CN110860313A - 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用 - Google Patents

一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110860313A
CN110860313A CN201911254073.2A CN201911254073A CN110860313A CN 110860313 A CN110860313 A CN 110860313A CN 201911254073 A CN201911254073 A CN 201911254073A CN 110860313 A CN110860313 A CN 110860313A
Authority
CN
China
Prior art keywords
wood powder
composite material
zinc oxide
ternary composite
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911254073.2A
Other languages
English (en)
Inventor
叶菊娣
洪建国
李小保
闫丽峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201911254073.2A priority Critical patent/CN110860313A/zh
Publication of CN110860313A publication Critical patent/CN110860313A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用,属于纳米复合材料技术领域。该制备方法利用桑枝木粉制备ZnO基三元复合材料,采用低温NaOH/尿素溶液将桑枝木粉部分溶解,加入纳米铁酸锌和锌源,通过水热法原位复合制备纳米氧化锌/铁酸锌/桑枝木粉复合材料。本发明制备方法简单,溶剂NaOH/尿素价廉易得,桑枝木粉属于农林废弃物,实现废弃物资源化利用;制备的氧化锌/铁酸锌/木粉三元复合材料在紫外和可见光区都有吸收,且稳定,环保易回收。在作为光降解催化剂处理亚甲基蓝废水的处理方面,具有很好的实用性。

Description

一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和 应用
技术领域
本发明属于纳米复合材料技术领域,具体涉及一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用。
背景技术
随着世界各国经济的迅速发展,环境污染和能源短缺问题日益严重,水体中的有机污染物对人类健康和生态系统造成了严重威胁。半导体光催化剂能够通过氧化还原反应分解有机污染物,在降解处理污水有机物方面有良好的效果,逐渐成为人们关注的焦点。氧化锌(ZnO)因具有优异的光化学性质、廉价易得、无毒无害、化学性质稳定等优点,作为光催化剂广泛应用于污染水体治理。但是,ZnO的宽带隙(Eg=3.37ev)阻碍了光激发,导致光响应范围窄,只能吸收紫外光,生成的电子-空穴对复合率高,难以回收再利用等缺陷限制了其发展。
铁酸锌是铁氧体的一种,它的化学分子式为ZnFe2O4,其带宽较窄(1.92eV),具有比较好的可见光响应能力,优异的光化学稳定性以及磁可分离的特性,在光、热、电、磁等领域都有很好的应用潜力,但它的光催化能力较弱,光量子效率低,不能将污染物进行有效的降解。如果将ZnFe2O4与ZnO复合,ZnFe2O4吸收可见光后发生电子跃迁,激发态的电子传输到ZnO的导带后导致ZnO的禁带宽度降低,使其可利用的可见光范围扩大,从而扩展了ZnO的光谱响应范围,从而提高光催化性能。
在材料科学领域中,复合材料在性能上取长补短,产生协同效应,在诸多领域如工业、生物医学领域等显示出极大的应用前景。将纳米ZnO和ZnFe2O4负载在有机或无机材料上,不仅可以扩展ZnO的光谱响应范围,提高光催化性能,还可以解决其制备过程中易团聚,应用中难分离等缺点。无机载体具有密度大(一般仅适用固定床反应器)的特点,限制了其在光催化工程中的应用;常用的有机聚合物载体如聚苯乙烯等,虽然克服了无机载体密度大的缺点,可适用于悬浮床反应器,但石油基聚合物不易降解和再生,环境友好性差。生物基有机材料进入人们的视线。周晓龙等将ZnO固定在再生纤维素上制备的纳米ZnO再生纤维素膜用于光降解甲基橙具有很好的效果。
桑枝木粉,主要成分为纤维素、半纤维素、木质素等,作为养蚕业的副产品,在我国都被焚烧或丢弃,造成严重的环境污染。据报道,纤维素上的羟基可以促进CuO等无机粒子成核、生长,负载在纤维素纤维表面。多糖类聚合物,如溶解的纤维素,淀粉等可促进纳米ZnO的生成。水热法是制备生物基纳米复合材料的有效方法之一。
发明内容
本发明要解决的技术问题是提供一种纳米氧化锌/铁酸锌/木粉三元复合材料,该材料在紫外光区和可见光区都有吸收,且稳定、环保易回收。本发明要解决的另一个技术问题是提供一种纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所用溶剂NaOH/尿素价廉易得,原料桑枝木粉属于农林废弃物,可很好的实现废弃物资源化利用。本发明要解决的技术问题还有一个是提供一种纳米氧化锌/铁酸锌/木粉三元复合材料在可见光下光催化降解亚甲基蓝废水中的应用,光降解亚甲基蓝的去除效率大于98%;五次循环利用后,光催化降解率仍在90.0%以上。
