CN110904440B - 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法 - Google Patents

可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法 Download PDF

Info

Publication number
CN110904440B
CN110904440B CN201911233667.5A CN201911233667A CN110904440B CN 110904440 B CN110904440 B CN 110904440B CN 201911233667 A CN201911233667 A CN 201911233667A CN 110904440 B CN110904440 B CN 110904440B
Authority
CN
China
Prior art keywords
buffer layer
coating
layer material
heat treatment
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911233667.5A
Other languages
English (en)
Other versions
CN110904440A (zh
Inventor
雷黎
李进展
赵高扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201911233667.5A priority Critical patent/CN110904440B/zh
Publication of CN110904440A publication Critical patent/CN110904440A/zh
Application granted granted Critical
Publication of CN110904440B publication Critical patent/CN110904440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,使用化学溶液沉积法制成含有相应金属元素的凝胶薄膜并经热处理得到化学组分为Y2(Zr1‑xTix)2O7的氧化物薄膜;且Ti4+离子被掺杂进入Y2Zr2O7的晶格中形成具有氧空位有序排列的烧绿石结构的Y2(Zr1‑xTix)2O7缓冲层材料。该缓冲层材料可有效地阻隔YBCO超导层与NiW金属基带之间的氧元素扩散。其制备方法:步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照一定的金属阳离子摩尔比溶解于溶剂中,得到前驱溶液;步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr1‑xTix)2O7缓冲层。

Description

可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法
技术领域
本发明涉及高温超导涂层导体应用技术领域,具体涉及一种可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,本发明还涉及一种该缓冲层材料的制备方法。
背景技术
高温超导涂层导体通常包括NiW金属基带、中间缓冲层及顶部钇钡铜氧(YBCO)超导层三部分,常用的超导涂层导体缓冲层材料包括CeO2、YSZ、La2Zr2O7、Y2O3等。锆酸镧La2Zr2O7是一种具有烧绿石结构的稀土锆酸盐,并且已经应用于超导缓冲层领域。然而,由于La2Zr2O7与NiW基带间存在相对较大的晶格失配,致使La2Zr2O7缓冲层与NiW基带的界面处存在较大的晶格应力,导致La2Zr2O7缓冲层在使用过程中容易剥落,从而降低高温超导涂层导体的整体性能。
Y2Zr2O7是一种具有缺陷萤石结构的稀土锆酸盐,其与NiW基带间的晶格失配很小,且可通过对其掺杂不同比例的Ti4+离子,形成Y2(Zr1-xTix)2O7置换固溶体。这种掺杂方法可以微调Y2Zr2O7的晶格常数,并仍然保持Y2(Zr1-xTix)2O7与NiW基带间很小的晶格失配,甚至使Y2Zr2O7原本的缺陷萤石结构发生相变。当Y2(Zr1-xTix)2O7掺Ti4+的比例大于0.1时,会形成氧空位有序排列的烧绿石结构;且其掺Ti4+的比例越大,烧绿石结构中氧空位排列的有序程度就越高,使得氧原子在掺Ti4+比例较高的Y2(Zr1-xTix)2O7中的迁移也变得越困难,即氧原子很难以迁移扩散的方式穿过掺Ti4+比例较高的Y2(Zr1-xTix)2O7缓冲层。所以Ti4+离子掺杂比例较高的Y2(Zr1-xTix)2O7缓冲层可有效阻隔氧元素扩散,并有望发展成为一种优秀的超导缓冲层材料。
发明内容
本发明的目的是提供一种可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,其具有氧空位高度有序排列的烧绿石结构,该缓冲层材料可有效地阻隔YBCO超导层与NiW金属基带之间的氧元素扩散。
本发明的另一个目的是提供一种可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料的制备方法。
本发明所采用的技术方案是,可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,为使用化学溶液沉积法制成含有相应金属元素的凝胶薄膜并经热处理得到化学组分为Y2(Zr1- xTix)2O7的氧化物薄膜;且Ti4+离子被掺杂进入Y2Zr2O7的晶格中形成具有氧空位有序排列的烧绿石结构的Y2(Zr1-xTix)2O7缓冲层材料,其中x的取值范围是0.1≤x≤1。
本发明所采用的另一个技术方案是,可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照Y:(Zr+Ti)=1:1,Zr:Ti=(1-x):x的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.2~0.4mol/L的前驱溶液,其中x的取值范围是0.1≤x≤1;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr1-xTix)2O7缓冲层,其中x的取值范围是0.1≤x≤1。
本发明的特点还在于,
步骤1中,溶剂为单一的无水乙醇试剂;或单一的无水甲醇试剂;或由乙二醇甲醚与无水乙醇任意比组成的混合试剂;或乙二醇甲醚与无水甲醇任意比组成的混合试剂;螯合剂为乙酰丙酮或苯酰丙酮。
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在100℃~200℃下预干燥处理30min~60min,再将干燥后的凝胶涂层放入另一已升温到400℃~500℃的箱式电炉中进行热处理,在400℃~500℃保温30min~60min,重复上述步骤3~5次,当制备最后一层Y2(Zr1-xTix)2O7缓冲层薄膜时,将其放在预设温度为100℃~200℃的箱式电炉中以10~20℃/min的升温速度升温至850℃~1050℃,并保温30min~60min,以获得所需的结晶性良好的Y2(Zr1-xTix)2O7相。
步骤2最终得到的Y2(Zr1-xTix)2O7缓冲层厚度为150nm~250nm。
本发明的有益效果是,
1)高比例Ti4+离子掺杂的Y2(Zr1-xTix)2O7缓冲层材料(Y2(Zr0.3Ti0.7)2O7、Y2(Zr0.1Ti0.9)2O7),其与NiW基带间的晶格失配很小,可有效避免缓冲层的剥落;且其具有氧空位高度有序排列的烧绿石型晶体结构,可起到有效阻隔氧元素扩散的作用。因而Y2(Zr0.3Ti0.7)2O7、Y2(Zr0.1Ti0.9)2O7有望应用于高温超导涂层导体缓冲层的开发。
2)Y2(Zr1-xTix)2O7缓冲层的制备方法,通过对稀土锆酸盐的锆原子位掺杂适当的金属离子可以诱发结构相变,使其转变为氧空位高度有序排列的烧绿石型晶体结构,从而有效地阻隔YBCO超导层与NiW基带间的氧元素扩散,显著提高高温超导涂层导体的整体性能。
附图说明
图1是本发明对比例中硅基片上Y2(Zr0.95Ti0.05)2O7薄膜的截面透射电子显微图片;
图2是本发明是实施例1中硅基片上Y2(Zr0.3Ti0.7)2O7薄膜的截面透射电子显微图片;
图3是本发明是实施例2中硅基片上Y2(Zr0.1Ti0.9)2O7薄膜的截面透射电子显微图片。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,为使用化学溶液沉积法制成含有相应金属元素的凝胶薄膜并经热处理得到化学组分为Y2(Zr1-xTix)2O7的氧化物薄膜;且Ti4+离子被掺杂进入Y2Zr2O7的晶格中形成具有氧空位有序排列的烧绿石结构的Y2(Zr1-xTix)2O7缓冲层材料,其中x的取值范围是0.1≤x≤1。
本发明还提供了上述可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照Y:(Zr+Ti)=1:1,Zr:Ti=(1-x):x的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.2~0.4mol/L的前驱溶液,其中x的取值范围是0.1≤x≤1;
步骤1中,溶剂为单一的无水乙醇试剂;或单一的无水甲醇试剂;或由乙二醇甲醚与无水乙醇任意比组成的混合试剂;或乙二醇甲醚与无水甲醇任意比组成的混合试剂;;螯合剂为乙酰丙酮或苯酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr1-xTix)2O7缓冲层,其中x的取值范围是0.1≤x≤1。
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在100℃~200℃下预干燥处理30min~60min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到400℃~500℃的箱式电炉中进行热处理,在400℃~500℃保温30min~60min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤3~5次,当制备最后一层Y2(Zr1-xTix)2O7缓冲层薄膜时,将其放在预设温度为100℃~200℃的箱式电炉中以10~20℃/min的升温速度升温至850℃~1050℃,并保温30min~60min,以获得所需的结晶性良好的Y2(Zr1-xTix)2O7相。步骤2最终得到的Y2(Zr1-xTix)2O7缓冲层厚度为150nm~250nm。
也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2(Zr1-xTix)2O7缓冲层。
对比例
此外,为了对比分析,我们还采用类似的方法在单晶硅衬底上制备了Ti4+比例x=0.05的Y2(Zr0.95Ti0.05)2O7薄膜,具体制备方法步骤如下:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照金属阳离子摩尔比Y:(Zr+Ti)=1:1,Zr:Ti=0.95:0.05的摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.3mol/L的前驱溶液;步骤1中,溶剂为体积比为1:1的乙二醇甲醚与无水乙醇的混合试剂,螯合剂为乙酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr0.95Ti0.05)2O7缓冲层薄膜;
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在120℃下预干燥处理30min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到450℃的箱式电炉中进行热处理,在450℃保温40min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤4次,当制备最后一层Y2(Zr0.95Ti0.05)2O7缓冲层薄膜时,将其放在预设温度为150℃的箱式电炉中以15℃/min的升温速度升温至900℃,并保温50min,以获得所需的结晶性良好的Y2(Zr0.95Ti0.05)2O7相。最终的缓冲层厚度为209nm。也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2(Zr0.95Ti0.05)2O7缓冲层薄膜,如图1所示。
这里需要说明的是,本发明所述的制备方法是用于制备Y2(Zr1-xTix)2O7缓冲层薄膜材料的。但是,由于所采用的衬底材料为单晶硅,而硅在空气中高温热处理时会被氧化为二氧化硅(SiO2),该SiO2层通常位于单晶硅衬底和Y2(Zr1-xTix)2O7缓冲层薄膜之间。因此,我们可以通过测量Y2(Zr1-xTix)2O7样品中SiO2层的厚度来分析不同Ti4+掺杂比例Y2(Zr1-xTix)2O7缓冲层薄膜的阻隔氧元素扩散的能力。
实施例1
可有效阻隔氧扩散的Y2(Zr0.3Ti0.7)2O7缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照金属阳离子摩尔比Y:(Zr+Ti)=1:1,Zr:Ti=(1-0.7):0.7的摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.2mol/L的前驱溶液,其中x=0.7;
步骤1中,溶剂为体积比为3:7无水乙醇与乙二醇甲醚组成的混合试剂;螯合剂为苯酰丙酮。
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr0.3Ti0.7)2O7缓冲层,其中x=0.7。
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在100℃下预干燥处理30min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到400℃的箱式电炉中进行热处理,在400℃保温30min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤5次,当制备最后一层Y2(Zr0.3Ti0.7)2O7缓冲层薄膜时,将其放在预设温度为100℃的箱式电炉中以10℃/min的升温速度升温至850℃,并保温30min,以获得所需的结晶性良好的Y2(Zr0.3Ti0.7)2O7相,最终的缓冲层厚度为199nm。
图2为实施例1所制备的Y2(Zr0.3Ti0.7)2O7样品的截面透射电子显微图片,其中,Y2(Zr0.3Ti0.7)2O7薄膜的厚度为199nm,SiO2氧化层的厚度为39nm。通过与图1对比可知,Y2(Zr0.3Ti0.7)2O7薄膜的厚度与Y2(Zr0.95Ti0.05)2O7薄膜的厚度209nm相差很小。而Y2(Zr0.3Ti0.7)2O7薄膜的SiO2氧化层厚度远小于Y2(Zr0.95Ti0.05)2O7薄膜的SiO2氧化层厚度86nm。所以,当Y2(Zr0.3Ti0.7)2O7薄膜与Y2(Zr0.95Ti0.05)2O7薄膜的厚度完全相同时,具有烧绿石结构的Y2(Zr0.3Ti0.7)2O7薄膜阻隔氧元素扩散进入硅片的效果远强于具有缺陷萤石结构的Y2(Zr0.95Ti0.05)2O7薄膜。因此,Y2(Zr0.3Ti0.7)2O7薄膜有望成为一种具有较强阻隔氧元素扩散性能的超导缓冲层材料。
实施例2
可有效阻隔氧扩散的Y2(Zr0.1Ti0.9)2O7缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照金属阳离子摩尔比Y:(Zr+Ti)=1:1,Zr:Ti=0.1:0.9的摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.4mol/L的前驱溶液,其中x=0.9;
步骤1中,溶剂体积比为2:3的乙二醇甲醚和无水甲醇组成的混试剂;螯合剂为乙酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr0.1Ti0.9)2O7缓冲层;
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在150℃下预干燥处理60min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到500℃的箱式电炉中进行热处理,在500℃保温60min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤5次,当制备最后一层Y2(Zr0.1Ti0.9)2O7缓冲层薄膜时,将其放在预设温度为200℃的箱式电炉中以18℃/min的升温速度升温至950℃,并保温60min,以获得所需的结晶性良好的Y2(Zr0.1Ti0.9)2O7相。最终的缓冲层厚度为193nm。也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2(Zr0.1Ti0.9)2O7缓冲层。
图3为实施例2所制备的Y2(Zr0.1Ti0.9)2O7样品的截面透射电子显微图片,其中,Y2(Zr0.1Ti0.9)2O7薄膜的厚度为193nm,SiO2氧化层的厚度为15nm。通过与图1、图2对比可知,Y2(Zr0.1Ti0.9)2O7薄膜的厚度与Y2(Zr0.95Ti0.05)2O7薄膜的厚度209nm相差很小,与Y2(Zr0.3Ti0.7)2O7薄膜的厚度199nm也相差很小。而Y2(Zr0.1Ti0.9)2O7薄膜的SiO2氧化层厚度远远小于Y2(Zr0.95Ti0.05)2O7薄膜的SiO2氧化层厚度86nm,而且比Y2(Zr0.3Ti0.7)2O7薄膜的SiO2氧化层厚度39nm还要小许多。所以,当Y2(Zr0.1Ti0.9)2O7薄膜与Y2(Zr0.95Ti0.05)2O7薄膜、Y2(Zr0.3Ti0.7)2O7薄膜的厚度完全相同时,具有烧绿石结构的Y2(Zr0.1Ti0.9)2O7薄膜阻隔氧元素扩散进入硅片的能力远远强于具有缺陷萤石结构的Y2(Zr0.95Ti0.05)2O7薄膜,而且比同样具有烧绿石结构的Y2(Zr0.3Ti0.7)2O7薄膜的这种阻隔效果还要好。因此,Y2(Zr0.1Ti0.9)2O7薄膜有望成为一种具有很强阻隔氧元素扩散性能的超导缓冲层材料。
实施例3
可有效阻隔氧扩散的Y2Ti2O7缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照Y:Ti=1:1,的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.2mol/L的前驱溶液,其中x的取值是1;
步骤1中,溶剂为无水乙醇试剂;螯合剂为苯酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2Ti2O7缓冲层。
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在100℃下预干燥处理30min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到400℃的箱式电炉中进行热处理,在400℃保温30min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤3次,当制备最后一层Y2Ti2O7缓冲层薄膜时,将其放在预设温度为100℃的箱式电炉中以10℃/min的升温速度升温至850℃℃,并保温30min,以获得所需的结晶性良好的Y2Ti2O7相。最终的缓冲层厚度为150nm。也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2Ti2O7缓冲层。
实施例4
可有效阻隔氧扩散的Y2(Zr0.6Ti0.4)2O7缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照Y:(Zr+Ti)=1:1,Zr:Ti=0.6:0.4的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.4mol/L的前驱溶液,其中x=0.4;
步骤1中,溶剂为无水甲醇;螯合剂为苯酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr0.6Ti0.4)2O7缓冲层;
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在200℃下预干燥处理60min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到500℃的箱式电炉中进行热处理,在500℃保温60min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤5次,当制备最后一层Y2(Zr0.6Ti0.4)2O7缓冲层薄膜时,将其放在预设温度为200℃的箱式电炉中以20℃/min的升温速度升温至1050℃,并保温60min,以获得所需的结晶性良好的Y2Y2(Zr0.6Ti0.4)2O7相。最终的缓冲层厚度为250nm。也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2(Zr0.6Ti0.4)2O7缓冲层。
实施例5
可有效阻隔氧扩散的Y2(Zr0.5Ti0.5)2O7缓冲层材料的制备方法,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照按照Y:(Zr+Ti)=1:1,Zr:Ti=0.5:0.5的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.3mol/L的前驱溶液,其中x=0.5;
步骤1中,溶剂为无水乙醇;螯合剂为苯酰丙酮;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr0.5Ti0.5)2O7缓冲层;
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在150℃下预干燥处理40min,使凝胶涂层内的有机溶剂和螯合剂完全挥发掉。再将干燥后的凝胶涂层放入另一已升温到450℃的箱式电炉中进行热处理,在450℃保温45min,以使涂层内的金属有机物完全分解为相应的金属氧化物。重复上述步骤4次,当制备最后一层Y2(Zr0.5Ti0.5)2O7缓冲层薄膜时,将其放在预设温度为150℃的箱式电炉中以15℃/min的升温速度升温至900℃,并保温40min,以获得所需的结晶性良好的Y2(Zr0.5Ti0.5)2O7相。最终的缓冲层厚度为200nm。也可将提拉制膜速度增大到足够大,经过一次提拉制膜和一次热处理得到,即可制得Y2(Zr0.5Ti0.5)2O7缓冲层。

Claims (3)

1.可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料,其特征在于,为使用化学溶液沉积法制成含有相应金属元素的凝胶薄膜并经热处理得到化学组分为Y2(Zr1-xTix)2O7的氧化物薄膜;且Ti4+离子被掺杂进入Y2Zr2O7的晶格中形成具有氧空位有序排列的烧绿石结构的Y2(Zr1-xTix)2O7缓冲层材料,其中x的取值范围是0.1≤x≤1。
2.可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料的制备方法,其特征在于,具体按照以下步骤实施:
步骤1、胶体配制:将六水硝酸钇、八水氧氯化锆、钛酸丁酯按照Y:(Zr+Ti)=1:1,Zr:Ti=(1-x):x的金属阳离子摩尔比溶解于溶剂中,按金属离子的总摩尔数计算,得到总的金属离子浓度为0.2~0.4mol/L的前驱溶液,其中x的取值范围是0.1≤x≤1;
步骤2、将步骤1制得的前驱液涂敷于单晶硅基片上进行适当的热处理,制得Y2(Zr1- xTix)2O7缓冲层,其中x的取值范围是0.1≤x≤1;
步骤1中,溶剂为单一的无水乙醇试剂;或单一的无水甲醇试剂;或由乙二醇甲醚与无水乙醇任意比组成的混合试剂;或乙二醇甲醚与无水甲醇任意比组成的混合试剂;螯合剂为乙酰丙酮或苯酰丙酮;
步骤2的具体实施步骤为:采用浸渍提拉法将步骤1制得的前驱液涂敷于硅基片上形成凝胶涂层,然后将其放置在箱式电炉中在100℃~200℃下预干燥处理30min~60min,再将干燥后的凝胶涂层放入另一已升温到400℃~500℃的箱式电炉中进行热处理,在400℃~500℃保温30min~60min,重复上述步骤3~5次,当制备最后一层Y2(Zr1-xTix)2O7缓冲层薄膜时,将其放在预设温度为100℃~200℃的箱式电炉中以10~20℃/min的升温速度升温至850℃~1050℃,并保温30min~60min,以获得所需的结晶性良好的Y2(Zr1-xTix)2O7相。
3.根据权利要求2所述的可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料的制备方法,其特征在于,步骤2最终得到的Y2(Zr1-xTix)2O7缓冲层厚度为150nm~250nm。
CN201911233667.5A 2019-12-05 2019-12-05 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法 Active CN110904440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911233667.5A CN110904440B (zh) 2019-12-05 2019-12-05 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911233667.5A CN110904440B (zh) 2019-12-05 2019-12-05 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110904440A CN110904440A (zh) 2020-03-24
CN110904440B true CN110904440B (zh) 2021-09-10

Family

ID=69822663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911233667.5A Active CN110904440B (zh) 2019-12-05 2019-12-05 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110904440B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038030B4 (de) * 2004-08-05 2007-10-25 Trithor Gmbh Verfahren zur Herstellung eines Hochtemperatur-Supraleiters
US7683010B2 (en) * 2005-07-29 2010-03-23 Ut-Battelle, Llc Doped LZO buffer layers for laminated conductors
JP4258536B2 (ja) * 2006-08-11 2009-04-30 独立行政法人産業技術総合研究所 結晶化金属酸化物薄膜の製造方法
CN101281806B (zh) * 2008-06-04 2010-07-28 西南交通大学 高分子辅助沉积制备高温超导涂层导体缓冲层的方法
CN101337828B (zh) * 2008-08-28 2012-02-29 西北有色金属研究院 一种烧绿石型Nd2Mo2O7缓冲层的制备方法
WO2013008851A1 (ja) * 2011-07-11 2013-01-17 古河電気工業株式会社 超電導薄膜及び超電導薄膜の製造方法
CN102610322B (zh) * 2012-03-06 2014-07-30 上海大学 高温超导涂层导体双层缓冲层结构及其动态沉积方法
CN102751040B (zh) * 2012-05-29 2014-06-11 电子科技大学 高温超导双面带材的制备方法
CN103922738B (zh) * 2014-03-11 2015-07-01 北京工业大学 一种La2Zr2O7过渡层梯度薄膜结构、制备及应用
US11309480B2 (en) * 2015-05-11 2022-04-19 University Of Houston System Ultra-thin film superconducting tapes
CN105296967B (zh) * 2015-10-26 2018-07-10 西北有色金属研究院 一种烧绿石型Gd2Ti2O7缓冲层薄膜的制备方法

Also Published As

Publication number Publication date
CN110904440A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
Tarsa et al. Pulsed laser deposition of oriented In2O3 on (001) InAs, MgO, and yttria‐stabilized zirconia
JP2008509509A5 (zh)
US8409657B2 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP2007165153A6 (ja) 厚膜テープ状re系(123)超電導体の製造方法。
CA2659118A1 (en) Method for making high jc superconducting films and polymer-nitrate solutions used therefore
CN110904440B (zh) 可有效阻隔氧扩散的掺钛锆酸钇缓冲层材料及其制备方法
JP2003327496A (ja) 超電導体の製造方法
Ha et al. Thick SmBCO/IBAD-MgO coated conductor for high current carrying power applications
Yang et al. Influence of dip-coating temperature upon film thickness in chemical solution deposition
CN104928660B (zh) 超导涂层用YxCe1‑xO2/La2Zr2O7复合过渡层薄膜的制备方法
JP2003034527A (ja) 厚膜テープ状酸化物超電導体及びその製造方法
Wong-Ng et al. Phase evolution of Ba2YCu3O6+ x films during the BaF2 process
JP2013235766A (ja) 酸化物超電導薄膜とその形成方法
CN104538113B (zh) 超导涂层用Y2Ce2O7过渡层薄膜的制备方法
RU2481673C1 (ru) Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала
CN103497000B (zh) La2Zr2O7缓冲层薄膜的制备方法
JPWO2004100182A1 (ja) 希土類系酸化物超電導体及びその製造方法
Zhao et al. Fabrication of ${\rm YBa} _ {2}{\rm Cu} _ {3}{\rm O} _ {7-{\rm x}} $ Superconducting Films Using Low-Fluorine-Content Solution
CN107799415B (zh) 一种化学溶液法制备硼掺杂氧化物介电薄膜的方法
Xiao et al. Improving the Ferroelectric Properties of Nd: HfO $ _ {\text {2}} $ Thin Films by Stacking Hf $ _ {\text {0.5}} $ Zr $ _ {\text {0.5}} $ O $ _ {\text {2}} $ Interlayers
CN105063578B (zh) 一种双离子掺杂氧化铈缓冲层及其制备方法
Wesolowski et al. Understanding the MOD process between decomposition and YBCO formation
CN104233297A (zh) 高温超导带材基底的快速平整化方法
Teranishi et al. Dependence of crystallization time on microstructures and Jc properties of YBa2Cu3Oy films by TFA-MOD chemical solution process
JP5591900B2 (ja) 厚膜テープ状re系(123)超電導体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant