CN110880491A - 一种提高mos器件或集成电路抗辐照性能的方法 - Google Patents

一种提高mos器件或集成电路抗辐照性能的方法 Download PDF

Info

Publication number
CN110880491A
CN110880491A CN201911099567.8A CN201911099567A CN110880491A CN 110880491 A CN110880491 A CN 110880491A CN 201911099567 A CN201911099567 A CN 201911099567A CN 110880491 A CN110880491 A CN 110880491A
Authority
CN
China
Prior art keywords
pmos
source
drain diffusion
devices
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911099567.8A
Other languages
English (en)
Other versions
CN110880491B (zh
Inventor
安霞
任哲玄
李艮松
张兴
黄如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201911099567.8A priority Critical patent/CN110880491B/zh
Publication of CN110880491A publication Critical patent/CN110880491A/zh
Application granted granted Critical
Publication of CN110880491B publication Critical patent/CN110880491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7847Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate using a memorization technique, e.g. re-crystallization under strain, bonding on a substrate having a thermal expansion coefficient different from the one of the region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种提高MOS器件或集成电路抗辐照性能的方法,利用纳米级MOS器件引入的应变硅技术的工艺特点,在版图设计时适当调整PMOS器件源漏扩散区长度SA,最终增大沟道中的压应力,从而可以提高沟道中空穴迁移率,提高PMOS器件的常态性能,另一方面,还可以减小总剂量辐照引起的阈值电压漂移,从而减少总剂量辐照对纳米级MOS器件的影响,提高纳米级集成电路抗总剂量辐照性能。

Description

一种提高MOS器件或集成电路抗辐照性能的方法
技术领域
本发明涉及一种提高MOS器件或集成电路抗辐照性能的方法,特别涉及PMOS器件的版图设计,属于微电子可靠性领域。
背景技术
随着微电子器件技术结点进入90纳米以下,为克服严重的迁移率退化等问题,应变硅技术应用到超大规模集成电路制造中。应变硅技术通过不同的工艺方法,在器件沟道中引入应力,提高沟道载流子迁移率从而提高器件性能。例如对于65纳米技术代器件,以盖帽层技术为例,其基本原理是应变记忆技术,即通过在器件上覆盖一层应变层给器件施加一定应力,当退火温度超过转折点,多晶硅从弹性状态转变为塑性状态,这样即使去除应变层,应力也被记忆。此外,浅槽隔离(STI)工艺也会在器件沟道引入应力。因此,可以通过适当的版图设计影响器件沟道区中的应力大小。
另一方面,随着航天技术的飞速发展,对工作在空间辐射环境下的集成电路的性能提出了更高的要求。因此,抗辐照纳米级集成电路的需求不断上升。然而,现有的纳米级集成电路无法完全满足抗辐照需求。例如,以往的研究表明,65纳米技术代器件受总剂量辐照后关态泄漏电流退化相比以往技术代有了很大改善,但仍然存在一定的阈值电压漂移现象,可能引起数字电路性能降低甚至功能失效。为了使纳米级集成电路能够正常工作在恶劣的空间辐射环境中,有必要对器件进行进一步抗辐照优化。
由于沟道中的应力可能会影响沟道中的掺杂分布、或改变栅氧陷阱密度/界面质量等,进而会影响器件的抗辐照性能。因此,可以利用这一特点通过适当的版图设计来提高器件抗辐照性能。
发明内容
为了进一步提高MOS器件或集成电路的抗总剂量辐照性能,本发明提出一种MOS器件的版图设计方法,可以提高应用了应变硅技术的MOS器件或集成电路的抗总剂量辐照性能。
本发明提供的提高MOS器件或集成电路抗辐照性能的方法,其主要特征是,利用纳米级MOS器件引入的应变硅技术的工艺特点,在版图设计时适当调整PMOS器件源漏扩散区长度SA,最终增大沟道中的压应力,从而可以提高沟道中空穴迁移率,提高PMOS器件的常态性能,另一方面,还可以减小总剂量辐照引起的阈值电压漂移,从而减少总剂量辐照对纳米级MOS器件的影响,提高纳米级集成电路抗总剂量辐照性能。
本发明的技术方案如下:
一种提高MOS器件或集成电路的抗辐照性能的方法,所述MOS器件或集成电路应用了应变硅技术,包含纳米级PMOS器件;在进行版图设计时,对PMOS器件的源漏扩散区长度SA进行适当调整,减少总剂量辐照的影响。
本发明针对的待设计技术代器件中需应用了应变硅技术,包括90纳米、65纳米、45纳米、32纳米以及更先进的平面器件。
各个代工厂的各技术代中应变硅技术可能不同,本发明适用的应变硅技术包括源漏区嵌入技术(嵌入式锗硅/碳硅工艺)、应变记忆技术(SMT)等。
在版图设计中,涉及的PMOS器件包括核心(core)器件和输入输出(IO)器件。
所述源漏扩散区长度SA的定义是器件栅边缘沿着器件沟道方向到源漏扩散区边缘的长度,对于最小尺寸器件,源漏扩散区长度SA默认值一般小于0.2微米。本发明的方法在版图设计中适当增大PMOS器件的源漏扩散区长度SA,不同技术代和不同应变硅工艺中PMOS器件源漏扩散区长度SA增大幅度可能不同,源漏扩散区长度SA增大,使器件常态性能和抗辐照性能增强直至饱和。例如,对于65纳米技术代器件,PMOS器件源漏扩散区长度SA应增大至0.4微米及以上。
本发明方法中,增大PMOS器件源漏扩散区长度SA的方法可以是增加虚拟(dummy)栅或手动增大有源区版的面积等。除了PMOS器件版图作修改以外,其他工艺制备流程不变,按照标准工艺流程制备器件和电路。
为了确定源漏扩散区长度SA的最佳长度,可以采取下述方法:制备不同源漏扩散区长度SA的PMOS器件,并对比它们的抗总剂量辐照性能,获得符合具体应用需求的PMOS器件对应的源漏扩散区长度SA。
1)在进行版图设计时,更改PMOS器件源漏扩散区长度SA的大小,制备不同SA的PMOS器件;
2)测试不同SA的PMOS器件的转移特性曲线,并提取PMOS器件的阈值电压;
3)对不同SA的PMOS器件进行辐照实验,测试辐照后器件的转移特性曲线,并提取辐照后器件的阈值电压;
4)计算并对比不同SA的PMOS器件受辐照后的阈值电压漂移;
5)根据步骤5)获得的总剂量辐照引起的器件阈值电压漂移和步骤2)获得的辐照前器件的阈值电压的比值,对照具体应用要求(例如阈值电压漂移<5%),选取符合要求的最小源漏扩散区长度SA。
优选的,步骤2)和3)中可以使用恒定电流法或最大跨导法等常规方法提取器件的阈值电压。
步骤5)选取SA值时需要考虑具体应用需求,通常来说,SA越大,器件抗辐照性能越好,但更加浪费宝贵的版图面积,需要折中考虑。因此,选择符合应用需求的最小SA即可。
本发明利用应变硅技术的工艺特点,适当增大PMOS器件源漏扩散区长度SA,最终增大沟道中的压应力,从而可以提高沟道中空穴迁移率,提高PMOS器件的常态性能,另一方面,还可以减小总剂量辐照引起的阈值电压漂移,从而减少总剂量辐照对纳米级MOS器件的影响,提高纳米级集成电路抗总剂量辐照性能。
本发明具有如下优点:
1.操作简单:仅需要增大PMOS器件源漏扩散区长度SA;
2.适用范围广:适用于应用了应变硅技术的平面器件技术代;
3.最终效果佳:同时提高PMOS器件常态性能和抗总剂量辐照性能。
附图说明
图1为MOS器件源漏扩散区长度SA的示意图。
图2为不同源漏扩散区长度SA的65纳米PMOS器件在相同过驱动电压(Vov)下平均漏极电流对比柱状图,电流已归一化。
图3为不同源漏扩散区长度SA的65纳米PMOS器件经1Mrad(Si)总剂量辐照后平均阈值电压漂移量对比柱状图,阈值电压漂移量已归一化。
具体实施方式
本发明提出了一种提高MOS器件抗辐照性能的版图设计方法,该方法利用应变硅技术的工艺特点,适当增大PMOS器件源漏扩散区长度SA,最终增大沟道中的压应力,从而可以提高沟道中空穴迁移率,提高PMOS器件的常态性能,另一方面,还可以减小总剂量辐照引起的阈值电压漂移,从而减少总剂量辐照对纳米级MOS器件的影响,提高纳米级集成电路抗总剂量辐照性能。下面结合附图和实例对本发明进行详细说明。
实施例:制备不同源漏扩散区长度SA的65纳米核心PMOS器件,并对比它们的常态性能和抗总剂量辐照性能,以验证本发明的有效性。具体步骤如下:
步骤1.在进行版图设计时,手动更改65纳米PMOS器件源漏扩散区长度SA的大小,SA的示意图如图1所示,对于栅长为60纳米、栅宽为200纳米的器件,默认SA等于0.18微米;
步骤2.使用65纳米标准工艺制备不同SA的PMOS器件;
步骤3.测试得到65纳米PMOS器件的转移特性曲线;
步骤4.用恒定电流法提取65纳米PMOS器件的阈值电压,并对比相同过驱动电压(0.6V)下不同SA器件的漏极电流,如图2所示;
步骤5.用X射线对65纳米PMOS器件进行辐照实验,辐照过程在室温进行,辐照偏置为ALL0态(所有端接地),最终累积总剂量1Mrad(Si);
步骤6.测试辐照后的65纳米PMOS器件转移特性曲线;
步骤7.用恒定电流法提取辐照后器件的阈值电压,计算并对比不同SA器件受辐照后的阈值电压漂移,如图3所示。
由图2可知,对于65纳米核心PMOS器件,源漏扩散区长度SA越大,器件漏极电流越大,最大可以提高8%,证明增大SA可以提高沟道中的压应力,增大空穴迁移率。由图3可知,增大源漏扩散区长度SA至0.4微米以上,总剂量辐照引起的器件阈值电压漂移减小了50%以上。
因此,从上述实例中,本发明利用65纳米技术代应变硅技术的工艺特点,增大65纳米PMOS器件源漏扩散区长度SA后,器件辐照前的常态性能和抗辐照性能都得到了增强。本发明操作简单,并且可以同时提高PMOS器件常态性能和抗总剂量辐照性能。
以上描述的实施例子并非用于限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,可做各种的更动和润饰,本发明的保护范围以权利要求范围所界定。

Claims (9)

1.一种提高MOS器件或集成电路的抗辐照性能的方法,所述MOS器件或集成电路应用了应变硅技术,包含纳米级PMOS器件;在进行版图设计时,对PMOS器件的源漏扩散区长度SA进行适当调整,减少总剂量辐照的影响。
2.如权利要求1所述的方法,其特征在于,所述MOS器件为90纳米、65纳米、45纳米、32纳米或更先进的平面器件。
3.如权利要求1所述的方法,其特征在于,所述应变硅技术包括源漏区嵌入技术和应变记忆技术中的一种或多种。
4.如权利要求1所述的方法,其特征在于,所述PMOS器件是核心器件和/或输入输出器件。
5.如权利要求1所述的方法,其特征在于,所述MOS器件是65纳米技术代器件,在进行版图设计时使其中的PMOS器件源漏扩散区长度SA增大至0.4微米或以上。
6.如权利要求1所述的方法,其特征在于,在进行版图设计时,通过增加虚拟栅或手动增大有源区版面积的方式增大PMOS器件源漏扩散区长度SA。
7.如权利要求1所述的方法,其特征在于,通过下述方法确定PMOS器件的源漏扩散区长度SA:制备不同源漏扩散区长度SA的PMOS器件,并对比它们的抗总剂量辐照性能,获得符合具体应用需求的PMOS器件对应的源漏扩散区长度SA。
8.如权利要求7所述的方法,其特征在于,通过下述步骤确定PMOS器件的源漏扩散区长度SA:
1)在进行版图设计时,更改PMOS器件源漏扩散区长度SA的大小,制备不同SA的PMOS器件;
2)测试不同SA的PMOS器件的转移特性曲线,并提取PMOS器件的阈值电压;
3)对不同SA的PMOS器件进行辐照实验,测试辐照后器件的转移特性曲线,并提取辐照后器件的阈值电压;
4)计算并对比不同SA的PMOS器件受辐照后的阈值电压漂移;
5)根据步骤5)获得的总剂量辐照引起的器件阈值电压漂移和步骤2)获得的辐照前器件的阈值电压的比值,对照具体应用要求选取符合要求的最小源漏扩散区长度SA。
9.如权利要求8所述的方法,其特征在于,步骤2)和3)中使用恒定电流法或最大跨导法提取器件的阈值电压。
CN201911099567.8A 2019-11-12 2019-11-12 一种提高mos器件或集成电路抗辐照性能的方法 Active CN110880491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911099567.8A CN110880491B (zh) 2019-11-12 2019-11-12 一种提高mos器件或集成电路抗辐照性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911099567.8A CN110880491B (zh) 2019-11-12 2019-11-12 一种提高mos器件或集成电路抗辐照性能的方法

Publications (2)

Publication Number Publication Date
CN110880491A true CN110880491A (zh) 2020-03-13
CN110880491B CN110880491B (zh) 2021-08-03

Family

ID=69729784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911099567.8A Active CN110880491B (zh) 2019-11-12 2019-11-12 一种提高mos器件或集成电路抗辐照性能的方法

Country Status (1)

Country Link
CN (1) CN110880491B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697934A (zh) * 2020-06-18 2020-09-22 北京时代民芯科技有限公司 一种具有低失调特点的抗辐照加固比较器电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419986A (zh) * 2008-12-05 2009-04-29 北京时代民芯科技有限公司 一种防边缘漏电的双边缘抗总剂量辐射加固版图结构
CN101752420A (zh) * 2009-12-15 2010-06-23 北京时代民芯科技有限公司 一种总剂量辐射加固工形栅版图结构
CN104752513A (zh) * 2015-03-12 2015-07-01 西安电子科技大学 基于65nm工艺的冗余掺杂抗辐照MOS场效应管
CN104934475A (zh) * 2015-03-12 2015-09-23 西安电子科技大学 基于65nm工艺的环栅抗辐照MOS场效应管
CN105514169A (zh) * 2016-01-13 2016-04-20 西安电子科技大学 基于65nm工艺的超陡倒掺杂抗辐照MOS场效应管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419986A (zh) * 2008-12-05 2009-04-29 北京时代民芯科技有限公司 一种防边缘漏电的双边缘抗总剂量辐射加固版图结构
CN101752420A (zh) * 2009-12-15 2010-06-23 北京时代民芯科技有限公司 一种总剂量辐射加固工形栅版图结构
CN104752513A (zh) * 2015-03-12 2015-07-01 西安电子科技大学 基于65nm工艺的冗余掺杂抗辐照MOS场效应管
CN104934475A (zh) * 2015-03-12 2015-09-23 西安电子科技大学 基于65nm工艺的环栅抗辐照MOS场效应管
CN105514169A (zh) * 2016-01-13 2016-04-20 西安电子科技大学 基于65nm工艺的超陡倒掺杂抗辐照MOS场效应管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘红侠,王志,卓青青,王倩琼: "总剂量辐照下沟道长度对部分耗尽绝缘体上硅P型场效应晶体管电特性的影响", 《物理学报》 *
郝敏如: "应变Si MOS器件辐照特性及加固技术研究", 《中国博士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697934A (zh) * 2020-06-18 2020-09-22 北京时代民芯科技有限公司 一种具有低失调特点的抗辐照加固比较器电路
CN111697934B (zh) * 2020-06-18 2023-08-08 北京时代民芯科技有限公司 一种具有低失调特点的抗辐照加固比较器电路

Also Published As

Publication number Publication date
CN110880491B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
El-Mansy MOS device and technology constraints in VLSI
US8158472B2 (en) Structures of SRAM bit cells
Dennard et al. Design of ion-implanted MOSFET's with very small physical dimensions
Dennard et al. 1/spl mu/m MOSFET VLSI technology. II. Device designs and characteristics for high-performance logic applications
Acharya et al. Drain current saturation in line tunneling-based TFETs: An analog design perspective
De et al. Impact of super-steep-retrograde channel doping profiles on the performance of scaled devices
CN110880491B (zh) 一种提高mos器件或集成电路抗辐照性能的方法
Kumar et al. Dual-material gate-drain overlapped DG-TFET device for low leakage current design
Acharya et al. A Novel ${{V}} _ {\textsf {DSAT}} $ Extraction Method for Tunnel FETs and Its Implication on Analog Design
Rawat et al. Analytical modeling of subthreshold current and subthreshold swing of Gaussian-doped strained-Si-on-insulator MOSFETs
Salehuddin et al. Optimization of input process parameters variation on threshold voltage in 45 nm NMOS device
Vanlalawmpuia et al. Study on induced work-function variation of titanium metal gate on various electrical parameters for delta-doped layer germanium source vertical tunnel FET
US20100308415A1 (en) Analogue thin-oxide mosfet
CN109376483B (zh) 一种lod应力效应spice建模的方法
Liu et al. Total ionizing dose hardening of 45 nm fd-soi mosfets using body-tie biasing
Miura-Mattausch et al. MOSFET modeling gets physical
Muralidhar et al. Advanced FDSOI device design: The U-channel device for 7 nm node and beyond
US8927361B2 (en) High threshold voltage NMOS transistors for low power IC technology
Raychowdhury et al. Modeling and estimation of leakage in sub-90 nm devices
Jung et al. Fabrication and characterization of sidewall defined silicon-on-insulator single-electron transistor
Ghosh et al. Reliability aspects and performance analysis of single electron threshold logic based programmable logic array
Jain et al. SEU reliability analysis of advanced deep-submicron transistors
Lutze et al. Electrical limitations of advanced LOCOS isolation for deep submicrometer CMOS
Inagaki et al. A GIDL-Current model for advanced MOSFET technologies without binning
Santos et al. High-voltage NMOS design in fully implanted twin-well CMOS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant