CN110867835B - 智能功率模块及空调器 - Google Patents

智能功率模块及空调器 Download PDF

Info

Publication number
CN110867835B
CN110867835B CN201911179508.1A CN201911179508A CN110867835B CN 110867835 B CN110867835 B CN 110867835B CN 201911179508 A CN201911179508 A CN 201911179508A CN 110867835 B CN110867835 B CN 110867835B
Authority
CN
China
Prior art keywords
chip
circuit
power
power module
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911179508.1A
Other languages
English (en)
Other versions
CN110867835A (zh
Inventor
冯宇翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiken Semiconductor Technology Co ltd
Original Assignee
Midea Group Co Ltd
GD Midea Air Conditioning Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, GD Midea Air Conditioning Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201911179508.1A priority Critical patent/CN110867835B/zh
Publication of CN110867835A publication Critical patent/CN110867835A/zh
Application granted granted Critical
Publication of CN110867835B publication Critical patent/CN110867835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

本发明公开一种智能功率模块及空调器,该智能功率模块包括:功率管芯片,功率管芯片内集成有快速恢复二极管;驱动芯片,驱动芯片内集成有温度检测触发电路及驱动电路,温度检测触发电路与功率管芯片连接,驱动电路与功率管芯片的栅极连接;温度检测触发电路用于检测反映功率管芯片结温的快速恢复二极管正向导通电压,并在检测到快速恢复二极管正向导通电压达到预设阈值时,触发驱动电路控制功率管芯片停止工作。本发明提高了对功率管芯片的结温检测准确性和时效性。

Description

智能功率模块及空调器
技术领域
本发明涉及电子电路技术领域,特别涉及一种智能功率模块及空调器。
背景技术
智能功率模块中通常集成有功率器件,功率器件的温升较严重,需要实时检测功率器件的结温。目前驱动IC离发热的功率器件(IGBT、FRD)距离较远,IC内部温度检测电路不能检测到功率器件的结温。IPM的NTC一般组装在基板上,离功率器件距离较远,不能检测到功率器件结温。
发明内容
本发明的主要目的是提出一种智能功率模块及空调器,旨在提高对功率管芯片的结温检测准确性和时效性。
为实现上述目的,本发明提出一种智能功率模块,所述智能功率模块包括:
功率管芯片,所述功率管芯片内集成有快速恢复二极管;
驱动芯片,所述驱动芯片内集成有温度检测触发电路及驱动电路,所述温度检测触发电路与所述功率管芯片连接,所述驱动电路与所述功率管芯片的栅极连接;所述温度检测触发电路用于检测反映所述功率管芯片结温的快速恢复二极管正向导通电压,并在检测到所述快速恢复二极管正向导通电压达到预设阈值时,触发所述驱动电路控制所述功率管芯片停止工作。
可选地,所述智能功率模块还包括电流采样电阻,所述电流采样电阻的一端与所述功率管芯片的发射极连接,所述电流采样电阻的另一端接地。
可选地,所述温度检测触发电路包括分流电阻、分压电阻和触发电路,所述分流电阻与所述电流采样电阻并联设置,所述分流电阻和所述分压电阻的公共端与所述触发电路的输入端连接,所述触发电路的输出端与所述驱动电路连接。
可选地,所述电流采样电阻为低温漂采样电阻。
可选地,所述触发电路包括运算放大器和比较器,所述运算放大器的输入端为所述触发电路的输入端,所述运算放大器的输出端与所述比较电路的第一输入端连接;
所述比较器的第二输入端接入预设温度阈值,所述比较器的输出端与所述驱动电路的温度反馈端连接,所述驱动电路的输出端与所述功率管芯片的受控端连接。
可选地,所述功率管芯片的数量为多个;
所述驱动芯片内集成有多个所述温度检测触发电路,所述温度检测触发电路的数量与多个所述功率管芯片对应。
可选地,所述功率管芯片的数量为多个;
所述驱动芯片的数量与多个所述功率管芯片对应,每一所述驱动芯片内集成有一所述温度检测触发电路和一所述驱动电路。
可选地,所述智能功率模块还包括安装载体,所述安装载体包括:
散热基板;以及,
电路布线层及绝缘层,所述绝缘层及电路布线层依次设置于所述散热基板上;
所述驱动芯片及功率管芯片设置于所述电路布线层上。
可选地,所述智能功率模块还包括对所述驱动芯片及功率管芯片进行封装的封装壳体。
本发明还提出一种空调器,所述空调器包括如上所述的智能功率模块。
本发明智能功率模块通过在功率管芯片中集成快速恢复二极管,同时在驱动芯片内集成温度检测触发电路及驱动电路,通过温度检测触发电路用于检测反映所述功率管芯片结温的快速恢复二极管正向导通电压,并在检测到所述快速恢复二极管正向导通电压达到预设阈值时,触发驱动电路控制所述功率管芯片停止工作。本发明解决了驱动芯片离发热的功率管芯片(IGBT、快速恢复二极管)距离较远,使得驱动芯片内部温度检测电路不能检测到功率管芯片的结温,无法对功率管芯片进行过温保护的问题。有利于提高对功率管芯片的结温检测准确性和时效性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明智能功率模块一实施例的电路结构示意图;
图2为本发明智能功率模块一实施例的结构示意图;
图3为本发明智能功率模块一实施例的截面示意图。
附图标号说明:
标号 名称 标号 名称
10 功率管芯片 33 绝缘层
11 快速恢复二极管 40 封装壳体
20 驱动芯片 50 引脚
21 温度检测触发电路 OP1 运算放大器
22 驱动电路 CMP1 比较器
211 触发电路 R1 分流电阻
30 安装载体 R2 分压电阻
31 散热基板 Rs 电流采样电阻
32 电路布线层
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出一种智能功率模块。
参照图1,在本发明一实施例中,该智能功率模块包括:
功率管芯片10,所述功率管芯片10内集成有快速恢复二极管11;
驱动芯片20,所述驱动芯片20内集成有温度检测触发电路21及驱动电路22,所述温度检测触发电路21与所述功率管芯片10连接,所述驱动电路22与所述功率管芯片10的栅极连接;所述温度检测触发电路21用于检测反映所述功率管芯片10结温的快速恢复二极管11正向导通电压,并在检测到所述快速恢复二极管11正向导通电压达到预设阈值时,触发所述驱动电路22控制所述功率管芯片10停止工作。
本实施例中,功率管芯片10可以MOS管或者IGBT,其中,MOS管内集成有快速恢复二极管11FRD,该IGBT可选为RC-功率管芯片10,RC-功率管芯片10内集成快速恢复二极管11。本实施例以RC-IGBT为例进行说明,RC-IGBT由于无需在IGBT外反并联二极管,可以简化智能功率模块的结构,进而缩小智能功率模块的体积,并且可以减少元件的使用,使得元件的贴片、封装更加简便。快速恢复二极管11在电流一定的情况下,其正向导通电压与温度成反比,也即在所述快速恢复二极管11导通时,所述功率管芯片10的结温越高,检测到的所述快速恢复二极管11的正向导通电压则越小。由于RC-IGBT的快速恢复二极管11是集成在功率管芯片10上,快速恢复二极管11的结温与功率管芯片10的结温相同。因此,通过检测快速恢复二极管11的正向导通电压,即可获知快速恢复二极管11的结温,从而获知功率管芯片10的结温。
驱动芯片20中集成有温度检测触发电路21和驱动电路22,驱动电路22包括逻辑电路221和驱动信号输出电路222。在智能功率模块工作时,驱动电路22输出相应的控制信号,以控制功率管芯片10导通/关断,从而输出驱动电能,以驱动电机等负载工作这个过程中功率管芯片10会产生较高的热量,若温度过高,超过功率管芯片10的结温,则容易损坏功率管芯片10。为此,本发明在驱动芯片20中设置温度检测触发电路21,通过检测快速恢复二极管11的正向导通电压来检测快速恢复二极管11的结温,并将导通电压与预设电压阈值进行比较,根据导通电压与预设电压阈值的比较结果,来确定功率管芯片10的结温是否过高,该预设电压阈值对应的温度即为IGBT的过温保护点。例如需要保护的芯片结温为125℃,而RC-IGBT中的快速恢复二极管11的VF在125℃下,40A时为0.8V,温度检测触发电路21可以设计逻辑在小于0.8V时输出有效信号,也即触发信号。逻辑电路接收到有效信号时,便把驱动芯片20所有输出关断,让驱动芯片20停止工作,这样就可以保护RC-IGBT结温不超过125℃。由于RC-IGBT的快速恢复二极管11是集成在功率管芯片10上,因此快速恢复二极管11的结温就是功率管芯片10的结温。当然在其他实施例中,根据RC-IGBT的规格,参数以及应用场景等的不同,功率管芯片10的结温可能也不同,因此温度检测触发电路21可以实际应用设置预设电压阈值。
本发明实施例通过在功率管芯片10中集成快速恢复二极管11,同时在驱动芯片20内集成温度检测触发电路21及驱动电路22,通过温度检测触发电路21用于检测反映所述功率管芯片10结温的快速恢复二极管11正向导通电压,并在检测到所述快速恢复二极管11正向导通电压达到预设阈值时,触发驱动电路22控制所述功率管芯片10停止工作。本发明解决了驱动芯片20离发热的功率管芯片10(IGBT、快速恢复二极管11)距离较远,使得驱动芯片20内部温度检测电路不能检测到功率管芯片10的结温,无法对功率管芯片10进行过温保护的问题。有利于提高对功率管芯片的结温检测准确性和时效性。
参照图1至图3,在一实施例中,所述智能功率模块还包括电流采样电阻Rs,所述电流采样电阻Rs的一端与所述功率管芯片10的发射极连接,所述电流采样电阻Rs的另一端接地。其中,所述电流采样电阻Rs为低温漂采样电阻。
本实施例中,在智能功率模块还设置有过流保护电路、过压保护电路等对智能功率模块快、功率管芯片10和电机保护的电路模块,具体可在驱动芯片20设置电压比较器CMP1、参考电压输出模块等。电流采样电阻Rs采集流经功率管芯片10的电流,并将采集的电流信号输出至驱动芯片20,驱动芯片20根据采集的电流判断流经功率管芯片10是否过流。例如出现由于驱动电机失速,或者控制电机停止时电机由于惯性还会继续高速转动带来的电机驱动内部绕组的三相电流Iu、Iv、Iw过大等。此时相电流流经功率管芯片10而被电流采样电阻Rs所采集,驱动芯片20则输出驱动芯片20以控制IGBT停止工作,从而对电机进行制动,以避免因为过流而损坏功率管芯片10。其中,所述电流采样电阻Rs可选为低温漂采样电阻,以避免由于电流采样电阻Rs输出的采样信号存在干扰或者存在与参考电压值接近的波动引起电压比较器CMP1的输出状态不稳定,进而导致智能功率模块的保护状态不稳定的问题。
参照图1至图3,在一实施例中,所述温度检测触发电路21包括分流电阻R1、分压电阻R2和触发电路211,所述分流电阻R1与所述电流采样电阻Rs并联设置,所述分流电阻R1和所述分压电阻R2的公共端与所述触发电路211的输入端连接,所述触发电路211的输出端与所述驱动电路22连接。
可以理解的是,快速恢复二极管11与IGBT是反并联设置的,在IGBT截止时,快速恢复二极管11会导通,电流采样电阻Rs则可以采集快速恢复二极管11正向导通时的电流。分流电阻R1与电流采样电阻Rs并联设置,以对流经电流采样电阻Rs的电流进行分流;分压电阻R2用于采集快速恢复二极管11的正向导通电压,分压电阻R2和分流电阻R1组成分压电路。通过将电流采样电阻Rs上的正向导通电流进行分流,从而采集流经快速恢复二极管11的电流,再通过分压电阻R2和分流电阻R1组成的分压电路将该电流信号转换成电压信号,从而采集到电流一定下时快速恢复二极管11的正向导通电压。如此,即可通过电流采样电阻Rs、分流电阻R1和分压电阻R2检测到快速恢复二极管11续流时的正向导通电流和正向导通电压,此电压与温度是负相关的,通过正向导通电流和正向导通电压即可以获取快速恢复二极管11的结温。当然在其他实施例中,也可以采集电压一定时快速恢复二极管11的正向导通电流,通过正向导通电流来检测功率管芯片10的结温,此处不做限制。
可以理解的是,在电流采样电阻Rs为低温漂采样电阻,可以减少电流采样电阻Rs输出的采样信号因为温漂而存在干扰或者存在与参考电压值接近的波动引起电压比较器CMP1的输出状态不稳定,进而导致驱动芯片20误保护的问题。
参照图1至图3,在一实施例中,所述触发电路211包括运算放大器OP1和比较器CMP1,所述运算放大器OP1的输入端为所述触发电路211的输入端,所述运算放大器OP1的输出端与所述比较电路的第一输入端连接;
所述比较器CMP1的第二输入端接入预设温度阈值,所述比较器CMP1的输出端与所述驱动电路22的温度反馈端连接,所述驱动电路22的输出端与所述功率管芯片10的受控端连接。
需要说明的是,通过采样电阻以及分流电阻R1检测到快速恢复二极管11续流时的正向导通电流分流后非常小,再经分压电阻R2以及分流电阻R1进行分压后,该电压也是非常小。为此本实施例中还设置有运算放大器OP1,运算放大器OP1将该电压放大器进行放大后,输出至比较器CMP1,由于比较器CMP1的第二输入端通过一个电容输出到地,相当于在第二输入端接入了一个固定的预设参考电压值,当运算放大器OP1输出电压过高超过参考电压值时,会使得比较器CMP1输出端翻转输出高电平,即快速恢复二极管11的结温过高时,比较器CMP1输出高电平的触发信号到驱动电路22,以控制功率管芯片10停止工作。在一实施例中,运算放大器OP1还可以与电阻Rs、电阻R3和电阻Rf组成负反馈放大电路。
参照图1至图3,在一实施例中,所述功率管芯片10的数量为多个;
所述驱动芯片20内集成有多个所述温度检测触发电路21,所述温度检测触发电路21的数量与多个所述功率管芯片10对应。
或者,所述驱动芯片20的数量与多个所述功率管芯片10对应,每一所述驱动芯片20内集成有一所述温度检测触发电路21和一所述驱动电路22。
功率管芯片10的数量可以为一个,也可以为多个,当设置为多个时,可以包括四个所述功率管芯片10,或者是四个的倍数,也可以包括六个所述功率管芯片10,或者六个的倍数,六个功率管芯片10组成逆变电路,从而应用在逆变电源、变频器、制冷设备、冶金机械设备、电力牵引设备等电器设备中,特别是变频家用电器中。在智能功率模块工作时,驱动芯片20输出相应的PWM控制信号,以驱动控制对应的功率管芯片10导通/截止,从而输出驱动电能,以驱动电机等负载工作。
驱动芯片20的数量可以是一个,例如HVIC驱动芯片20,该驱动芯片20为集成芯片,其中集成了四路、六路或者三路功率管芯片10的驱动电路22,具体可以根据驱动芯片20的数量进行集成设置。驱动芯片20的数量也可以是多个,例如两个、四个或者六个,多个驱动芯片20的数量可以与功率管芯片10的数量对应,每一驱动芯片20对应驱动一功率管芯片10工作。驱动芯片20也可以设置上桥臂驱动芯片20和下桥臂驱动芯片20两个分立的驱动芯片20,并分别驱动上桥臂功率管芯片10和下桥臂功率管芯片10工作,功率管芯片10与驱动芯片20之间通过金属引线实现电连接,形成电流回路。在智能功率模块工作时,驱动芯片20输出相应的控制信号,以控制对应的功率管芯片10导通,从而输出驱动电能,以驱动电机等负载工作,这个过程中功率管芯片10产生的热量经散热片30传导至安装载体30上,以通过散热片30和安装载体30进行散热。
在驱动芯片20设置为一个时,驱动芯片20中集成了与功率管芯片10数量对应的温度检测触发电路21,在驱动芯片20的设置为多个时,驱动芯片20的数量与功率管芯片10对应。并且每个驱动芯片20中集成了一个对该功率管芯片10进行温度保护的温度检测触发电路21。
参照图1至图3,在一实施例中,所述智能功率模块还包括安装载体30,所述安装载体30包括:
散热基板31;以及,
电路布线层32及绝缘层33,所述电路布线层32及绝缘层33依次设置于所述散热基板31上;
所述驱动芯片20及功率管芯片10设置于所述电路布线层32上。
本实施例中,安装载体30可以采用引线框架来实现,引线框架上设置有基岛和连接框架,驱动芯片20和各个功率管芯片10设置在对应的基岛上,通过金属引线和连接框架实现电连接。功率管芯片10和驱动芯片上设置有金属层,用于形成用于焊接的各个焊垫,例如功率管芯片10上设置有栅极焊垫、集电极焊垫、发射极焊垫,IGBT管芯片管的栅极焊垫和发射极焊垫可以朝上设置,集电极焊垫则也可以朝下设置,栅极焊垫和发射极焊垫和集电极焊垫通过金属绑线与安装载体30的电路布线层32形成的安装位及焊盘连接。驱动芯片上则设置有驱动端焊垫,温度信号输入端焊垫等。
安装载体30还可以采用铝基板、铝合金基板、铜基板或者铜合金基板中的任意一种来实现。安装载体30为功率管芯片10和驱动芯片20的安装载体,安装载体30的形状可以根据功率管芯片10的具体位置、数量及大小确定,可以为方形,但不限于方形。安装载体30上设置有电路布线层32,电路布线层32根据智能功率模块的电路设计,在安装载体30上形成对应的线路以及对应供功率管芯片10中的各电子元件安装的安装位,即焊盘。
安装载体30还可以采用DBC(覆铜陶瓷基板)来实现时,覆铜陶瓷基板包括绝缘散热层及形成于所述绝缘散热层上的电路布线层32。在采用金属材质制成的安装载体30时,安装载体30包括散热基板31、铺设在散热基板31上的绝缘层33及形成于绝缘层33上的电路布线层32。本实施例中,安装载体30可选为单面布线板。所述绝缘层33夹设于所述电路布线层32与所述金属安装载体30之间。该绝缘层33用于实现电路布线层32与金属安装载体30之间的电气隔离以及电磁屏蔽,以及对外部电磁干扰进行反射,从而避免外部电磁辐射干扰功率管芯片10正常工作,降低周围环境中的电磁辐射对智能功率模块中的电子元件的干扰影响。该绝缘层33可选采用热塑性胶或者热固性胶等材料制成,以实现安装载体30与电路布线层32之间的固定连接且绝缘。绝缘层33可以采用环氧树脂、氧化铝、高导热填充材料一种或多种材质混合实现的高导热绝缘层33来实现。在制作安装载体30的过程中,可以在安装载体30上设置好绝缘层33后,将铜箔铺设在绝缘层33上,并按照预设的电路设计蚀刻所述铜箔,从而形成电路布线层32。
参照图1至图3,在一实施例中,所述智能功率模块还包括对所述驱动芯片20及功率管芯片10进行封装的封装壳体40。
本实施例中,封装壳体40可以采用环氧树脂、氧化铝、二氧化硅等材材料制成。在制作封装壳体40时,可以将环氧树脂、氧化铝、氮化硼或者氮化铝等材料进行混料,然后将混合好的封装材料进行加热;待冷却后,粉碎所述封装材料,再以锭粒成型工艺将在封装模具中,将封装壳体40材料进行轧制成形,以形成封装壳体40,再将驱动芯片20及功率管芯片10封装在封装壳体40内。智能功率模块可以采用全包封封装或者半包封封装的封装模式对驱动芯片20及功率管芯片10及安装载体30进行封装。或者通过注塑工艺及封装模具,将安装有芯片的安装载体30放置于模具后,在模具中注入封装材料,将芯片和安装载体30封装在封装壳体40内,以在成型后形成封装壳体40。如此,可以实现对芯片进行绝缘处理,以及提高智能功率模块的EMI性能。
在另一实施例中,智能功率模块还可以设置有,外壳可选采用PPS材料、PBT材料等塑料形成的壳体来实现。在对智能功率模块进行塑封时,将安装有驱动芯片20及功率管芯片10的安装载体30放置于外壳内,然后在外壳内中注入封装材料,以在成型后形成封装壳体40,将驱动芯片20及功率管芯片10和安装载体30封装在封装壳体40内。如此,可以实现对驱动芯片20进行绝缘处理,以及提高智能功率模块的EMI性能。通过在外壳内填充塑封胶,可以将驱动芯片20及功率管芯片10、安装载体30等形成一个整体的智能功率模块,通过塑封胶的绝缘填充,可以提高智能功率模块的隔离,减少内部干扰。
参照图1至图3,在一实施例中,所述智能功率模块还包括散热器,所述散热器设置于所述安装载体30背离所述功率组件20的一侧。
本实施例中,为了提高智能功率模块的散热效率,可以采用半包封封装,也即将智能功率模块的驱动功率模组部分裸露在封装壳体40外,在智能功率模块还设置有散热器时,驱动功率模组裸露于智能功率模块的封装壳体40之外的表面可以更好的与散热器贴合。散热器可以采用铝质、铝合金等散热效果较好的高导热材料制得,以使得述驱动功率模组中的功率开关管产生的热量通过安装载体30传导至散热器上,进一步增大功率管芯片10产生的热量与空气的接触面积,提高散热速率。所述散热器还可意设置有散热器本体及多个散热叶片,多个所述散热叶片间隔设置于所述散热器本体的一侧。如此设置,可以增加散热器与空气的接触面积,也即在散热器工作时,增加散热器上的热量与空气的接触面积,以加快散热器的散热速率。同时还可以减少散热器的物料,避免散热片因材料应用过多,造成成本过高。
参照图1至图3,在一实施例中,所述智能功率模块还包括引脚50,所述引脚50设置于所述安装载体30的电路布线层32上,且通过金属引线与各所述驱动芯片20和功率管芯片10电连接。
本实施例中,对应的在电路布线层32上,还设置有引脚50的引脚焊盘23,引脚50对应焊接于该引脚焊盘上。
引脚50可以采用鸥翼型引脚50或者直插型引脚50来实现,本实施例优选为直插型引脚50,引脚50焊接在电路布线层32对应的安装位221上的引脚焊盘位置,并通过金属引线与功率管芯片1040、驱动芯片20实现电气连接。在另一实施例中,各个引脚50的一端固定于所述安装载体30上,引脚50的另一端朝远离所述安装载体30的方向延伸,引脚50的延伸方向与所述安装载体30所在的平面平行。
本发明还提出一种空调器,包括如上所述的智能功率模块。本发明还提出一种空调器,所述空调器包括如上所述的智能功率模块。该智能功率模块的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本发明空调器中使用了上述智能功率模块,因此,本发明空调器的实施例包括上述智能功率模块全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
以上所述仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (9)

1.一种智能功率模块,其特征在于,所述智能功率模块包括:
功率管芯片,所述功率管芯片内集成有快速恢复二极管;
驱动芯片,所述驱动芯片内集成有温度检测触发电路及驱动电路,所述温度检测触发电路与所述功率管芯片连接,所述驱动电路与所述功率管芯片的栅极连接;所述温度检测触发电路用于检测反映所述功率管芯片结温的快速恢复二极管正向导通电压,并在检测到所述快速恢复二极管正向导通电压达到预设阈值时,触发所述驱动电路控制所述功率管芯片停止工作;
所述智能功率模块还包括电流采样电阻,所述电流采样电阻的一端与所述功率管芯片的发射极连接,所述电流采样电阻的另一端接地,所述电流采样电阻用于采集所述快速恢复二极管正向导通时的电流。
2.如权利要求1所述的智能功率模块,其特征在于,所述温度检测触发电路包括分流电阻、分压电阻和触发电路,所述分流电阻与所述电流采样电阻并联设置,所述分流电阻和所述分压电阻的公共端与所述触发电路的输入端连接,所述触发电路的输出端与所述驱动电路连接。
3.如权利要求1所述的智能功率模块,其特征在于,所述电流采样电阻为低温漂采样电阻。
4.如权利要求1所述的智能功率模块,其特征在于,所述触发电路包括运算放大器和比较器,所述运算放大器的输入端为所述触发电路的输入端,所述运算放大器的输出端与所述比较器的第一输入端连接;
所述比较器的第二输入端接入预设温度阈值,所述比较器的输出端与所述驱动电路的温度反馈端连接,所述驱动电路的输出端与所述功率管芯片的受控端连接。
5.如权利要求1所述的智能功率模块,其特征在于,所述功率管芯片的数量为多个;
所述驱动芯片内集成有多个所述温度检测触发电路,所述温度检测触发电路的数量与多个所述功率管芯片对应。
6.如权利要求1所述的智能功率模块,其特征在于,所述功率管芯片的数量为多个;
所述驱动芯片的数量与多个所述功率管芯片对应,每一所述驱动芯片内集成有一所述温度检测触发电路和一所述驱动电路。
7.如权利要求1至6任意一项所述的智能功率模块,其特征在于,所述智能功率模块还包括安装载体,所述安装载体包括:
散热基板;以及,
电路布线层及绝缘层,所述绝缘层及电路布线层依次设置于所述散热基板上;
所述驱动芯片及功率管芯片设置于所述电路布线层上。
8.如权利要求7所述的智能功率模块,其特征在于,所述智能功率模块还包括对所述驱动芯片及功率管芯片进行封装的封装壳体。
9.一种空调器,其特征在于,所述空调器包括如权利要求1至8任意一项所述的智能功率模块。
CN201911179508.1A 2019-11-26 2019-11-26 智能功率模块及空调器 Active CN110867835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911179508.1A CN110867835B (zh) 2019-11-26 2019-11-26 智能功率模块及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911179508.1A CN110867835B (zh) 2019-11-26 2019-11-26 智能功率模块及空调器

Publications (2)

Publication Number Publication Date
CN110867835A CN110867835A (zh) 2020-03-06
CN110867835B true CN110867835B (zh) 2021-12-17

Family

ID=69656604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911179508.1A Active CN110867835B (zh) 2019-11-26 2019-11-26 智能功率模块及空调器

Country Status (1)

Country Link
CN (1) CN110867835B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830389B (zh) * 2020-07-31 2023-10-20 江苏国传电气有限公司 一种基于发射极功率端子温度的igbt结温估算系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414816A (zh) * 2007-09-05 2009-04-22 株式会社电装 具有内置二极管igbt的半导体器件和具有内置二极管dmos的半导体器件
CN102694531A (zh) * 2011-03-24 2012-09-26 株式会社电装 负载驱动设备和半导体开关装置驱动设备
CN103795035A (zh) * 2012-10-31 2014-05-14 三星电机株式会社 用于防止故障的功率模块和装置及其控制方法
CN106771946A (zh) * 2016-11-21 2017-05-31 北京世纪金光半导体有限公司 一种igbt模块内部芯片结温测试方法
CN106911250A (zh) * 2015-12-22 2017-06-30 瑞萨电子株式会社 电力转换系统、功率模块及半导体器件
CN209545454U (zh) * 2019-04-26 2019-10-25 广东美的制冷设备有限公司 智能功率模块及空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125588A (ja) * 2001-10-12 2003-04-25 Mitsubishi Electric Corp 電力変換装置
JP2010238835A (ja) * 2009-03-31 2010-10-21 Fuji Electric Systems Co Ltd 複合半導体整流素子とそれを用いた電力変換装置
CN104566819B (zh) * 2014-12-26 2017-05-10 广东美的制冷设备有限公司 空调器温度应力的监控方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414816A (zh) * 2007-09-05 2009-04-22 株式会社电装 具有内置二极管igbt的半导体器件和具有内置二极管dmos的半导体器件
CN102694531A (zh) * 2011-03-24 2012-09-26 株式会社电装 负载驱动设备和半导体开关装置驱动设备
CN103795035A (zh) * 2012-10-31 2014-05-14 三星电机株式会社 用于防止故障的功率模块和装置及其控制方法
CN106911250A (zh) * 2015-12-22 2017-06-30 瑞萨电子株式会社 电力转换系统、功率模块及半导体器件
CN106771946A (zh) * 2016-11-21 2017-05-31 北京世纪金光半导体有限公司 一种igbt模块内部芯片结温测试方法
CN209545454U (zh) * 2019-04-26 2019-10-25 广东美的制冷设备有限公司 智能功率模块及空调器

Also Published As

Publication number Publication date
CN110867835A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US6313598B1 (en) Power semiconductor module and motor drive system
CN110138249B (zh) 智能功率模块及空调器
CN110838712A (zh) 智能功率模块及空调器
CN110323186A (zh) 半导体装置、半导体装置的制造方法以及电力变换装置
JP3889562B2 (ja) 半導体装置
CN110867835B (zh) 智能功率模块及空调器
CN211182190U (zh) 绝缘栅双极型晶体管、智能功率模块及空调器
CN110085581B (zh) 高集成智能功率模块及空调器
CN110176852B (zh) 智能功率模块及空调器
CN110060991B (zh) 智能功率模块及空调器
CN110085579B (zh) 高集成智能功率模块及其制作方法以及空调器
CN110911357A (zh) 智能功率模块及空调器
CN110148594B (zh) 智能功率模块及空调器
JP2002238260A (ja) 半導体装置
CN110940069B (zh) 智能功率模块及空调器
CN210379025U (zh) 功率器件封装结构
CN110868086B (zh) 智能功率模块及空调器
CN113823610A (zh) 半导体电路
CN209607738U (zh) 高集成智能功率模块及空调器
JP2022039912A (ja) インテリジェントなパワーモジュールパッケージング構造
CN112951819A (zh) 半导体器件模块及组装方法
CN112087151A (zh) 智能功率模块及空调器
CN213717862U (zh) 智能功率模块、变频器及空调器
CN210607248U (zh) Hvic芯片、智能功率模块及空调器
CN210129504U (zh) 智能功率模块及空调器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230118

Address after: 400064 plant 1, No. 70, Meijia Road, Nan'an District, Chongqing

Patentee after: Meiken Semiconductor Technology Co.,Ltd.

Address before: 528311 Lingang Road, Beijiao Town, Shunde District, Foshan, Guangdong

Patentee before: GD MIDEA AIR-CONDITIONING EQUIPMENT Co.,Ltd.

Patentee before: MIDEA GROUP Co.,Ltd.