为了解决上述问题,本发明所采用的技术方案如下:
一种纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,包括以下步骤:
(1)将纳米ZnFe2O4分散于无水乙醇中,再加入锌源,超声震荡,得到溶液A;ZnFe2O4中Zn与锌源中Zn的摩尔比为1∶6~1∶30;
(2)将桑枝木粉溶解于氢氧化钠尿素溶液中,搅拌,得到溶液B;所述桑枝木粉与氢氧化钠尿素溶液的质量比为1∶15~1∶25;
(3)将溶液A缓慢滴加到溶液B中,搅拌陈化,然后将混合溶液加入到水热反应釜中,进行水热反应,反应结束后过滤、水洗、烘干得到纳米氧化锌/铁酸锌/木粉三元复合材料;所述水热反应温度为90~130℃,反应时间为5~18h。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述锌源为醋酸锌。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述氢氧化钠尿素溶液中氢氧化钠、尿素和水的质量含量分别为7%、12%和81%。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述桑枝木粉低温溶解于氢氧化钠尿素溶液中,温度为-5~-15℃。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述桑枝木粉低温溶解于氢氧化钠尿素溶液中,桑枝木粉与氢氧化钠尿素溶液的质量比为1∶20~1∶25。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述溶液A和溶液B质量比为1∶1~2∶1。
所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,所述步骤(3),搅拌陈化的时间为30min。
上述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法制备得到的纳米氧化锌/铁酸锌/木粉三元复合材料。
上述纳米氧化锌/铁酸锌/木粉三元复合材料在光催化降解亚甲基蓝废水中的应用。
有益效果:与现有的技术相比,本发明的优点包括:
(1)本发明制备方法简单,以NaOH/尿素溶液为处理剂,将桑枝木粉部分溶解,不溶部分主要为纤维素,作为ZnO基复合材料的生物基载体;溶解的组分主要为半纤维素、小分子的纤维素等多糖类聚合物,作为纳米ZnO的促进剂;加入纳米铁酸锌,通过水热法原位合成来制备纳米ZnO基三元复合材料;所用溶剂NaOH/尿素价廉易得,原料桑枝木粉属于农林废弃物,可很好的实现废弃物资源化利用。
(2)本发明制备的氧化锌/铁酸锌/木粉三元复合材料在紫外和可见光区都有吸收,且稳定、环保易回收,在紫外和可见光照射下,光降解亚甲基蓝的去除效率大于98%。五次循环利用后,光催化降解率仍在90.0%以上,在作为光降解催化剂处理亚甲基蓝废水的处理方面,具有很好的实用性。
附图说明
图1为实施例1样品XRD图;
图2为实施例1样品UV-Vis DRS图;
图3为实施例1样品TG图;
图4为实施例1样品电镜图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。
实施例1
氧化锌/铁酸锌/木粉三元复合材料的制备:称取0.0025mol的ZnFe2O4加入20mL无水乙醇中分散,再加入1mol/L的醋酸锌溶液30mL,超声振荡30min,此为溶液A;称取2g桑枝木粉低温(-10℃)溶解于50g氢氧化钠尿素溶液(7%NaOH∶12%Urea∶81%H2O)中,搅拌20min,形成溶液B。电动搅拌状态下,将溶液A缓慢滴加到溶液B中,搅拌陈化30min后,转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,于100℃下水热反应12h,反应结束后取出。待反应釜自然冷却至室温,得到暗棕色沉淀,用蒸馏水洗6-8遍后,放入70℃烘箱中烘干,得到纳米氧化锌/铁酸锌/木粉三元复合材料。
图1为实施例1样品XRD图,在2θ=22°出有一个微弱的峰,是桑枝木粉中纤维素的特征峰。在2θ=31.8°、34.4°、36.3°、47.6°、56.7°、62.9°、66.4°等处峰是六方纤锌矿(标准卡片JCPDS CardNo.36-1451)的特征衍射峰,各个峰型尖锐,表明结晶良好。在2θ=29.9°、35.3°、56.6°、62.2°处的衍射峰分别对应ZnFe2O4的(220)、(311)、(511)和(440)晶面,对应铁酸锌的XRD标准卡片JCPDS CardNo.22-1012。从XRD图可见得到的复合材料中含有ZnO、ZnFe2O4和桑枝木粉,说明成功合成了三元复合材料。
图2紫外可见漫反射光谱图中可见(1.ZnO,2.ZnO/ZnFe2O4/木粉,3.ZnFe2O4),对照样ZnO在紫外区有光吸收,但在可见光区基本没有吸收。ZnFe2O4在可见光区有明显的吸收,从图2中可以看出,同时复合桑枝木粉与纳米ZnFe2O4后,复合材料的在紫外区的吸收与ZnO相比发生了较为明显的红移,光吸收范围拓宽到了可见光区,在紫外和可见光区都有吸收,420nm左右仍然有一个强的吸收峰。从图2中可见纳米ZnO/ZnFe2O4/木粉复合材料在可见光范围内的光吸收稍弱于紫外区,但已经表现出明显吸收,有利于其在光催化时利用光源中的可见光部分。
图3为热重分析曲线,100℃内的失重是由样品吸附的水分子汽化引起,导致重量逐渐下降约3%。100-420℃之间的失重是由桑枝木粉中的纤维素和木质素降解引起的。复合样品在约420℃之后TG曲线趋于平稳,不再有明显失重现象,此时样品中主要成分为纳米ZnO、纳米ZnFe2O4和少量的桑枝木粉中的灰分。桑枝木粉的TG曲线中最后残留的组分为灰分。根据TG图,结合实验条件,可估算复合材料中三元组分的质量比约为:ZnO∶ZnFe2O4∶桑枝木粉=48.2∶11.9∶39.9。
图4电镜图中铁酸锌纳米粒子覆盖在形状不规则的氧化锌纳米片上,分布不是很均匀,且纳米ZnO和ZnFe2O4结合紧密,大小不均一,直径在50-300nm。
实施例2
氧化锌/铁酸锌/木粉三元复合材料的制备:称取0.005mol的ZnFe2O4加入20mL无水乙醇中分散,再加入1mol/L的醋酸锌溶液30mL,超声振荡30min,此为溶液A;称取2g桑枝木粉低温(-10℃)溶解于50g氢氧化钠尿素溶液(7%NaOH∶12%Urea∶81%H2O)中,搅拌20min,形成溶液B。电动搅拌状态下,将溶液A缓慢滴加到溶液B中,搅拌陈化30min后,转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,于100℃下水热反应12h,反应结束后取出。待反应釜自然冷却至室温,得到暗棕色沉淀,用蒸馏水洗6-8遍后,放入70℃烘箱中烘干,得到纳米氧化锌/铁酸锌/木粉三元复合材料。
实施例3
氧化锌/铁酸锌/木粉三元复合材料的制备:称取0.0025mol的ZnFe2O4加入20mL无水乙醇中分散,再加入1mol/L的醋酸锌溶液30mL,超声振荡30min,此为溶液A;称取2g桑枝木粉低温(-10℃)溶解于50g氢氧化钠尿素溶液(7%NaOH∶12%Urea∶81%H2O)中,搅拌20min,形成溶液B。电动搅拌状态下,将溶液A缓慢滴加到溶液B中,搅拌陈化30min后,转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,于90℃下水热反应12h,反应结束后取出。待反应釜自然冷却至室温,得到暗棕色沉淀,用蒸馏水洗6-8遍后,放入70℃烘箱中烘干,得到纳米氧化锌/铁酸锌/木粉三元复合材料。
实施例4
氧化锌/铁酸锌/木粉三元复合材料的制备:称取0.0025mol的ZnFe2O4加入20mL无水乙醇中分散,再加入1mol/L的醋酸锌溶液30ml,超声振荡30min,此为溶液A;称取2g桑枝木粉低温(-10℃)溶解于50g氢氧化钠尿素溶液(7%NaOH∶12%Urea∶81%H2O)中,搅拌20min,形成溶液B。电动搅拌状态下,将溶液A缓慢滴加到溶液B中,搅拌陈化30min后,转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,于100℃下水热反应14h,反应结束后取出。待反应釜自然冷却至室温,得到暗棕色沉淀,用蒸馏水洗6-8遍后,放入70℃烘箱中烘干,得到纳米氧化锌/铁酸锌/木粉三元复合材料。
实施例5
实施例1~4制备得到的纳米氧化锌/铁酸锌/木粉三元复合材料在作为光催化剂降解亚甲基蓝废水中应用,降解亚甲基蓝(MB,20mg/L)模拟废水,反应在光催化装置中进行,光源为20W紫外灯与日光灯,紫外光波长为254nm,光源与催化反应之间距离为10cm。100mg催化剂加入到50mL亚甲基蓝溶液中,避光搅拌30min,使其达到吸附平衡后,取样测定MB浓度,打开光源,搅拌2h后再次取样测定MB浓度。(MB浓度用紫外分光光度计在664nm测定。)根据去除率(Re)计算公式为Re%=(C0-C)*100%/C0。实施例1~4复合材料对亚甲基蓝的去除率结果如表1所示。由表1可知,本发明纳米氧化锌/铁酸锌/木粉三元复合材料对亚甲基蓝有很好的降解效果,去除率最高达到98.7%。
表1实施例1~4复合材料降解亚甲基蓝结果
复合材料 实施例1 实施例2 实施例3 实施例4
去除率/% 98.7 98.4 75 86
实施例1中的复合材料回收后再次用于降解亚甲基蓝(MB,20mg/L),结果发现循环利用五次后MB去除率依然可以达到93.0%,说明本发明复合材料在作为光催化剂降解亚甲基蓝时有着很好的稳定性,可多次循环使用。

Claims (9)

1.一种纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,包括以下步骤:
(1)将纳米ZnFe2O4分散于无水乙醇中,再加入锌源,超声震荡,得到溶液A;所述ZnFe2O4中Zn与锌源中Zn的摩尔比为1∶6~1∶30;
(2)将桑枝木粉溶解于氢氧化钠尿素溶液中,搅拌,得到溶液B;所述桑枝木粉与氢氧化钠尿素溶液的质量比为1∶15~1∶25;
(3)将溶液A缓慢滴加到溶液B中,搅拌陈化,然后将混合溶液加入到水热反应釜中,进行水热反应,反应结束后过滤、水洗、烘干得到纳米氧化锌/铁酸锌/木粉三元复合材料;所述水热反应温度为90~130℃。反应时间为5~18h。
2.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,所述锌源为醋酸锌。
3.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,所述氢氧化钠尿素溶液中氢氧化钠、尿素和水的质量含量分别为7%、12%和81%。
4.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,所述桑枝木粉低温溶解于氢氧化钠尿素溶液中,温度为-5~-15℃。
5.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,所述桑枝木粉与氢氧化钠尿素溶液的质量比为1∶20~1∶25。
6.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,溶液A和溶液B质量比为1∶1~2∶1。
7.根据权利要求1所述纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法,其特征在于,所述步骤(3),搅拌陈化的时间为30min。
8.权利要求1所述的纳米氧化锌/铁酸锌/木粉三元复合材料的制备方法制备得到的纳米氧化锌/铁酸锌/木粉三元复合材料。
9.权利要求8所述的纳米氧化锌/铁酸锌/木粉三元复合材料在光催化降解亚甲基蓝废水中的应用。
CN201911254073.2A 2019-12-09 2019-12-09 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用 Pending CN110860313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911254073.2A CN110860313A (zh) 2019-12-09 2019-12-09 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911254073.2A CN110860313A (zh) 2019-12-09 2019-12-09 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110860313A true CN110860313A (zh) 2020-03-06

Family

ID=69658716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911254073.2A Pending CN110860313A (zh) 2019-12-09 2019-12-09 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110860313A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861586A (zh) * 2012-09-23 2013-01-09 盐城工学院 一种可磁控回收的可见光复合光催化剂的制备方法
CN105233831A (zh) * 2015-10-30 2016-01-13 江苏大学 一种磁性ZnO@ZnFe2O4复合光催化剂及其制备方法和应用
CN108772095A (zh) * 2018-07-13 2018-11-09 中国计量大学 一种高效降解抗生素可见光催化复合材料的制备方法
CN109939745A (zh) * 2019-04-22 2019-06-28 南京林业大学 一种纳米二氧化钛/木粉复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861586A (zh) * 2012-09-23 2013-01-09 盐城工学院 一种可磁控回收的可见光复合光催化剂的制备方法
CN105233831A (zh) * 2015-10-30 2016-01-13 江苏大学 一种磁性ZnO@ZnFe2O4复合光催化剂及其制备方法和应用
CN108772095A (zh) * 2018-07-13 2018-11-09 中国计量大学 一种高效降解抗生素可见光催化复合材料的制备方法
CN109939745A (zh) * 2019-04-22 2019-06-28 南京林业大学 一种纳米二氧化钛/木粉复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
毛洪凯: ""改性氧化锌纳米光催化材料的制备及光催化性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Guo et al. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation
Qiu et al. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst
Qi et al. Bio-templated 3D porous graphitic carbon nitride hybrid aerogel with enhanced charge carrier separation for efficient removal of hazardous organic pollutants
Bo et al. Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g-C3N4 composite under visible light
Alburaih et al. Multifunctional Fe and Gd co-doped CeO2-RGO nanohybrid with excellent solar light mediated crystal violet degradation and bactericidal activity
Sun et al. Designing double Z-scheme heterojunction of g-C3N4/Bi2MoO6/Bi2WO6 for efficient visible-light photocatalysis of organic pollutants
CN107243340B (zh) 一种二氧化铈纳米棒掺杂二氧化钛纳米颗粒光催化剂的制备方法
Wu et al. Facile fabrication of Bi2WO6/biochar composites with enhanced charge carrier separation for photodecomposition of dyes
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN104399535A (zh) 一种磁性配合物基催化剂的制备方法和应用
CN111229285A (zh) ZnO/TiO2/g-C3N4复合光催化剂及其制备方法
Shi et al. Wool-ball-like BiOBr@ ZnFe-MOF composites for degradation organic pollutant under visible-light: Synthesis, performance, characterization and mechanism
Liao et al. A novel g-C3N4/BiOI/Ag2WO4 heterojunction for efficient degradation of organic pollutants under visible light irradiation
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
Chen et al. Synthesis of g-C3N4 composite co-doped with CeO2 and sugar cane bagasse charcoal for the degradation of methylene blue under visible light
Chaudhary et al. Preparation of mesoporous ThO2 nanoparticles: Influence of calcination on morphology and visible-light-driven photocatalytic degradation of indigo carmine and methylene blue
CN103894171A (zh) 一种花簇状氧化锌微米结构光催化剂的制备方法
Tu et al. MoS2@ MIL-101 (Fe) functionalized carboxylated loofah as a platform for the photodegradation of tetracycline and methylene blue from wastewater
Peng et al. In situ growth of carbon nitride on titanium dioxide/hemp stem biochar toward 2D heterostructured photocatalysts for highly photocatalytic activity
Meng et al. One‐step Mechanical Synthesis of Oxygen‐defect Modified Ultrathin Bi12O17Br2 Nanosheets for Boosting Photocatalytic Activity
CN115779889B (zh) 一种木质素炭/钼酸铋复合光催化剂及其制备方法和应用
CN108636416B (zh) 一种ZnO/煤矸石复合光催化剂及其制备方法和应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN110860313A (zh) 一种纳米氧化锌/铁酸锌/木粉三元复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200306