CN110858639B - 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用 - Google Patents

二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用 Download PDF

Info

Publication number
CN110858639B
CN110858639B CN201810962593.8A CN201810962593A CN110858639B CN 110858639 B CN110858639 B CN 110858639B CN 201810962593 A CN201810962593 A CN 201810962593A CN 110858639 B CN110858639 B CN 110858639B
Authority
CN
China
Prior art keywords
conductive polyaniline
polyaniline
fiber
composite material
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810962593.8A
Other languages
English (en)
Other versions
CN110858639A (zh
Inventor
郭瑞松
罗亚妮
厉婷婷
李福运
董琳琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810962593.8A priority Critical patent/CN110858639B/zh
Publication of CN110858639A publication Critical patent/CN110858639A/zh
Application granted granted Critical
Publication of CN110858639B publication Critical patent/CN110858639B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开二氧化硅层包覆导电聚苯胺复合材料及其制备方法,先通过化学聚合方法制备高导电聚苯胺纤维,作为“基体”;之后,将干燥后的导电聚苯胺纤维分散到正硅酸乙酯水溶液中,正硅酸乙酯在质子化聚苯胺表面的氢离子作用下进行水解缩聚,生成的二氧化硅通过静电相互作用均匀包覆在聚苯胺纤维表面;干燥后重新分散到盐酸溶液对聚苯胺进行再掺杂,最终得到二氧化硅层包覆导电聚苯胺复合材料,主要用于超级电容器、锂离子电池等领域。

Description

二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用
技术领域
本发明属于纳米结构材料领域,更加具体地说,涉及一种二氧化硅层包覆导电聚苯胺(PANIFs@SiO2)复合材料及其制备方法。
背景技术
与其他导电聚合物相比,聚苯胺具有独特的掺杂机理和独特的结构。聚苯胺有三种典型的氧化态:完全还原态的leucoemeraldine base(LEB),半氧化态的emeraldinebase(EB)以及完全氧化态的pernigraniline base(PE)。不同的氧化态之间可通过氧化或还原相互转化,并伴随着颜色和性质的变化。当半氧化态EB(翠绿亚胺碱)经历50%的掺杂(得到翠绿亚胺盐),质子化全部醌环时,此时导电聚苯胺的电导率最大。而质子化的PE和LEB缺乏链正则性,形成的极化子很少,因此掺杂的PE和LEB仍然是绝缘的。翠绿亚胺盐和翠绿亚胺碱可通过添加酸或碱实现可逆转换。即,当聚苯胺进行盐酸掺杂(质子化)得到导电的翠绿亚胺盐,导电的翠绿亚胺盐在碱性条件下会脱质子化得到翠绿亚胺碱,随后可再加质子酸进行再掺杂,得到导电的翠绿亚胺盐。
正硅酸乙酯在酸性或碱性条件下先水解后缩聚可得到二氧化硅。在酸性或碱性条件下由于正硅酸乙酯水解和缩聚的速率很难把控,二氧化硅倾向于以大颗粒大球体的形式存在,很难在聚苯胺纳米纤维表面均匀沉淀。尽管有研究发现,正硅酸乙酯在水/乙醇溶液中通过加酸或加碱促进正硅酸乙酯的水解,从而实现在纤维表面的沉积。但从扫描电镜和透射电镜上很明显可以看出,二氧化硅是以大颗粒的形式存在于纤维表面(X.Wang,X.Feng,Y.Zhao,R.Zhang,D.Sun,European Polymer Journal,43(2007)3679-3682和Y.D.Liu,F.F.Fang,H.J.Choi,Soft Matter,7(2011)2782)。聚苯胺和二氧化硅作为锂离子电池和超级电容器重要的电极材料之一,这种大颗粒不均匀附着,不利于缓冲复合材料在电化学过程中所产生的机械应力,反而会导致受力不均匀,使得储能设备的寿命明显降低。因此,保证二氧化硅层均匀附着在高导电聚苯胺纤维表面对提升材料整体性能具有重要的意义。
发明内容
本发明的目的在于克服现有技术的不足,提供二氧化硅层包覆导电聚苯胺复合材料及其制备方法,让正硅酸乙酯在不添加去离子水和乙醇溶液以及酸碱催化剂的前提下,利用掺杂后的聚苯胺催化正硅酸乙酯水解,实现二氧化硅层均匀沉淀包覆在聚苯胺纤维表面,之后再对聚苯胺进行再掺杂得到高导电聚苯胺。此种改性方法实现二氧化硅层的均匀包覆,没有SiO2大颗粒的生成,从而更好地发挥复合材料电化学性能。此外正硅酸乙酯水解不需要去离子水、无水乙醇、酸或碱催化剂,工艺过程简单易重复,成本低。
本发明的技术目的通过下述技术方案予以实现。
二氧化硅层包覆导电聚苯胺复合材料及其制备方法,按照下述步骤进行:
步骤1,制备导电聚苯胺纤维
将苯胺溶解分散到盐酸中,再加入含碘酸氢钾的盐酸溶液,逐滴快速加入次氯酸钠,静止得到墨绿色沉淀,过滤干燥,得到导电聚苯胺纤维;
本发明步骤1中制备导电聚苯胺纤维的工艺参数详见参考文献Synthesis ofhighly conductive polyaniline nanofibers,Abdelaziz Rahy,Duck Joo Yang,Materials Letters 62(2008)4311–4314。
步骤2,将步骤1制备的导电聚苯胺纤维分散到正硅酸乙酯中静置在40—50摄氏度水浴中进行反应,抽滤干燥后得到均匀包覆SiO2的聚苯胺纤维,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.5):(8—15);
在步骤2中,反应温度为40—45摄氏度,反应时间为20—40小时,优选25—35h。
在步骤2中,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.3):(9—13)。
在步骤2中,硅源是分析纯级的正硅酸乙酯,SiO2的生成是纯正硅酸乙酯溶液的水解,不含去离子水、乙醇等醇类溶液,也没有加入额外的酸催化剂或碱催化剂,在盐酸掺杂导电聚苯胺存在的情况下水解,整个过程中不需要搅拌,是静置环境。
步骤3,将步骤2制备的均匀包覆SiO2的聚苯胺纤维进行再掺杂
在步骤3中,选择将均匀包覆SiO2的聚苯胺纤维重新分散到盐酸中进行再次掺杂。
在步骤3中,盐酸浓度为1—5mol/L,再次掺杂时间为10—30min。
本发明有效解决了二氧化硅在酸或碱性条件下对聚苯胺纤维的不均匀包覆问题,避免了SiO2颗粒的生成,大大提高SiO2层与导电聚苯胺之间的接触面积以及相互作用力。一方面,导电聚苯胺在碱性条件下会脱质子化,失去导电性和电化学活性。所以正硅酸乙酯的水解需避免碱催化剂的使用。另一方面,使用化学聚合法得到的盐酸掺杂聚苯胺,聚苯胺表面的氢离子会催化正硅酸乙酯的水解,不需要再额外向溶液中加酸。此外,将带正电荷的导电聚苯胺分散到正硅酸乙酯溶液中,正硅酸乙酯水解缩聚生成的二氧化硅带负电荷,静电作用会促使二氧化硅的均匀沉淀。二氧化硅层的均匀包覆以及聚苯胺与二氧化硅之间的相互作用力,使得复合材料具有良好的机械稳定性和导电性,从而在超级电容器、锂离子电池具有更有利的应用环境。在超级电容器中,SiO2的均匀包覆可缓冲赝电容聚苯胺电极材料的机械应力。在锂离子电池中,高导电聚苯胺则为SiO2提供快速、连续的电子传输通道。
本发明与现有技术相比具有以下优点:
(1)可实现SiO2层在聚苯胺纳米纤维表面的均匀包覆,避免SiO2大颗粒在纤维表面的堆积、团聚。
(2)制备过程不需要多余的酸或碱催化剂,也不需要去离子水或乙醇溶液。
(3)盐酸掺杂聚苯胺表面的氢离子可以催化正硅酸乙酯的水解,间接加速二氧化硅的生成。
(4)正硅酸乙酯水解缩聚生成的二氧化硅(带负电),可通过静电相互作用均匀沉淀包覆在聚苯胺表面(带正电)。
(5)制备的二氧化硅层包覆导电聚苯胺(PANIFs@SiO2)复合材料可应用于超级电容器以及锂离子电池材料中。
附图说明
图1为本发明所制备的聚苯胺纳米纤维的扫描电子显微镜照片。
图2为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料的扫描电子显微镜照片。
图3为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料在空气气氛中800℃煅烧5小时去除聚苯胺纤维后,剩余二氧化硅的扫描电子显微镜照片。
图4为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料的透射电子显微镜照片。
图5为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料中某一根复合纤维上氧元素的分布情况示意图。
图6为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料中某一根复合纤维上硅元素的分布情况示意图。
图7为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料中某一根复合纤维上碳元素的分布情况示意图。
图8为本发明所制备的二氧化硅层包覆导电聚苯胺复合材料中某一根复合纤维上氮元素的分布情况示意图。
具体实施方式
下面结合实施例对本发明进行详细说明。
实施例1
(1)将1毫升苯胺溶解到1mol/L盐酸溶液中,搅拌均匀,之后加入含0.4679g碘酸氢钾的100毫升1mol/L盐酸溶液,再逐滴快速加入5毫升5%次氯酸钠溶液,静止30分钟得到墨绿色沉淀,过滤、酸洗,干燥,待用;
(2)量15毫升正硅酸乙酯溶液,倒入烧杯中,然后取步骤(1)中的聚苯胺纳米纤维0.1g,加入到正硅酸乙酯溶液中,最后将烧杯至于40℃水浴锅中,静置24小时。之后过滤,干燥。
(3)将步骤(2)中干燥后的产物浸入1mol/L盐酸溶液中,静置半小时后之后过滤干燥,即可得到导电聚苯胺纳米纤维@二氧化硅复合材料。
实施例2
实施例2与实施例1的不同之处在于:步骤(2)中所量取的正硅酸乙酯是10毫升,其他步骤与实施例(1)相同。
实施例3
实施例3与实施例1的不同之处在于:步骤(2)中的水浴静置时间为24小时~86小时,其他步骤与实施例(1)相同。
实施例4
实施例4与实施例1的不同之处在于:步骤(2)中的水浴静置温度为45℃,其他步骤与实施例(1)相同。
实施例5
实施例5与实施例1的不同之处在于:步骤(2)中的PANIFs的质量为0.3g,其他步骤与实施例(1)相同。
由扫描电子显微镜照片和透射电子显微镜照片可以看出,本发明制备的二氧化硅层包覆导电聚苯胺(PANIFs@SiO2)复合材料,SiO2层均匀分布包覆在聚苯胺纳米纤维表面,没有形成SiO2颗粒。为了进一步证明PANIFs@SiO2的核壳结构,还进行了STEM线扫操作。图4显示了随着扫描点深度变化,Si,O,C,N元素分布情况。图7和图8显示的C元素和N元素,分别是聚苯胺纤维中的两个主要元素,可以看到随着扫描点深度的移动,他们的含量均匀不变,代表着聚苯胺纤维的存在。图5和图6显示,在起始点附近没有观测到Si、O元素,但它们在纤维的中间部分显示出高的含量,说明SiO2包覆在聚苯胺纤维表面。
根据本发明内容进行工艺参数的调整,均可实现SiO2包覆聚苯胺纤维的制备,且表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (9)

1.二氧化硅层包覆导电聚苯胺复合材料,其特征在于,利用掺杂后的聚苯胺催化正硅酸乙酯水解,实现二氧化硅层均匀沉淀包覆在聚苯胺纤维表面,之后对聚苯胺进行再掺杂得到高导电聚苯胺,按照下述步骤进行:
步骤1,制备导电聚苯胺纤维
将苯胺溶解分散到盐酸中,再加入含碘酸氢钾的盐酸溶液,逐滴加入次氯酸钠,静置得到墨绿色沉淀,过滤干燥,得到导电聚苯胺纤维;
步骤2,将步骤1制备的导电聚苯胺纤维分散到正硅酸乙酯中静置在40—50摄氏度水浴中进行反应,抽滤干燥后得到均匀包覆SiO2的聚苯胺纤维,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.5):(8—15);
步骤3,将步骤2制备的均匀包覆SiO2的聚苯胺纤维进行再掺杂。
2.根据权利要求1所述的二氧化硅层包覆导电聚苯胺复合材料,其特征在于,在步骤2中,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.3):(9—13)。
3.根据权利要求1所述的二氧化硅层包覆导电聚苯胺复合材料,其特征在于,在步骤2中,反应温度为40—45摄氏度,反应时间为20—40小时。
4.根据权利要求1所述的二氧化硅层包覆导电聚苯胺复合材料,其特征在于,在步骤3中,选择将均匀包覆SiO2的聚苯胺纤维重新分散到盐酸中进行再次掺杂,盐酸浓度为1—5mol/L,再次掺杂时间为10—30min。
5.二氧化硅层包覆导电聚苯胺复合材料的制备方法,其特征在于,按照下述步骤进行:
步骤1,制备导电聚苯胺纤维
将苯胺溶解分散到盐酸中,再加入含碘酸氢钾的盐酸溶液,逐滴加入次氯酸钠,静置得到墨绿色沉淀,过滤干燥,得到导电聚苯胺纤维;
步骤2,将步骤1制备的导电聚苯胺纤维分散到正硅酸乙酯中静置在40—50摄氏度水浴中进行反应,抽滤干燥后得到均匀包覆SiO2的聚苯胺纤维,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.5):(8—15);
步骤3,将步骤2制备的均匀包覆SiO2的聚苯胺纤维进行再掺杂。
6.根据权利要求5所述的二氧化硅层包覆导电聚苯胺复合材料的制备方法,其特征在于,在步骤2中,导电聚苯胺纤维和正硅酸乙酯的质量比为(0.1—0.3):(9—13)。
7.根据权利要求5所述的二氧化硅层包覆导电聚苯胺复合材料的制备方法,其特征在于,在步骤2中,反应温度为40—45摄氏度,反应时间为20—40小时。
8.根据权利要求5所述的二氧化硅层包覆导电聚苯胺复合材料的制备方法,其特征在于,在步骤3中,选择将均匀包覆SiO2的聚苯胺纤维重新分散到盐酸中进行再次掺杂,盐酸浓度为1—5mol/L,再次掺杂时间为10—30min。
9.如权利要求1—4之一所述的二氧化硅层包覆导电聚苯胺复合材料在超级电容器或者锂离子电池中的应用。
CN201810962593.8A 2018-08-22 2018-08-22 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用 Expired - Fee Related CN110858639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810962593.8A CN110858639B (zh) 2018-08-22 2018-08-22 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810962593.8A CN110858639B (zh) 2018-08-22 2018-08-22 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN110858639A CN110858639A (zh) 2020-03-03
CN110858639B true CN110858639B (zh) 2022-02-18

Family

ID=69636054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810962593.8A Expired - Fee Related CN110858639B (zh) 2018-08-22 2018-08-22 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN110858639B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157800A (zh) * 2007-09-26 2008-04-09 华东理工大学 自分散型导电聚苯胺/硅复合材料的制备方法
KR101122253B1 (ko) * 2010-09-20 2012-03-20 인하대학교 산학협력단 초친수성 및 초소수성 실리카 코팅층 제조방법
CN102758264A (zh) * 2011-04-28 2012-10-31 中国科学院化学研究所 聚合物纳米纤维及其功能化/杂化材料的制备方法与应用
CN104151465A (zh) * 2014-07-26 2014-11-19 哈尔滨工业大学 基于PAN与TEOS同步原位水解制备PAN-g-SiO2聚合物的方法
CN104672446A (zh) * 2015-03-06 2015-06-03 苏州欢颜电气有限公司 一种导电吸波材料SiO2包覆CoFe2O4颗粒/聚苯胺复合材料的制备方法
CN108383487A (zh) * 2018-03-27 2018-08-10 陕西科技大学 一种pan预氧纤维毛毡/二氧化硅气凝胶复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157800A (zh) * 2007-09-26 2008-04-09 华东理工大学 自分散型导电聚苯胺/硅复合材料的制备方法
KR101122253B1 (ko) * 2010-09-20 2012-03-20 인하대학교 산학협력단 초친수성 및 초소수성 실리카 코팅층 제조방법
CN102758264A (zh) * 2011-04-28 2012-10-31 中国科学院化学研究所 聚合物纳米纤维及其功能化/杂化材料的制备方法与应用
CN104151465A (zh) * 2014-07-26 2014-11-19 哈尔滨工业大学 基于PAN与TEOS同步原位水解制备PAN-g-SiO2聚合物的方法
CN104672446A (zh) * 2015-03-06 2015-06-03 苏州欢颜电气有限公司 一种导电吸波材料SiO2包覆CoFe2O4颗粒/聚苯胺复合材料的制备方法
CN108383487A (zh) * 2018-03-27 2018-08-10 陕西科技大学 一种pan预氧纤维毛毡/二氧化硅气凝胶复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Application of Polyaniline for Li-Ion Batteries, Lithium-Sulfur Batteries, and Supercapacitors;Luo, Yani等;《CHEMSUSCHEM》;20181030;第12卷(第8期);第1591-1611页 *

Also Published As

Publication number Publication date
CN110858639A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
Fang et al. Gel electrocatalysts: an emerging material platform for electrochemical energy conversion
AU2020101077A4 (en) Silicon/carbon composite and preparation method and use thereof
Du et al. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials
WO2017190677A1 (zh) 一种硼掺杂多孔碳球的制备方法
TWI664774B (zh) 鋰離子電池負極及柔性鋰離子電池
EP2754639B1 (en) Porous silica-carbon composite body and method for producing same
KR102029526B1 (ko) 전극 페이스트의 제조 방법
CN108807842B (zh) 硅@碳-石墨烯基柔性复合材料及其制备方法、锂电池
KR20170064371A (ko) 그래핀 탄소나노섬유 복합체 및 이의 제조방법
CN112751003B (zh) 一种碳包覆磷酸铁锂及其制备方法、磷酸铁锂正极片、磷酸铁锂电池
CN111584859B (zh) 中空硅微球-氮掺杂碳纳米线硅负极材料及其制法和应用
CN112044372B (zh) 一种空心二氧化钛@碳复合微球及其制备方法
Huang et al. Electrospun nanofibers: from rational design, fabrication to electrochemical sensing applications
KR20150028529A (ko) Nb-TiO2 촉매 담체 및 전기방사법을 이용한 이것의 제조방법
KR20160048969A (ko) 규소 입자의 전-리튬화
CN107541811A (zh) 一种碳纳米棒复合材料及其制备方法和应用
CN114149024A (zh) 一种硼掺杂多孔二氧化钛/碳纤维负极材料及制备方法
TWI667835B (zh) 鋰離子電池負極的製備方法
CN106848282B (zh) 一种非水电解质二次电池用负极材料及其制备方法和应用
KR20130075566A (ko) 전도도가 향상된 실리카-폴리 아닐린 코어-쉘 나노 입자 박막 제조방법
CN110858639B (zh) 二氧化硅层包覆导电聚苯胺复合材料及其制备方法、应用
Hsieh et al. Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes
CN109193013B (zh) 基于喷雾技术制备磷酸掺杂的凯夫拉纤维与碲化镉纳米晶复合的高温质子交换膜的方法
US11936052B2 (en) Fluorine-doped tin oxide support and Pt catalyst for fuel cell comprising the same
CN111086990A (zh) 一种硅碳微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220218