CN112536058B - 一种用于氧析出和氧还原的双功能催化剂及其制备方法 - Google Patents

一种用于氧析出和氧还原的双功能催化剂及其制备方法 Download PDF

Info

Publication number
CN112536058B
CN112536058B CN202011411470.9A CN202011411470A CN112536058B CN 112536058 B CN112536058 B CN 112536058B CN 202011411470 A CN202011411470 A CN 202011411470A CN 112536058 B CN112536058 B CN 112536058B
Authority
CN
China
Prior art keywords
oxygen
foamed nickel
oxygen reduction
catalyst
bifunctional catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011411470.9A
Other languages
English (en)
Other versions
CN112536058A (zh
Inventor
赵振路
高存源
怀杰
沙骑骑
王建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Chaoyu Energy Technology Co ltd
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202011411470.9A priority Critical patent/CN112536058B/zh
Publication of CN112536058A publication Critical patent/CN112536058A/zh
Application granted granted Critical
Publication of CN112536058B publication Critical patent/CN112536058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于氧化剂制备技术领域,公开了一种用于氧析出和氧还原的双功能催化剂及其制备方法,取泡沫镍,浸入HCl溶液中,取出用去离子水清洗,然后在烘箱中干燥;将泡沫镍放入含有CoCl2·6H2O和NiCl2·6H2O的溶液中用循环伏安法在泡沫镍表面沉积氢氧化镍钴复合材料;将经过电沉积之后得到的泡沫镍取出,洗涤后干燥;将泡沫镍与三聚氰胺混合物和硫脲分别置于双区温度控制管式炉的下风口部和上风口部,进行加热。本发明的催化剂在OER中的起始电势为1.52V(vs.RHE),在ORR中,与20%商业Pt/C作对比,起始电位为0.95V(vs.RHE),具有更好的甲醇耐受性和稳定性。

Description

一种用于氧析出和氧还原的双功能催化剂及其制备方法
技术领域
本发明属于氧化剂制备技术领域,尤其涉及一种用于氧析出和氧还原的双功能催化剂及其制备方法。
背景技术
目前: 氧析出(OER)和氧还原(ORR)反应在电化学转化技术和能量存储(例如水电解和燃料电池)中发挥着至关重要的作用。高活性和稳定的双功能电催化剂是OER和ORR的关键。当前,铱(Ir)和钌(Ru)是OER的最有效电催化剂,铂(Pt)是ORR最有效的电催化剂,但是它们的高成本和稀缺资源阻碍了它们的大规模应用。因此,迫切需要开发低成本的高效耐用的替代产品。因此,已经广泛研究了各种类型的材料,特别是基于过渡金属的催化剂。其中,二元镍钴基催化剂成本低,储量大,在OER和ORR中具有高活性,而裸露的二元镍钴基催化剂的电导率和长期稳定性通常较差。所以如何构建具有增强的催化活性和催化稳定性,尤其是OER和ORR过程中具有奥斯特瓦尔德作用减弱的双功能催化剂仍然具有挑战性。最近的研究证明,过渡金属基纳米颗粒和碳在复合物中的电催化活性可以相互影响。与基于碳表面的裸露过渡金属相比,嵌入的纳米粒子与包覆碳层之间的协同电子相互作用可以改善其局部功函数,从而使得包覆碳纳米粒子的催化活性大大提高,并且其稳定性得以增强,这主要是由于碳材料在催化过程中的协同效应和奥斯特瓦尔德效应的弱化。因此,获得高效催化剂的解决方案是构造碳层包覆的过渡金属纳米颗粒。与传统的块状材料相比,其电子的平均自由程短,并且局部性和相干性得到增强,这使得过渡金属的分布均匀,并增强了纳米结构的表面活性。因此,如何利用纳米或纳米介导来均匀封装过渡金属基碳纳米材料的合成进一步提高其OER和ORR性能至关重要。特别是对于催化剂,控制其结构并保持大量比活性区域和粗糙度因子对于提高电催化效率也是至关重要的。
通过上述分析,现有技术存在的问题及缺陷为:
(1)二元镍钴基催化剂成本低,储量大,在OER和ORR中具有高活性,而裸露的二元镍钴基催化剂的电导率和长期稳定性通常较差。
(2)如何构建具有增强的催化活性和催化稳定性,尤其是OER和ORR过程中具有奥斯特瓦尔德作用减弱的双功能催化剂仍然具有挑战性。
发明内容
针对现有技术存在的问题,本发明提供了一种用于氧析出和氧还原的双功能催化剂及其制备方法。
本发明是这样实现的,一种用于氧析出和氧还原的双功能催化剂的制备方法包括:
步骤一,取泡沫镍,浸入HCl溶液中,取出用去离子水清洗,然后在烘箱中干燥;
步骤二,将步骤一的泡沫镍放入含有0.2M CoCl2·6H2O和0.1M NiCl2·6H2O的溶液中用循环伏安法在泡沫镍表面沉积氢氧化镍钴复合材料;
步骤三,将步骤二经过电沉积之后得到的泡沫镍取出,用水和乙醇洗涤三次,放入烘箱干燥;
步骤四,将步骤三的泡沫镍与三聚氰胺混合物和硫脲分别置于双区温度控制管式炉的下风口部和上风口部,加热到520°C,并在管式炉中保持2小时;然后将温度升至540℃并保持2小时; 最后,将其以3°C min-1的速率加热到800°C,并保持2 h。
进一步,步骤一中,所述泡沫镍尺寸为2.0×0.5×0.05 cm。
进一步,步骤一中,HCl的浓度为5.0M。
进一步,步骤一中,干燥时间为5小时。
进一步,步骤二中,CoCl2·6H2O,NiCl2·6H2O和水的摩尔比为2:1:556。
进一步,步骤二中,循环伏安法的扫描范围是-1.2V到0.2V。
进一步,步骤二中,循环伏安法的扫描速率是5mV/s。
进一步,步骤二中,循环伏安法的扫描圈数是4圈。
进一步,步骤四中,加入的三聚氰胺为2g,加入的硫脲为1g。
本发明的另一目的在于提供一种用于氧析出和氧还原的双功能催化剂为NiCo2S4基的刚直竹节状氮掺杂碳纳米管。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:
本发明首先采用电沉积的方法,在泡沫镍上均匀沉积NiCo纳米粒子,再覆盖三聚氰胺进行煅烧和硫化,最终形成刚直竹节状氮掺杂碳纳米管。该催化剂是一种高效的氧析出和氧还原反应催化剂,在OER中的起始电势为1.52V(vs.RHE),在ORR中,与20%商业Pt/C作对比,起始电位为0.95V(vs.RHE),具有更好的甲醇耐受性和稳定性。该催化剂在燃料电池、金属-空气电池等电化学能量转换设备具有重要意义。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的用于氧析出和氧还原的双功能催化剂的制备方法流程图。
图2是本发明实施例提供的NiCo2S4基的刚直竹节状氮掺杂碳纳米管的(a-c)SEM,(d,h)TEM,(e-g)HRTEM和相应的元素映射(i)图像。
图3是本发明实施例提供的NiCo2S4基的刚直竹节状氮掺杂碳纳米管的XRD图。
图4是本发明实施例提供的光谱分析图。
图中:(a)NiCo2S4基的刚直竹节状氮掺杂碳纳米管的XPS,(b)C 1s,(c)N 1s,(d)Ni2p,(e)S 2p和(f)Co 2p的高分辨XPS光谱。
图5是本发明实施例提供的拉曼光谱图。
图中:(a)NiCo2S4基的刚直竹节状氮掺杂碳纳米管的拉曼光谱;G和D带分别与石墨的sp2-碳和无序或缺陷碳有关。(b)NiCo2S4基的刚直竹节状氮掺杂碳纳米管的N2吸附等温线;(b)的插图是通过Barrett-Joyer-Halenda(BJH)方法从吸附支链获得的相应平均孔径和孔径分布。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种用于氧析出和氧还原的双功能催化剂及其制备方法,下面结合附图对本发明作详细的描述。
如图1所示,本发明实施例提供的用于氧析出和氧还原的双功能催化剂的制备方法包括:
S101,取泡沫镍,浸入HCl溶液中,取出用去离子水清洗,然后在烘箱中干燥;
S102,将步骤一的泡沫镍放入含有0.2M CoCl2·6H2O和0.1M NiCl2·6H2O的溶液中用循环伏安法在泡沫镍表面沉积氢氧化镍钴复合材料;
S103,将步骤二经过电沉积之后得到的泡沫镍取出,用水和乙醇洗涤三次,放入烘箱干燥;
S104,将步骤三的泡沫镍与三聚氰胺混合物和硫脲分别置于双区温度控制管式炉的下风口部和上风口部,加热到520°C,并在管式炉中保持2小时;然后将温度升至540℃并保持2小时; 最后,将其以3°C min-1的速率加热到800°C,并保持2 h。
下面结合具体实施例对本发明进一步进行描述。
1.1、在泡沫镍上合成二元NiCo基纳米片:
(1)实验前,准备若干个25mL烧杯,药匙,一个50mL烧杯, 50mL量筒一个,用王水浸泡洗净干燥后待用。
(2)制备5.0M的HCl溶液倒入烧杯中,取2.0×0.5×0.05cm的泡沫镍放入HCl溶液中浸泡20分钟,然后再烘箱中干燥5小时。
(3)将干燥后的泡沫镍当工作电极,放入含有0.2M CoCl2·6H2O和0.1 M NiCl2·6H2O的50ML电解液中,使用循环伏安法在-1.2V至0.2V的扫描范围内以5mV/s的扫描速率扫4圈。电沉积后,用水和乙醇小心洗涤样品,进行干燥。
1.2、NiCo2S4基的刚直竹节状氮掺杂碳纳米管催化剂合成:
将步骤1.1中的样品与2g三聚氰胺混合放入干净的陶瓷舟皿中,放入双区温度管式炉的下风口部位,将1g硫脲放入干净的陶瓷舟皿中,放入上风口部位,将混合物加热在520,540,800℃下各煅烧2小时,降到室温,得到NiCo2S4基的刚直竹节状氮掺杂碳纳米管催化剂。在此过程中,升温速率为3℃/min,从800℃到500℃降温速率为5℃/min,当温度低于500℃时自然降温到室温。
如图2所示,为 NiCo2S4基的刚直竹节状氮掺杂碳纳米管的(a-c)SEM,(d,h)TEM,(e-g)HRTEM和相应的元素映射(i)图像。
扫描电子显微镜图像(图2a-c)显示了NiCo2S4基的刚直竹节状氮掺杂碳纳米管形状,在经过程序煅烧之后,获得大量的致密且均匀的碳纳米管,并且这些碳纳米管呈现出刚直的竹节状,这些碳纳米管平均直径均匀,每个碳纳米管的尖端都有明显的纳米颗粒(图2d)。图2e-g显示出碳层包覆的纳米颗粒。图2f中晶面间距为0.14nm的晶面归属于C的(002)平面,图2g中晶格间距为0.17nm和0.3nm的晶面可以归属于(311)和(440)立方相NiCo2S4的平面。更重要的是,图2d-e中存在一些小直径的纳米粒子,结合映射图(图2i),碳包覆的NiCo2S4基纳米粒子均匀地分布在碳纳米管的表面上,可能导致碳纳米管具有更高的活性。
然后用XRD进行了表征, 对于NiCo2S4基的刚直竹节状氮掺杂碳纳米管的XRD图谱(图3),衍射峰可以标为NiCo2S4(JCPDS卡号20-0782),Co9S8(JCPDS卡号19-0364)和Ni9S8(JCPDS卡号22-1193),进一步证实了NiCo2S4基的刚直竹节状氮掺杂碳纳米管的形成。
对于图4a中的XPS分析,我们观察到C,N,O,S,Ni和Co元素,如图4b所示,C 1s的高分辨光谱中可以分为284.89 eV,285.2 eV,286.1 eV和288.5 eV的四个峰,分别对应于C =C,CN,CO和O = CO。来自高分辨率C1的C-O和O = C-O峰的存在表明存在与CNT相关的氧官能团。这些富氧官能团具有配位Ni2+和Co2+离子的能力,因此Ni和Co元素可以均匀地分布在碳纳米管上,这也对应于映射图中Ni和Co元素的均匀分布。高分辨率的N 1s光谱揭示了四种氮的存在:吡啶氮,吡咯氮,石墨氮和氧化氮(图4c)。吡啶N可以增强电子给体的能力,这对电化学过程有利。大量的吡啶N还可以与金属原子配位,以优化局部电子结构并提高电导率。 Ni 2p光谱可分为Ni2+峰,Ni3+峰和两个摇动卫星峰(图4d)。S 2p频谱可分为两个主峰和一个卫星峰。163.8 eV处的成分是金属-硫键,而162.1 eV处的成分可归因于表面上低配位的硫离子。Co 2p3/2和Co 2p1/2及其对应的卫星峰值可以分别对应(图4f)。所有结果表明,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的形成,该杂化物可作为高效,稳定的电催化剂。
此外,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的ID / IG值为1.02(图5a),表明杂化物具有良好的导电性。NiCo2S4基的刚直竹节状氮掺杂碳纳米管催化剂的N2吸附-解吸(图5b)显示出典型的IV型等温线,具有清晰的磁滞回线,表明存在大量的介孔。孔径主要分布在2-6 nm。 根据Brunauer-Emmett-Teller(BET)测试,该催化剂具有81.8 cm2 g-1的高表面积和0.236 cm3 g-1的孔体积。 高孔隙率导致催化剂具有更多的催化活性位点并促进电子传输
为了评估OER性能,在0.1M KOH溶液中使用三电极系统进行测试。我们首先进行LSV测试。 NiCo2S4基的刚直竹节状氮掺杂碳纳米管的起始电位仅为1.52 V(相对于电化学活性表面积和可逆氢电极),为了进一步评估NiCo2S4基的刚直竹节状氮掺杂碳纳米管电极的催化反应效率,测试了电阻抗光谱(EIS),与泡沫镍和NiCo纳米片相比,杂化物的线性部分具有更大的斜率,表明电极内更好的传质性能。它的过电位仅为290 mV,远低于泡沫镍和NiCo纳米片的过电位。与泡沫镍和NiCo纳米片催化剂的Tafel斜率(245 mV dec-1和344 mVdec-1)相比,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的较低Tafel斜率为166 mV dec-1。显示出NiCo2S4基的刚直竹节状氮掺杂碳纳米管强的动力学。稳定性测试结果表明,连续反应10小时后,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的催化活性下降了约37%。
对于氧还原,与N2饱和KOH溶液中的CV相比,在O2饱和KOH溶液中可以清楚地观察到明显的还原峰,表明NiCo2S4基的刚直竹节状氮掺杂碳纳米管对ORR具有良好的电催化活性。根据不同速度下的线性扫描伏安法(LSV)曲线,NiCo2S4基的刚直竹节状氮掺杂碳纳米管表现出较高的ORR活性,在1600 rpm下的启动电位为0.95 V。K-L图的线性显示了与溶解氧浓度和不同电势下相似数量的电子转移(n)相关的一级反应动力学。与20%Pt/C的商业交易相比(n = 3.98),在0.3-0.7V中,n的值约为3.7,表明ORR路径接近4e-。NiCo2S4基的刚直竹节状氮掺杂碳纳米管(81 mV dec-1)和Pt/C(71 mV dec-1)的Tafel斜率仅相差10 mVdec-1,表明它们具有相似的电子转移效率。同时,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的过氧化氢产率(%H2O2)。 H2O2的产率范围约为28%-50%,计算出的电子转移数约为3.45,与基于RDE结果从K-L图获得的结果相近。通过比较,在溶液中添加0.5M甲醇后,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的电流密度没有明显变化,表明NiCo2S4基的刚直竹节状氮掺杂碳纳米管具有优异的甲醇耐受性。此外,NiCo2S4基的刚直竹节状氮掺杂碳纳米管的电流密度在0.6 V下连续反应7小时后仍保持78%,而20%的商业Pt/C显示约60%的更高电流损耗,表明NiCo2S4基的刚直竹节状氮掺杂碳纳米管具有更好的稳定性。
本发明是在碳纳米管中制造封装的基于过渡金属的纳米粒子,从而增强电导率并避免电催化的“死体积”。通过电沉积和程序煅烧方法用封装的NiCo2S4基纳米颗粒改性的纳米介导的刚直竹节状氮掺杂碳纳米管,其中二元Ni-Co基纳米片(首先通过电沉积反应在泡沫镍的表面引入NiCo纳米颗粒),然后通过程序煅烧硫脲以及在双温控管式炉中将表面纳米尺寸的泡沫镍和三聚氰胺的混合物进行程序煅烧获得。NiCo2S4基纳米颗粒均匀地分散在碳纳米管表面上,而不仅仅是在尖端或内部。选择硫脲作为杂原子源,以构建被封装的基于NiCo2S4的纳米粒子改性的纳米介导的直竹形氮掺杂碳纳米管,有望改善NiCo2S4的固有电导率以增强催化活性。此外,将杂原子引入纳米结构提供了一种有希望的解决方案,以促进直竹形氮掺杂碳纳米管的活化和形成,这可能归因于基于NiCo2S4的纳米结构的微观表面化学环境变化引起的碳杂化变化。NiCo2S4基刚直竹节状氮掺杂碳纳米管催化剂的显着特征在于,与20%Pt/C相比,OER中的Eonset = 1.52 V,ORR中的Eonset = 0.95 V,耐久性强得多,并且甲醇耐受性强。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种用于氧析出和氧还原的双功能催化剂,其特征在于,所述用于氧析出和氧还原的双功能催化剂为NiCo2S4基的刚直竹节状氮掺杂碳纳米管;
所述用于氧析出和氧还原的双功能催化剂的制备方法包括:
步骤一,取泡沫镍,浸入HCl溶液中,取出用去离子水清洗,然后在烘箱中干燥;
步骤二,将步骤一的泡沫镍放入含有0.2M CoCl2·6H2O和0.1M NiCl2·6H2O的溶液中用循环伏安法在泡沫镍表面沉积氢氧化镍钴复合材料;
步骤三,将步骤二经过电沉积之后得到的泡沫镍取出,用水和乙醇洗涤三次,放入烘箱干燥;
步骤四,将步骤三的泡沫镍与三聚氰胺混合物和硫脲分别置于双区温度控制管式炉的下风口部和上风口部,加热到520℃,并在管式炉中保持2小时;然后将温度升至540℃并保持2小时;最后,将其以3℃ min-1的速率加热到800℃,并保持2h。
2.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤一中,所述泡沫镍尺寸为2.0×0.5×0.05cm。
3.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤一中,HCl的浓度为5.0M。
4.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤一中,干燥时间为5小时。
5.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤二中,CoCl2·6H2O,NiCl2·6H2O和水的摩尔比为2:1:556。
6.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤二中,循环伏安法的扫描范围是-1.2V到0.2V。
7.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤二中,循环伏安法的扫描速率是5mV/s。
8.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤二中,循环伏安法的扫描圈数是4圈。
9.如权利要求1所述的用于氧析出和氧还原的双功能催化剂,其特征在于,步骤四中,加入的三聚氰胺为2g,加入的硫脲为1g。
CN202011411470.9A 2020-12-03 2020-12-03 一种用于氧析出和氧还原的双功能催化剂及其制备方法 Active CN112536058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011411470.9A CN112536058B (zh) 2020-12-03 2020-12-03 一种用于氧析出和氧还原的双功能催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011411470.9A CN112536058B (zh) 2020-12-03 2020-12-03 一种用于氧析出和氧还原的双功能催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112536058A CN112536058A (zh) 2021-03-23
CN112536058B true CN112536058B (zh) 2022-05-24

Family

ID=75017092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011411470.9A Active CN112536058B (zh) 2020-12-03 2020-12-03 一种用于氧析出和氧还原的双功能催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112536058B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094446B (zh) * 2022-05-10 2023-08-11 昆明理工大学 一种基于双功能催化剂的便携式过氧化氢反应器及其制备方法
CN115215305A (zh) * 2022-07-15 2022-10-21 中北大学 一种有效分散石墨相氮化碳的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159287A (zh) * 2015-04-03 2016-11-23 中国科学院福建物质结构研究所 一种复合型燃料电池阴极催化剂NGPC/NCNTs及其制备方法
CN110102330A (zh) * 2019-05-21 2019-08-09 大连理工大学 一种Co@N,S(two)-Kb高分散核壳结构催化剂、制备方法及其应用
CN110911698A (zh) * 2019-12-02 2020-03-24 济南大学 一种氧还原催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159287A (zh) * 2015-04-03 2016-11-23 中国科学院福建物质结构研究所 一种复合型燃料电池阴极催化剂NGPC/NCNTs及其制备方法
CN110102330A (zh) * 2019-05-21 2019-08-09 大连理工大学 一种Co@N,S(two)-Kb高分散核壳结构催化剂、制备方法及其应用
CN110911698A (zh) * 2019-12-02 2020-03-24 济南大学 一种氧还原催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries;Xiaopeng Han et al;《Nano Energy》;20161206;第31卷;第542页左栏第3段 *

Also Published As

Publication number Publication date
CN112536058A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
Kang et al. In-situ formation of MOF derived mesoporous Co 3 N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction
Xiang et al. Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting
Ai et al. Ultrathin graphene layers encapsulating nickel nanoparticles derived metal–organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions
Xuan et al. Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts
Ren et al. Well-defined Mo2C nanoparticles embedded in porous N-doped carbon matrix for highly efficient electrocatalytic hydrogen evolution
Zhu et al. 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution
Ren et al. Trimetal-based N-doped carbon nanotubes arrays on Ni foams as self-supported electrodes for hydrogen/oxygen evolution reactions and water splitting
Mo et al. Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction
CN109847778B (zh) 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
Zhang et al. Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting
Peng et al. Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting
Ashok et al. Development of Co/Co9S8 metallic nanowire anchored on N-doped CNTs through the pyrolysis of melamine for overall water splitting
Srinivas et al. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance
Li et al. Synthesis of hollow cobalt phosphide nanocrystals with ultrathin shells anchored on reduced graphene oxide as an electrocatalyst toward hydrogen evolution
Li et al. Ni (OH) 2 microspheres in situ self-grown on ultra-thin layered g-C3N4 as a heterojunction electrocatalyst for oxygen evolution reaction
Charles et al. Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction
Liu et al. ZIF-67-derived dodecahedral Co@ N-doped graphitized carbon protected by a porous FeS2 thin-layer as an efficient catalyst to promote the oxygen reduction reaction
Jamesh et al. ORR/OER activity and zinc-air battery performance of various kinds of graphene-based air catalysts
Wang et al. MoS2 nanosheets grown vertically on N-doped carbon nanotubes embedded CoP nanoparticles for efficient hydrogen evolution
Zhang et al. Synergistic effect of three-dimensional cobalt diselenide/carbon nanotube arrays composites for enhanced hydrogen evolution reaction
Han et al. Self-supported Co (CO3) 0.5 (OH)· 0.11 H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting
Guan et al. Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction
Li et al. CoP nanoparticles encapsulated by graphitic layers and anchored to N-doped carbon nanoplates for enhanced bifunctional electrocatalytic properties for overall water splitting
Yan et al. Cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery
Li et al. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240218

Address after: 252000 North Road, 100 meters west of Zhenxing Road Maternal and Child Health Hospital, Chongwen Street, Guanxian County, Liaocheng City, Shandong Province

Patentee after: Shandong Chaoyu Energy Technology Co.,Ltd.

Country or region after: China

Address before: No. 336, West Road, South Xin Zhuang, Shandong, Shandong

Patentee before: University of Jinan

Country or region before: China