CN110911698B - 一种氧还原催化剂及其制备方法 - Google Patents

一种氧还原催化剂及其制备方法 Download PDF

Info

Publication number
CN110911698B
CN110911698B CN201911211468.4A CN201911211468A CN110911698B CN 110911698 B CN110911698 B CN 110911698B CN 201911211468 A CN201911211468 A CN 201911211468A CN 110911698 B CN110911698 B CN 110911698B
Authority
CN
China
Prior art keywords
copper
cobalt
nickel
doped carbon
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911211468.4A
Other languages
English (en)
Other versions
CN110911698A (zh
Inventor
赵振路
怀杰
高存源
沙骑骑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201911211468.4A priority Critical patent/CN110911698B/zh
Publication of CN110911698A publication Critical patent/CN110911698A/zh
Application granted granted Critical
Publication of CN110911698B publication Critical patent/CN110911698B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种氧还原催化剂的制备方法,依次通过水热和煅烧的方法将铜、钴和镍三种过渡金属纳米颗粒嵌入到粒径均一的氮掺杂碳纳米管中且过渡金属均匀分布在顶端和管体上。步骤简单,成本低,制备的催化剂,与已报道的纳米碳化物相比,具有良好的起始电位和半波电位,且具有优良的耐甲醇性和稳定性,能在金属‑空气电池、燃料电池等电化学能量转换设备中应用,具有重要意义。

Description

一种氧还原催化剂及其制备方法
技术领域
本发明属于电化学技术领域,具体涉及一种含铜、钴、镍三种过渡金属的氮掺杂碳纳米管催化剂及其制备方法。
背景技术
金属-空气电池、燃料电池等清洁、高效的能源转换装置通过电化学反应,将化学能直接转化为电能,这个过程不需要燃烧,不受卡诺循环的限制,从而提高了能量转换效率,减少了不必要的能量损失。因此,在未来这些能源转换装置必将成为人类应用的主要能源手段。目前,金属-空气电池和燃料电池面临着一系列的科学和技术上的挑战,其中最要的问题的是阴极的氧还原反应是一个动力学缓慢的过程,阴极的反应速度决定了整个能源转换装置的放电速度。所以我们需要一种合理的催化剂来提高氧还原反应的速率,实现这些能源转换装置的实际应用。目前,最主要的氧还原催化剂为贵金属铂催化剂,但贵金属铂储量少,价格高,导致铂基催化剂占据了金属-空气电池和燃料电池总成本的56%,这成为限制金属-空气电池和燃料电池实际应用的主要障碍。为了减少对贵金属铂的依赖,研发低含量铂或无铂催化剂成为研究重点。近几十年来,随着材料科学和纳米技术的发展,在合理设计和合成优良的低铂含量或无铂催化剂的研究取得了重大的进展。利用先进的原位表征技术对氧还原反应的活性位点的确定,使催化剂的开发模式逐渐从传统的经验实验转向分子或原子级的精确设计和制造。在了解氧还原反应催化机理的基础上,通过操纵原子结构,特别是催化剂的表面电子结构,可以提高催化剂的催化性能,这已被证明是最关键的设计原则。近年来,在低铂含量或非铂基氧还原反应纳米催化剂的设计和合成方面主要方向为低含量贵金属催化剂、非贵金属杂原子催化剂和无金属杂原子掺杂碳基催化剂。但仍存在很多缺点和改进之处。
发明内容
针对目前金属-空气电池和燃料电池氧还原反应催化剂存在的问题,本发明提供一种氧还原催化剂的制备方法,步骤简单,成本低,制备的催化剂耐甲醇性和稳定性好。
为实现上述目的,本发明采用如下技术方案:
一种氧还原催化剂的制备方法,包括以下步骤:
(1)将泡沫镍用超声波清洗机分别在稀释的盐酸、去离子水、丙酮和乙醇中清洗。
(2)将硝酸铜、硝酸钴、尿素和去离子水在烧杯中混合后置于磁力搅拌器上搅拌。
(3)将洗净的泡沫镍与步骤(2)中搅拌完成的溶液一起放入特氟龙内衬高压釜中,水热反应后,得到铜-钴氧化物,用去离子水、乙醇分别洗几次,60℃下烘干。
(4)将步骤(3)得到的铜-钴氧化物先预热,再与三聚氰胺混合分步煅烧,得铜-钴-镍基氮掺杂碳纳米管。
步骤(1)中,所述盐酸浓度为10%。
步骤(1)中,所述清洗时间为在每种溶液中15分钟。
步骤(2)中,所述硝酸铜、硝酸钴、尿素、水的摩尔比为1∶1∶9∶3333。
步骤(2)中,所述搅拌时间为1 h。
步骤(3)中,当泡沫镍大小为3cm2时硝酸铜物质的量为1 mmol。
步骤(3)中,所述水热反应温度为120 ℃;水热反应时间为12 h。
步骤(4)中,所述预热温度为400℃,预热时间为1 h。
步骤(4)中,所述分步煅烧方式为:将预热后的铜-钴氧化物与三聚氰胺混合,于520℃、540℃、700℃下各煅烧2 h。
步骤(4)中,所述升温和降温速率均为3℃/min。
一种按照上述的制备方法得到含有铜、钴、镍过渡金属的氮掺杂碳纳米管,所述碳纳米管的平均直径为800 nm,所述铜、钴、镍纳米颗粒分布在碳纳米管尖端、内部和表面。
本发明具有以下优点:
本发明依次通过水热和煅烧的方法将铜、钴和镍三种过渡金属纳米颗粒嵌入到粒径均一的氮掺杂碳纳米管中且过渡金属均匀分布在顶端和管体上。在520℃和540℃下,三聚氰胺热解衍生物与不均匀混合的过渡金属相互作用,形成过渡基金属纳米粒子。加热至700℃后,形成的过渡基纳米颗粒促进了氮掺杂的碳纳米管的形成。
本发明以泡沫镍为基底,引入了铜、钴两种元素,理论计算表明,在所有的非贵金属过渡金属中,铜的氧还原反应活性最高,因为它在“火山图”的顶部接近铂。研究已证明铜的氧还原反应活性是由于铜元素的高氧化还原电位和d轨道电子密度,导致氧-氧键较弱。对于钴来说,碳中的氮通过吸引氮来促进氮的结合到碳基体中。此外,最近的研究也证实了过渡金属纳米颗粒在氮掺杂碳纳米管上的分布可以影响碳纳米管的氧还原反应活性。与负载于氮掺杂的碳纳米管外表面的过渡金属基纳米颗粒相比,氮掺杂碳纳米管中包裹的过渡金属基纳米颗粒可诱导主-客体电子相互作用,从而改善了碳纳米管的局部功函数,使碳层外表面具有更高的氧还原反应活性;同时,氧还原反应的稳定性可以得到很大的提高,这主要是由于碳纳米管的保护以及在氧还原反应过程中类奥斯瓦尔德效应的减弱。因此,在氮掺杂碳纳米管中封装过渡金属基是调节被封装纳米颗粒与氮掺杂碳纳米管之间电子相互作用的有效方法。
本发明方法合成的催化剂是一种高效的氧还原反应电催化剂,与各种报道的纳米碳化物相比,具有良好的起始电位和半波电位。该催化剂在金属-空气电池、燃料电池等电化学能量转换设备具有重要意义。
附图说明
图1(a)为长有铜-钴氧化物纳米片复合物的泡沫镍扫描电子显微镜图,(b-c)铜-钴-镍基氮掺杂碳纳米管扫描电子显微镜图,(d-e)铜-钴-镍基氮掺杂碳纳米管透射电子显微镜图,(f)铜-钴-镍基氮掺杂碳纳米管高分辨透射电子显微镜图,(g-m)铜-钴-镍基氮掺杂碳纳米管元素映射图;
图2(a)为铜-钴-镍基氮掺杂碳纳米管X-射线衍射图,(b)为铜-钴-镍基氮掺杂碳纳米管中镍2p轨道高分辨X-射线光电子能谱图,(c)为铜-钴-镍基氮掺杂碳纳米管中钴2p轨道高分辨X-射线光电子能谱图,(d)为铜-钴-镍基氮掺杂碳纳米管中铜2p轨道高分辨X-射线光电子能谱图;
图3(a)为铜-钴-镍基氮掺杂碳纳米管在扫描速率为10mv s-1时不同转速下(电解液为氧气饱和的0.1 M氢氧化钾溶液)的氧还原反应极化曲线图,(b)为由(a)图根据K-L方程得到的不同电极电位下电子转移数图,(c)为铜-钴-镍基氮掺杂碳纳米管等催化剂在扫描速率为10mv s-1时(电解液为氧气饱和的0.1 M氢氧化钾溶液)的线性扫描伏安曲线图,(d)为铜-钴-镍基氮掺杂碳纳米管和20% Pt/C催化剂的塔菲尔斜率图;
图4(a-b)为铜-钴-镍基氮掺杂碳纳米管和20% Pt/C在1.0 M甲醇和不含甲醇的0.1 M氢氧化钾溶液中的循环伏安曲线(扫描速率为50 mV s-1)图,(c)为5000次循环前后,电解液为氧气饱和的0.1 M 氢氧化钾溶液,铜-钴-镍基氮掺杂碳纳米管氧还原反应图,(d)为在0.6 V电压下转速为1600 rpm时的计时电流响应图,时间为8h。
具体实施方式
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制。
实施例1 铜-钴-镍基氮掺杂碳纳米管的制备
(1)铜-钴氧化物的合成
将长3 cm、宽为1 cm的泡沫镍置于40 mL 10%的盐酸中,在超声波清洗机中超声15分钟,清洗完成后依次再用去离子水,丙酮,乙醇分别清洗15分钟。
称取0.2428 g硝酸铜,0.2939 g硝酸钴,0.5351 g尿素置于烧杯中,加入60mL去离子水,常温下搅拌1 h,搅拌完成时溶液为均一粉色溶液。将搅拌好的溶液和洗净的泡沫镍一起置于特氟龙内衬高压釜中,在烘箱中120 ℃下水热反应12 h得到铜-钴氧化物纳米片复合物,用去离子水和乙醇分别冲洗3-5次,然后置于烘箱中60 ℃下烘干。
(2)铜-钴-镍基氮掺杂碳纳米管的制备
将步骤(1)得到的铜-钴氧化物在400 ℃下煅烧1 h,使铜-钴氧化物纳米片复合物阵列更均一。冷却后,再与三聚氰胺(3 g)一起置于瓷舟中,铜-钴氧化物纳米片复合物在底层,三聚氰胺在上层,将铜-钴氧化物纳米片复合物包埋置于管式炉中煅烧,在520,540,700℃下各煅烧2 h,降到室温,得到含有铜、钴、镍三种过渡金属均匀分布的铜-钴-镍基氮掺杂碳纳米管。在此过程中,升温速率为3 ℃/min,从700 ℃到500 ℃降温速率为5 ℃/min,当温度低于500 ℃时自然降温到室温。
实施例2 铜-钴-镍基氮掺杂碳纳米管的组成和结构特征
扫描电子显微镜图像如图1a-c所示。水热处理后,泡沫镍骨架长有均匀铜-钴氧化物纳米片复合物,长度约1μm,这使得泡沫镍表面发生纳米化。煅烧后,获得嵌入过渡金属纳米颗粒的纳米管,纳米颗粒覆盖在每个纳米管的顶部,如图1d-f所示;图1f中晶格距离约为0.235 nm,对应于C(100)平面。这些碳纳米管的平均直径为800 nm。根据元素映射图,如图1g-m所示,可知,铜、钴、镍纳米颗粒不仅分布在尖端或内部,还均匀分布在碳纳米管表面。在520℃和540℃下,三聚氰胺高温衍生物与表面纳米泡沫镍相互作用,形成过渡金属基纳米颗粒。碳纳米管的直径更均匀,这可能归因于三聚氰胺热解衍生物与表面纳米泡沫镍相互作用,形成尺寸更均匀的纳米颗粒。过渡金属基纳米颗粒与三聚氰胺热解衍生物在加热至700℃后相互协同作用,促进了铜-钴-镍基氮掺杂碳纳米管。
通过X-射线衍射和高分辨X-射线光电子能谱进一步研究了铜-钴-镍基氮掺杂碳纳米管的组成和结构。如图2a所示,过渡金属纳米粒子在含有铜、钴、镍三种过渡金属的碳纳米管中主要是以氮化物和碳化物存在。铜-钴-镍基氮掺杂碳纳米管中镍2p轨道高分辨X-射线光电子能谱如图2b所示。由图2b可知,Ni2+在854.3eV和871.9eV的峰值对应着2p1/2和2p3/2轨道,卫星峰的峰值在861.6 eV和879.9eV。曲线拟合的钴2p轨道出现了两个价态的峰,分别对应于Co2+和Co3+,如图3c所示,其中779.9eV和796.2eV的峰值是Co3+的,780.3eV的峰值是Co2+的,787.6eV和804.3eV的峰值是卫星峰的。图3d为铜的2p峰图,Cu2+和Cu+在932.4eV和934.5eV时分别产生了两个不同的峰,943.5eV和952.5eV时的峰值对应的是卫星峰。
实施例3 铜-钴-镍基氮掺杂碳纳米管的电化学性能
研究了铜-钴-镍基氮掺杂碳纳米管的电化学性能。不同扫速下的线性扫描伏安曲线如图3a所示。由图3a可以看出,该催化剂具有较高的氧还原活性,在转速为1600 rpm时的起始电压为0.96eV,半坡电压为0.87eV。值得注意的是,它的氧还原反应催化活性高于一些之前报道的过渡金属和氮掺杂碳材料。由图3b可知,对应电位处的Koutecky−Levich(K-L)曲线显示出近似平行的线性关系,电子转移数(n)的值在3.77-4.00,表明存在完整的四电子转移路径。由图3c可知,铜-钴-镍基氮掺杂碳纳米管(N-CNTs/T-CNN)的氧还原活性高于氮掺杂的碳纳米管中过渡金属仅为镍(N-CNTs/E-NNPs)和铜-钴-镍基氮掺杂碳纳米管中三聚氰胺掺杂量为5g(N-CNTs/T-CCN-5)的催化剂。虽然铜-钴-镍基氮掺杂碳纳米管的氧还原活性低于20% Pt/C,但由图3d可知,铜-钴-镍基氮掺杂碳纳米管的塔菲尔斜率(95 mV/dec)几乎与20% Pt/C的(94 mV/dec)相同。
实施例4 铜-钴-镍基氮掺杂碳纳米管的耐甲醇性能和稳定性
对比图4a和4b可知,添加甲醇后,铜-钴-镍基氮掺杂碳纳米管的循环伏安曲线变化不大,而20% Pt/C的电流密度变化较大,表明,铜-钴-镍基氮掺杂碳纳米管催化剂在碱性溶液中具有较好的耐甲醇性能。此外,通过连续循环伏安扫描5000次来评估铜-钴-镍基氮掺杂碳纳米管催化剂的电化学耐久性,如图4c所示,结果表明无明显位移。同时,还测试了铜-钴-镍基氮掺杂碳纳米管和20% Pt/C在相同条件下的长期稳定性,如图4d所示。由图4d可知,在相同条件下,铜-钴-镍基氮掺杂碳纳米管的相对氧还原反应电流在8 h后保持在92.3%的高水平,而20% Pt/C下降到53.6%,表明铜-钴-镍基氮掺杂碳纳米管的稳定性远优于20% Pt/C。

Claims (7)

1.一种氧还原催化剂的制备方法,其特征在于,包括以下步骤:
(1)将泡沫镍用超声波清洗机分别在稀释的盐酸、去离子水、丙酮和乙醇中清洗;
(2)将硝酸铜、硝酸钴、尿素和去离子水在烧杯中混合搅拌得溶液I;
(3)将步骤(1)洗净的泡沫镍与步骤(2)中的溶液I水热反应后,取出底物,清洗烘干得到铜-钴氧化物;
(4)将步骤(3)得到的铜-钴氧化物先预热,再与三聚氰胺混合分步煅烧,得铜-钴-镍基氮掺杂碳纳米管;
所述分步煅烧方式为:将预热后的铜-钴氧化物与三聚氰胺混合,于520℃、540℃、700℃下各煅烧2 h;
所述氧还原催化剂为含有铜、钴、镍过渡金属的氮掺杂碳纳米管,所述铜、钴、镍纳米颗粒分布在碳纳米管尖端、内部和表面;氮掺杂碳纳米管的平均直径为800 nm。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述硝酸铜、硝酸钴、尿素、水的摩尔比为1:1:9:3333。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述搅拌时间为1 h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,当泡沫镍大小为3 cm2时,硝酸铜用量为1 mmol。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述水热反应温度为120℃;所述水热反应时间为12 h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述烘干温度为60℃。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,所述预热温度为400℃,预热时间为1 h。
CN201911211468.4A 2019-12-02 2019-12-02 一种氧还原催化剂及其制备方法 Expired - Fee Related CN110911698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911211468.4A CN110911698B (zh) 2019-12-02 2019-12-02 一种氧还原催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911211468.4A CN110911698B (zh) 2019-12-02 2019-12-02 一种氧还原催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110911698A CN110911698A (zh) 2020-03-24
CN110911698B true CN110911698B (zh) 2022-05-27

Family

ID=69821450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911211468.4A Expired - Fee Related CN110911698B (zh) 2019-12-02 2019-12-02 一种氧还原催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110911698B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321424B (zh) * 2020-03-04 2022-04-19 太原理工大学 一种自支撑高密度铜钴硒纳米管电极制备方法
CN112536058B (zh) * 2020-12-03 2022-05-24 济南大学 一种用于氧析出和氧还原的双功能催化剂及其制备方法
CN113247968B (zh) * 2021-06-03 2021-09-21 中国人民解放军国防科技大学 一种宽频吸收体及其制备方法
CN113611880A (zh) * 2021-07-01 2021-11-05 广东工业大学 一种碳纳米管负载过渡金属复合材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336503A (zh) * 2015-11-27 2016-02-17 渤海大学 一种钴酸铜多孔微米棒/泡沫镍复合电极材料的制备方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN108346521A (zh) * 2018-01-08 2018-07-31 华南师范大学 泡沫镍负载的海胆状钴酸铜纳米材料的制备方法
CN108543545A (zh) * 2018-04-26 2018-09-18 大连理工大学 一种Fe、Ni、N三掺杂碳纳米管包覆型FeNi@NCNT催化剂、制备方法及其应用
CN109201061A (zh) * 2018-11-01 2019-01-15 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN109546157A (zh) * 2018-11-07 2019-03-29 三峡大学 一种铜、氮化钴与碳原位复合电极的制备方法
CN110155980A (zh) * 2019-05-20 2019-08-23 北京化工大学 一种蜂窝状三维多孔碳材料的制备方法
CN110265677A (zh) * 2019-07-01 2019-09-20 苏州工业职业技术学院 一种NiCo@NiS镶嵌的S-掺杂碳纳米管复合材料及其制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728545A (zh) * 2009-11-13 2010-06-09 上海理工大学 一种直接甲醇燃料电池阳极纳米合金催化剂及其制备方法
CN105958059B (zh) * 2016-07-18 2018-11-02 合肥工业大学 一种三维Cu/Co3O4多级纳米线阵列及其制备方法和用途
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN107275650A (zh) * 2017-05-31 2017-10-20 华南理工大学 一种钴氮碳纳米管氧还原催化剂的简便制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN105336503A (zh) * 2015-11-27 2016-02-17 渤海大学 一种钴酸铜多孔微米棒/泡沫镍复合电极材料的制备方法
CN106669762A (zh) * 2016-12-30 2017-05-17 华南理工大学 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN108346521A (zh) * 2018-01-08 2018-07-31 华南师范大学 泡沫镍负载的海胆状钴酸铜纳米材料的制备方法
CN108543545A (zh) * 2018-04-26 2018-09-18 大连理工大学 一种Fe、Ni、N三掺杂碳纳米管包覆型FeNi@NCNT催化剂、制备方法及其应用
CN109201061A (zh) * 2018-11-01 2019-01-15 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN109546157A (zh) * 2018-11-07 2019-03-29 三峡大学 一种铜、氮化钴与碳原位复合电极的制备方法
CN110155980A (zh) * 2019-05-20 2019-08-23 北京化工大学 一种蜂窝状三维多孔碳材料的制备方法
CN110265677A (zh) * 2019-07-01 2019-09-20 苏州工业职业技术学院 一种NiCo@NiS镶嵌的S-掺杂碳纳米管复合材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cu,Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions;Min Kuang et al.;《Advanced energy materials》;20170906;第7卷(第17期);第1700193(1-8)页 *

Also Published As

Publication number Publication date
CN110911698A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN110911698B (zh) 一种氧还原催化剂及其制备方法
Liu et al. CoS 2x Se 2 (1− x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction
Ren et al. Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting
Habibi et al. Electrooxidation of glycerol on nickel and nickel alloy (Ni–Cu and Ni–Co) nanoparticles in alkaline media
Wang et al. Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries
Liu et al. An efficient ternary CoP 2x Se 2 (1− x) nanowire array for overall water splitting
Du et al. NiSe 2/FeSe 2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction
CN108543545A (zh) 一种Fe、Ni、N三掺杂碳纳米管包覆型FeNi@NCNT催化剂、制备方法及其应用
CN110148762B (zh) 一种氮、氟和过渡金属共掺杂石墨烯结构的碳材料及其一步碳化制备方法
Noori et al. Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst
CN106207204A (zh) 氮硫双掺杂碳材料双功能氧催化剂及其制备方法和应用
CN110247068B (zh) 一种铁/铜氮杂石墨烯锌空气电池阴极催化剂的制备方法和应用
CN113604838A (zh) 一种镍钴双金属硒化物异质结构电催化剂的制备方法及其应用
CN108946698A (zh) 一种基于苯前驱体制备γ型石墨单炔纳米碳材料的方法
CN110327946B (zh) 一种二硫化钼/硒化镍复合材料及其制备方法和应用
CN108212157A (zh) 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用
Zhu et al. NiFe2O4@ Co3O4 heterostructure with abundant oxygen vacancies as a bifunctional electrocatalyst for overall water splitting
Wang et al. Activity enhancement via borate incorporation into a NiFe (oxy) hydroxide catalyst for electrocatalytic oxygen evolution
Sun et al. One-step integration of CoNi phosphides in N, P co-doped carbons towards highly efficient oxygen electrocatalysis for rechargeable Zn-air battery
Lv et al. Coupling nonstoichiometric Cu 2− x Se with stable Cu 2 Se berzelianite for efficient synergistic electrocatalytic hydrazine-assisted water splitting
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
CN112626544A (zh) 多孔泡沫碳担载CoO纳米片电催化剂的微波超快速制备方法
Yu et al. A multi-shelled CeO 2/Co@ N-doped hollow carbon microsphere as a trifunctional electrocatalyst for a rechargeable zinc–air battery and overall water splitting
Ying et al. Enhanced oxygen evolution reaction kinetics through biochar-based nickel-iron phosphides nanocages in water electrolysis for hydrogen production
CN112058297B (zh) 一种镍基电催化材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220527