 2024-04-26 中国人民解放军军事科学院军事医学研究院 一种液态多甘醇柱芳烃衍生物的合成及对经皮药效分子缓释的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911071A (zh) * 2012-09-29 2013-02-06 上海大学 氨基酸与水溶性柱[5]芳烃超分子配合物及其制备方法
CN108524449A (zh) * 2018-04-02 2018-09-14 南京邮电大学 一种近红外染料功能化的智能超分子囊泡的制备及其应用
CN108714222A (zh) * 2018-05-31 2018-10-30 南京邮电大学 一种新型多功能超分子囊泡的制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911071A (zh) * 2012-09-29 2013-02-06 上海大学 氨基酸与水溶性柱[5]芳烃超分子配合物及其制备方法
CN108524449A (zh) * 2018-04-02 2018-09-14 南京邮电大学 一种近红外染料功能化的智能超分子囊泡的制备及其应用
CN108714222A (zh) * 2018-05-31 2018-10-30 南京邮电大学 一种新型多功能超分子囊泡的制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells;Yang et al.;《Angew Chem Int Ed Engl》;20110110;第50卷(第2期);441-444 *

Also Published As

Publication number Publication date
CN110934830A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN110934830B (zh) 一种超分子载药囊泡及其制备方法和用途
Zheng et al. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy
Zhang et al. One-pot synthesis of hollow PDA@ DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
CN111135296B (zh) 一种白蛋白结合型吲哚菁绿抗肿瘤光热制剂及其制备方法
CN110755613A (zh) 光触发红细胞膜包裹no纳米仿生供体材料的制备及应用
CN110898222B (zh) 一种基于a-d-a型有机分子/双亲性高分子复合纳米粒子的制备方法及应用
CN109464677B (zh) 一种用于肿瘤靶向诊疗的近红外光控纳米颗粒及制备方法
CN103284951A (zh) 一种包载水溶性药物的光敏脂质体
CN112076319B (zh) 青蒿素及其衍生物在制备热动力治疗敏化剂中的应用
CN111569073A (zh) 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法
Ge et al. Recent advances and clinical potential of near infrared photothermal conversion materials for photothermal hepatocellular carcinoma therapy
CN107638566A (zh) 一种集近红外荧光成像及化疗/光热治疗于一体的多功能纳米胶囊
Cui et al. A generic self-assembly approach towards phototheranostics for NIR-II fluorescence imaging and phototherapy
Tang et al. NIR‐II Light Accelerated Prodrug Reduction of Pt (IV)‐Incorporating Pseudo Semiconducting Polymers for Robust Degradation and Maximized Photothermal/Chemo‐Immunotherapy
CN104013960B (zh) 一种靶向光热治疗用水溶性复合物及其制备方法与应用
Yan et al. Multifunctional and multimodality theranostic nanomedicine for enhanced phototherapy
Wang et al. Recent progress in metal-organic cages for biomedical application: Highlighted research during 2018–2023
CN110251672B (zh) 一种纳米诊疗剂及其制备方法与应用
CN109550050B (zh) 一种负载黑色素的二氧化钼载药复合物及其制备和应用
CN114848854B (zh) 一种131i-hsa-icg纳米颗粒及其制备方法和应用
CN114470231B (zh) 一种叶酸-羟烷基淀粉大分子稳定共载光敏剂和小分子前药的纳米载药系统、其制备和应用
CN112386695B (zh) 一种担载吲哚菁绿和铂类药物的壳聚糖基纳米前药及其制备方法
CN105396135B (zh) 靶向性多肽修饰的铁蛋白纳米颗粒装载卟啉二聚体盐复合物及其用途和制备方法
Li et al. Triterpenoids and ultrasound dual-catalytic nanoreactor ignites long-lived hypertoxic reactive species storm for deep tumor treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant