CN110857275B - 一种n杂原子多取代苯并四元环酮的合成方法及应用 - Google Patents

一种n杂原子多取代苯并四元环酮的合成方法及应用 Download PDF

Info

Publication number
CN110857275B
CN110857275B CN201810957541.1A CN201810957541A CN110857275B CN 110857275 B CN110857275 B CN 110857275B CN 201810957541 A CN201810957541 A CN 201810957541A CN 110857275 B CN110857275 B CN 110857275B
Authority
CN
China
Prior art keywords
compound
solution
polysubstituted
heteroatom
ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810957541.1A
Other languages
English (en)
Other versions
CN110857275A (zh
Inventor
徐涛
邱波
张建宇
战俊玲
李晓彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201810957541.1A priority Critical patent/CN110857275B/zh
Publication of CN110857275A publication Critical patent/CN110857275A/zh
Application granted granted Critical
Publication of CN110857275B publication Critical patent/CN110857275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/06One of the condensed rings being a six-membered aromatic ring the other ring being four-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种N杂原子多取代苯并四元环酮的合成方法,合成路线从已知的苯胺化合物A开始,可以实现百克级规模的制备,收率可以达到90%以上,而该路线的每一个步骤都可以实现二十克级规模以上的反应,本发明提供的合成路线为这些具有生物活性的化合物的合成带来一条更为简洁有效的途径,并且收率高,可大规模制备。并且公开了N杂原子多取代苯并四元环酮的应用,与不同的酰氯反应,可以制得不同的产物,具有很广阔的应用前景。

Description

一种N杂原子多取代苯并四元环酮的合成方法及应用
技术领域
本发明涉及一种苯并四元环酮,特别涉及一种N杂原子多取代苯并四元环酮的合成方法及应用。
背景技术
苯并环丁酮中的四元环具有较大的环张力,目前该类型的化合物广泛用于碳碳键活化中,不同取代基苯并环丁酮可以通过碳碳键活化在适当的条件下得到各种类型的产物,如螺环,并环等各种类型化合物。但制备不同取代基的苯并环丁酮仍有一定难度,氧取代基的苯并环丁酮已经实现了大规模制备,而N杂原子多取代苯并环丁酮仍未见报道。
发明内容
为解决上述技术问题,本发明提供了一种N杂原子多取代苯并四元环酮的合成方法及应用,以达到可大规模制备N杂原子多取代苯并四元环酮的目的。
为达到上述目的,本发明的技术方案如下:
一种N杂原子多取代苯并四元环酮的合成方法,包括如下步骤:
(1)化合物A溶于THF溶液后,加入LDA,在LDA去掉N上一分子H的作用下,加入等量的碘甲烷、碘乙烷或苄基溴,然后室温搅拌1-4小时,以连接甲基、乙基或苄基三种不同的保护基,得到化合物B;
(2)将化合物B溶于THF溶液后,加入LDA,在LDA去掉N上另一分子H的作用下,加入过量的氯甲酸乙酯,在40-60℃条件下反应,以连接酯基侧链,得到化合物C;
(3)通过将正丁基锂在0℃条件下加入到THF溶液中,室温搅拌过夜,得到烯基氧锂溶液,然后将化合物C加入到制备好的过量的烯基氧锂溶液中,再加入1.5-2倍的正丁基锂溶液,搅拌,该过程使得n-BuLi与化合物C发生锂卤交换,与烯基氧锂发生环化,得到化合物D;
(4)分别向充氮气的干燥烧瓶中加入过量的草酰氯和DMSO的DCM溶液,然后滴加溶于DCM的化合物D溶液,反应0.5-1.5小时,加入三乙胺,升至室温,即经过Swern氧化将羟基氧化成羰基即得到化合物E;
(5)向化合物E的HAc溶液中加入过量的HBr/HAc溶液,搅拌脱去酯基侧链,得到化合物F,即所需的N杂原子多取代苯并四元环酮;
具体反应过程如下:
Figure BDA0001773007010000021
上述方案中,所述步骤(1)和步骤(2)中,分别在-78℃条件下,加入等量的LDA。
上述方案中,所述步骤(3)中,在-78℃条件下,将化合物C加入到制备好的过量的烯基氧锂溶液中,再加入正丁基锂溶液,搅拌0.5小时。
上述方案中,所述步骤(4)中,在-78℃条件下,分别向充氮气的干燥烧瓶中加入过量的草酰氯和DMSO的DCM溶液。
上述方案中,所述步骤(5)中,在40℃条件下,向化合物E的HAc溶液中加入过量的HBr/HAc溶液,搅拌两天,脱去酯基侧链。
上述方案中,所述步骤(1)和步骤(3)中,反应完成后用NH4Cl水溶液淬灭,用乙酸乙酯萃取,用盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,得到化合物B或化合物D。
上述方案中,所述步骤(2)中,反应完成后,用NH4Cl水溶液淬灭,用EA萃取,盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,得到化合物C。
上述方案中,所述步骤(4)中,反应完成后,通过加入H2O淬灭,用乙酸乙酯萃取,将合并的有机层用盐水洗涤并用MgSO4干燥,将有机层减压浓缩并通过硅胶柱色谱纯化,得到黄色化合物E。
上述方案中,所述步骤(5)中,反应完成后,将溶液用NaHCO3溶液调节pH至碱性,倒入冰水中并用DCM萃取,用盐水洗涤,用MgSO4干燥,浓缩并用硅胶层析纯化,得到化合物F。
一种N杂原子多取代苯并四元环酮的应用:
在室温下向化合物F和DMAP的DCM溶液中加入酰氯,将溶液搅拌2小时并淬灭,用DCM萃取NaHCO3,用盐水洗涤,纯化,得到化合物G,具体反应过程如下:
Figure BDA0001773007010000031
式中,R5为:乙基、2-甲基丁-1-烯基、甲基环丙基、3,4-二氢-2H-吡喃、1-甲基-1H-吲哚氯苯基、8-甲氧基-2H-色烯基、茚基、甲苯基、丙-1-烯-1-基苯基、苯基、苯甲醚中的一种。
通过上述技术方案,本发明提供的N杂原子多取代苯并四元环酮的合成方法具有高适用性,可以广泛应用于不同取代的苯并四元环化合物的合成中,基于化合物研究,苯环上含有氰基、苯基以及卤素取代的苯并四元环化合物是许多具有活性的化合物的基本结构元素。因此,本发明提供的合成路线为这些具有生物活性的化合物的合成带来一条更为简洁有效的途径,并且收率高,可大规模生产。
制得的N杂原子多取代苯并四元环酮可以与不同的酰氯发生酰基化反应,在苯胺上连接不同的取代基,来进行应用拓展。
附图说明
图1为N杂原子多取代苯并四元环酮与不同酰氯反应制得的产物Ga-Gv及收率。
具体实施方式
下面结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种N杂原子多取代苯并四元环酮的合成方法及应用,具体实施例如下:
第一部分:N杂原子多取代苯并四元环酮的合成方法
实施例一:
第一步:
Figure BDA0001773007010000041
准备三份化合物A的THF溶液,在-78℃条件下向化合物A(1mmol)的THF(2mL)溶液中加入市售LDA(1.08mmol,0.54mL,2M己烷/THF溶液),将反应物在此温度下搅拌20分钟,分别向三份溶液中加入碘甲烷、碘乙烷和苄基溴(63uL),然后室温继续搅拌1小时,反应完成后用NH4Cl水溶液淬灭。用乙酸乙酯萃取,用盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,得到黄色液体化合物B1(R2=CH3)、B2(R2=Et)、B3(R2=Bn),收率为80-91%。
B1:Rf=0.55,(PE:EA=5:1),1H NMR(500MHz,Chloroform-d)δ7.27(td,J=8.2,1.2Hz,1H),6.73–6.60(m,1H),6.51(dd,J=8.4,1.4Hz,1H),2.94(d,J=1.3Hz,3H).13C NMR(126MHz,Chloroform-d)δ150.83,150.76,130.48,120.15,117.60,109.59,109.58,109.57,108.98,79.59,31.33.
B2:Rf=0.54,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.26(t,J=8.2Hz,1H),6.68(dd,J=8.1,1.2Hz,1H),6.52(dd,J=8.1,1.2Hz,1H),4.45(s,1H),3.25(q,J=7.2Hz,2H),1.32(m,3H).
B3:Rf=0.6,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.40(d,J=8.3Hz,1H),7.37(d,J=2.5Hz,2H),7.36–7.33(m,1H),7.33–7.29(m,1H),7.20(t,J=8.3Hz,1H),6.73–6.65(m,1H),6.53–6.45(m,1H),5.00(s,1H),4.44(d,J=5.5Hz,2H).
第二步:
Figure BDA0001773007010000042
在-78℃下,分别向化合物B1、B2、B3(1mmol)的THF(2mL)溶液中加入市售LDA(1.08mmol,0.54mL,2M己烷/THF溶液),反应在此温度下搅拌20分钟,加入氯甲酸乙酯(1mL),然后反应温度升至40℃继续搅拌过夜,反应完成后,用NH4Cl水溶液淬灭。用EA萃取,盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,分别得到化合物C1(R2=CH3)、C2(R2=Et)、C3(R2=Bn),430mg(棕色固体),收率为82-90%。
C1:Rf=0.75,(PE:EA=10:1)1H NMR(400MHz,Chloroform-d)δ7.34(t,J=8.2Hz,1H),7.11(d,1H),6.97(d,1H),5.01(s,J=2.0Hz,1H),4.97(s,J=2.0Hz,1H),3.53(s,2H),2.66(s,3H),1.78(s,J=1.5Hz,3H).
C2:Rf=0.14,(PE:EA=10:1)1H NMR(400MHz,Chloroform-d)δ7.56(s,1H),7.51–7.45(m,1H),7.24(s,1H),4.24(q,J=7.1Hz,2H),4.03(q,J=7.1Hz,2H),3.92(s,2H),1.29(s,3H),1.16(d,J=7.1Hz,3H).13C NMR(101MHz,Chloroform-d)δ185.51,154.50,150.95,139.15,136.22,135.49,123.79,118.90,62.30,14.53.
C3:Rf=0.45(PE:EA=10:1)1H NMR(400MHz DMSO-d6)δ7.42(t,J=8.0Hz,1H),7.34(d,J=8.1Hz,1H),7.25(t,J=6.9Hz,3H),7.20(dd,J=14.0,7.6Hz,2H),7.01(d,J=7.6Hz,1H),5.05(d,J=15.0Hz,1H),4.30(d,J=15.0Hz,1H),4.10(dt,J=14.4,9.2Hz,1H),4.02–3.92(m,1H),1.03(t,J=6.8Hz,2H).13C NMR(101MHz,DMSO-d6)δ154.78,151.30,146.68,137.12,131.06,130.03,129.07(d,J=24.4Hz),121.50,120.39,117.20,99.70,62.21,53.32,14.94.
第三步:
Figure BDA0001773007010000051
将烯基氧锂溶液(0.75mmol)冷却至-78℃,分别向三份溶液中加入溶在THF(1mL)中的化合物C1(R2=CH3)、C2(R2=Et)、C3(R2=Bn)(0.5mmol),然后在-78℃下逐滴加入n-BuLi(0.4mL,2.5M),在-78℃下搅拌0.5h。通过TLC监测反应,通过加入NH4Cl水溶液,用乙酸乙酯(10mL×3)萃取,用盐水洗涤,并用MgSO4干燥。将合并的有机层减压浓缩并通过硅胶柱色谱纯化,分别得到化合物D1(R2=CH3)、D2(R2=Et)、D3(R2=Bn),收率为60-67%。
D1:Rf=0.15,(PE:EA=3:1)1H NMR(400MHz,Chloroform-d)δ=7.28(dd,J=8.2,7.3,1H),6.98(dt,J=8.3,0.8,1H),6.95(dt,J=7.2,0.8,1H),5.22(d,J=4.2,1H),4.29–4.20(m,2H),3.34(d,J=0.7,3H),3.02(ddt,J=14.3,1.9,1.0,1H),1.32(td,J=7.1,0.8,3H).
D2:Rf=0.10,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.32–7.26(m,1H),7.00(dd,J=11.7,7.4Hz,2H),5.24–5.17(m,1H),4.32–4.21(m,2H),4.12(q,J=7.1Hz,1H),3.46(dd,J=14.2,4.4Hz,1H),3.03(d,J=15.1Hz,1H),1.32(d,J=14.2Hz,3H),1.21(d,J=7.1Hz,3H)
D3:Rf=0.25(PE:EA=5:1).1H NMR(400MHz,Chloroform-d)δ7.31(s,3H),7.23(s,1H),7.22(s,1H),7.21(s,1H),7.01–6.94(m,2H),4.96(s,2H),4.25(dd,J=11.5,5.5Hz,2H),4.17–4.08(m,1H),3.42(d,J=15.5Hz,1H),3.00(d,J=14.3Hz,1H),1.25(d,J=9.2Hz,3H).
第四步:
Figure BDA0001773007010000061
向充氮气球的干燥烧瓶中加入草酰氯(0.18mL,0.375mmol)和DCM(0.3mL)。将烧瓶冷却至-78℃并滴加溶于DCM(0.25mL)中的DMSO(0.06mL,0.75mmol)溶液。反应在-78℃下搅拌20分钟后,分别向三份溶液中逐滴加入溶在DCM(0.25mL)中的化合物D1(R2=CH3)、D2(R2=Et)、D3(R2=Bn)(0.25mmol),并将该体系在-78℃再搅拌1小时。缓慢加入三乙胺(0.09mL,1.5mmol)。然后将反应加热至室温,然后用H2O(10mL)淬灭并用乙酸乙酯(15mL X3)萃取。将合并的有机层用盐水洗涤并用MgSO4干燥。将有机层减压浓缩并通过硅胶柱色谱纯化,得到黄色化合物E1(R2=CH3)、E2(R2=Et)、E3(R2=Bn),收率为67%左右。
E1:Rf=0.7,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ=7.58(d,J=8.4,1H),7.47(ddd,J=8.3,7.1,0.9,1H),7.20(dt,J=7.1,0.8,1H),4.24(qd,J=7.1,0.9,2H),3.91(q,J=0.9,2H),3.47(d,J=1.0,3H),1.29(td,J=7.1,0.9,3H).13C NMR(101MHz,Chloroform-d)δ=185.41,154.63,150.79,138.72,136.50,136.14,122.67,118.65,62.51,51.33,37.11,14.54.
E2:Rf=0.7(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.46(dd,J=8.1,7.3Hz,1H),7.335(d,J=7.3HZ,1H),7.09(d,J=8.0Hz,1H),5.17–5.05(m,2H),4.05(m,2H),1.88(dd,J=1.6,1.0Hz,3H),1.12(t,J=7.1Hz,3H).13C NMR(101MHz,Chloroform-d)δ171.60,151.66,140.73,136.12,135.76,120.62,120.21,77.31,51.97,44.37,13.35.
E3:Rf=0.67(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.44(q,J=8.2Hz,1H),7.26–7.14(m,4H),5.25(s,2H),4.31–4.23(m,2H),3.89(s,2H),1.29–1.24(m,3H)。
第五步:
Figure BDA0001773007010000071
在室温下,向化合物E1(R2=CH3)、E2(R2=Et)、E3(R2=Bn)(4.56mmol)的HAc(50mL)溶液中分别加入HBr/HAc溶液(20mL),然后将反应升至40℃,继续搅拌反应物16h。将溶液用NaHCO3溶液调节pH至碱性倒入冰水中并用DCM(70mL X 3)萃取。用盐水洗涤,用MgSO4干燥,浓缩并用硅胶层析纯化,得到化合物F1(R2=CH3)、F2(R2=Et)、F3(R2=Bn),收率为87%。
F1:Rf=0.45(PE:EA=5:1)1H NMR(500MHz,Chloroform-d)δ7.30(t,J=7.7Hz,1H),6.74(d,J=6.9Hz,1H),6.48(d,J=8.3Hz,1H),3.82(s,2H),3.09(s,3H).13C NMR(126MHz,Chloroform-d)δ186.52,150.86,143.32,137.17,111.05,110.57,50.74,31.43.
F2:Rf=0.65(PE:EA=10:1)1H NMR(400MHz,Chloroform-d)δ7.25(t,1H),6.66(d,J=7.0,0.6Hz,1H),6.39(dq,J=8.5,0.6Hz,1H),4.42(s,1H),3.78(t,J=0.7Hz,2H),3.47(q,J=7.2Hz,2H),1.24(t,J=7.2Hz,3H)13C NMR(101MHz,Chloroform-d)δ186.66,150.94,142.80,137.27,129.15,111.33,110.18,77.31,50.69,39.47,15.19.
F3:Rf=0.6(PE:EA=10:1)1H NMR(400MHz,Chloroform-d)δ7.32(d,J=4.4Hz,4H),7.30–7.26(m,1H),7.26–7.23(t,J=4.4Hz,1H),6.71(d,J=7.0Hz,1H),6.45(d,J=8.4Hz,1H),4.64(s,2H),3.80(s,2H).
实施例二:
Figure BDA0001773007010000081
具体实验操作同实施例一,制得的产物如下:
F4:Rf=0.7,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.40(s,1H),7.17(s,1H),3.94(s,2H),3.36(s,3H).
F5:Rf=0.6,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.24(s,1H),7.01(s,1H),3.84(s,2H),3.26(s,3H).
F6:Rf=0.75,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.45(s,1H),7.23(s,1H),3.9(s,2H),3.36(s,3H).
F7:Rf=0.7,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.38(s,1H),7.15(s,1H),3.92(s,2H),3.33(s,3H).
实施例三:
Figure BDA0001773007010000082
具体实验操作同实施例一,制得的产物如下:
F8:Rf=0.52,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)1H NMR(400MHz,Chloroform-d)δ7.40(d,J=7.26Hz,1H),7.14(d,J=7.26Hz,1H),6.88(s,1H),3.82(s,2H),3.09(s,3H).
F9:Rf=0.57,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)1H NMR(400MHz,Chloroform-d)δ7.42(d,J=7.26Hz,1H),7.16(d,J=7.26Hz,1H),6.88(s,1H),3.82(s,2H),3.09(s,3H).
F10:Rf=0.6,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.32(d,J=4.8Hz,4H),7.30–7.26(m,1H),7.21(t,J=4.8Hz,1H),6.7(d,J=7.0Hz,1H),6.45(d,J=8.4Hz,1H),4.64(s,2H),3.80(s,2H).
第二部分:N杂原子多取代苯并四元环酮的应用
第一步,酰氯的制备:
图1中,制得Gb、Gd、Ge、Gq、Gt所需酰氯的制备过程一致,做如下概括:
Figure BDA0001773007010000091
在室温下向H(1mmol)的DCM溶液中滴加草酰氯(1.5mmol),滴加一滴DMF溶液,室温搅拌2h,得到酰氯I,然后真空状态下除去DCM溶液。
按照Hb、Hd、He、Hq、Ht的顺序,R5依次为:乙基、2-甲基丁-1-烯基、甲基环丙基、3,4-二氢-2H-吡喃、1-甲基-1H-吲哚。
图1中,制得Gp、Gr、Gs、Gm、Gl、Gc、Go所需酰氯的制备过程一致,做如下概括:
Figure BDA0001773007010000092
在室温下向H(1mmol)加入二氯亚砜(1.5mmol),搅拌回流2h,得到酰氯J,然后真空状态下除去多余的二氯亚砜。
按照Hp、Hr、Hs、Hm、Hl、Hc、Ho的顺序,R5依次为:氯苯基、8-甲氧基-2H-色烯基、茚基、甲苯基、丙-1-烯-1-基苯基、苯基、苯甲醚。
其余酰氯由市售得到。
第二步,
Figure BDA0001773007010000101
在室温下向化合物F(74mg,0.5mmol)和DMAP(184mg,1.5mmol)的DCM(2mL)溶液中加入甲基丙烯酰氯(147μL),将溶液搅拌2小时并淬灭,用DCM萃取NaHCO3,用盐水洗涤,纯化,得到化合物G 85mg。
Ga:Rf=0.36,(PE:EA=5:1).1H NMR(400MHz,Chloroform-d)δ7.48–7.42(m,1H),7.30(d,J=7.3Hz,1H),7.18(d,J=8.2Hz,1H),5.22–5.17(m,1H),5.10(dd,J=1.7,1.0Hz,1H),3.98(s,2H),3.50(s,3H),1.91(d,J=1.7Hz,3H).13C NMR(100MHz,Chloroform-d)δ151.52,139.96,136.95,136.13,124.52,120.35,120.33,51.96,37.23,19.96.
注:其他化合物G的反应条件类似。
Gb:Rf=0.38,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.45(dd,J=8.2,7.2Hz,1H),7.29(dt,J=7.4,0.8Hz,1H),7.24(dq,J=8.2,0.9Hz,1H),5.19(td,J=1.8,0.7Hz,1H),5.14(q,J=1.0Hz,1H),3.98(d,J=0.9Hz,2H),3.51(s,3H),2.26(qt,J=7.4,1.5Hz,2H),1.05(t,J=7.4Hz,3H).13C NMR(100MHz,Chloroform-d)δ185.40,172.04,151.47,146.39,139.84,136.75,136.06,124.70,120.29,117.69,51.90,37.41,26.28,11.88.HRMS(CI)calcd.For C14H16O2N+[M]+:230.11756.Found:230.11722.
Gc:Rf=0.35,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ=7.34(t,J=7.7,1H),7.26–7.16(m,6H),5.65(s,1H),5.58(s,1H),3.82(s,2H),3.47(s,3H).
Ge:Rf=0.66,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.43(dd,J=8.2,7.2Hz,1H),7.30(ddt,J=7.1,6.2,0.8Hz,2H),5.34(td,J=1.6,0.8Hz,1H),5.12(q,J=1.0Hz,1H),3.97(t,J=0.9Hz,2H),3.52(d,J=0.9Hz,3H),2.15(dt,J=7.0,1.4Hz,2H),0.90–0.74(m,1H),0.56–0.46(m,2H),0.11–0.04(m,2H).13C NMR(100MHz,Chloroform-d)δ185.39,171.93,151.41,144.75,139.71,136.76,135.98,124.80,120.22,118.66,51.85,38.29,37.43,9.01,4.71.HRMS(CI)calcd.For C16H18O2N+[M]+:256.13321.Found:256.13278.
Gf:Rf=0.55,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.37(ddd,J=8.3,7.2,1.3Hz,1H),7.25–7.13(m,6H),7.03(d,J=8.0Hz,1H),5.19(p,J=1.5Hz,1H),5.15(q,J=1.5Hz,1H),3.97–3.88(m,2H),1.92(q,J=1.4Hz,3H).
Gi:Rf=0.40,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.70(d,J=8.4Hz,1H),7.63–7.59(m,2H),7.51–7.45(m,2H),7.42–7.36(m,1H),7.31–7.27(m,1H),5.23(dt,J=2.5,1.2Hz,1H),5.15(p,J=1.0Hz,1H),4.17(s,2H),3.54(s,3H),1.95(dd,J=1.7,1.1Hz,3H).
Gl:Rf=0.3,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.45(dd,J=8.2,7.2Hz,1H),7.35–7.31(m,1H),7.31–7.28(m,1H),7.19–7.12(m,3H),6.66(d,J=1.8Hz,1H),3.98(d,J=0.9Hz,2H),3.57(s,3H),2.00(d,J=1.5Hz,3H).13C NMR(100MHz,Chloroform-d)δ 185.37,173.22,151.55,139.70,137.18,136.12,135.83,134.79,132.91,129.02,128.38,127.82,124.31,120.16,51.92,37.12,16.06.HRMS(CI)calcd.ForC9H18O2N+[M]+:292.13321.Found:292.13263
Gm:Rf=0.5(PE:EA=3:1)1H NMR(400MHz,Chloroform-d)δ7.43(dd,J=8.1,7.2Hz,1H),7.29–7.24(m,1H),7.16(d,J=8.2Hz,1H),7.12(d,J=8.0Hz,2H),7.05(d,J=8.1Hz,2H),6.65(d,J=1.8Hz,1H),3.96(s,2H),3.56(s,3H),2.32(s,3H),1.99(d,J=1.6Hz,3H).13C NMR(100MHz,Chloroform-d)δ185.35,173.42,151.50,139.63,137.84,137.29,136.09,134.97,132.99,132.03,129.09,129.06,124.26,120.02,51.88,37.13,21.31,16.11.HRMS(CI)calcd.For C20H20O2N+[M]+:306.14886.Found:306.14832.
Go:Rf=0.4,(PE:EA=3:1)1H NMR(400MHz,Chloroform-d)δ=7.39–7.32(m,1H),7.21(m,4H),6.80–6.72(m,2H),5.56(s,1H),5.43(s,1H),3.85(s,2H),3.76(s,3H),3.47(s,3H).
Gp:Rf=0.64,(PE:EA=3:1)1H NMR(400MHz,Chloroform-d)δ7.45(dd,J=8.2,7.3Hz,1H),7.32–7.26(m,3H),7.15(dd,J=8.2,0.7Hz,1H),7.09–7.04(m,2H),6.60(d,J=1.7Hz,1H),3.98(d,J=0.9Hz,2H),3.56(s,3H),1.97(d,J=1.5Hz,3H).HRMS(CI)calcd.ForC8H8F3INO3S+[M]+:381.92163.Found:381.92162.
Gr:Rf=0.56,(PE:EA=5:1)1H NMR(400MHz,Chloroform-d)δ7.44(dd,J=8.1,7.3Hz,1H),7.32–7.28(m,1H),7.18–7.14(m,1H),6.84–6.80(m,2H),6.69(d,J=1.3Hz,1H),6.60(dd,J=5.1,4.0Hz,1H),4.74(d,J=1.3Hz,2H),3.98(d,J=0.9Hz,2H),3.84(s,3H),3.53(s,3H).
Gt:Rf=0.56,(PE:EA=3:1)1H NMR(400MHz,Chloroform-d)δ7.44(dt,J=8.0,1.0Hz,1H),7.40–7.33(m,2H),7.31–7.27(m,1H),7.24(dt,J=8.2,1.2Hz,1H),7.09–7.03(m,2H),6.26(s,1H),3.98(s,3H),3.87(s,2H),3.63(s,3H).HRMS(CI)calcd.ForC19H17O2N2+[M]+:305.12845.Found:305.12793
Gu:Rf=0.54,(PE:EA=6:1)1H NMR(400MHz,Chloroform-d)δ7.44(t,J=7.7Hz,1H),7.29(d,J=7.2Hz,1H),7.25(d,J=7.8Hz,1H),5.18(s,1H),5.16(s,1H),3.96(s,2H),3.49(s,3H),2.21–2.12(m,2H),1.47(h,J=7.4Hz,2H),0.90(t,J=7.3Hz,3H).13C NMR(100MHz,Chloroform-d)δ185.30,171.92,151.43,144.99,139.84,136.69,136.03,124.76,120.27,118.64,51.84,37.43,35.51,20.92,13.81.
从适用性来看,化合物F可以与一系列取代化合物发生酰基化,侧链既可以脂肪侧链,也可以为芳基侧链,也可以为杂环化合物,这种杂环可以为吡喃环、色烯环、茚环、吲哚环等。从Ga,Gb,Gd,Ge的收率来看,随侧链的增长收率会有所降低,但是仍可以达到中等收率,同时侧链也可以为环状化合物(Ge),当侧链为芳基侧链时,收率良好,从Gj,Gl,Gm的对比结果来当苯环上间位连有吸电子基团时,产率有所上升,而当苯环上间位连有给电子基团时,产率会有所下降。另外,从Gn,Go,Gp,Gq的结果可以看出,侧链也可以为杂环化合物。另外当R1为乙基、苄基时(Gf,Gg)也可以得到良好的反应结果,收率中等。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,包括如下步骤:
(1)化合物A溶于THF溶液后,加入LDA,在LDA去掉N上一分子H的作用下,加入等量的碘甲烷、碘乙烷或苄基溴,然后室温搅拌1-4小时,以连接甲基、乙基或苄基三种不同的保护基,得到化合物B;
(2)将化合物B溶于THF溶液后,加入LDA,在LDA去掉N上另一分子H的作用下,加入过量的氯甲酸乙酯,在40-60℃条件下反应,以连接酯基侧链,得到化合物C;
(3)通过将正丁基锂在0℃条件下加入到THF溶液中,室温搅拌过夜,得到烯基氧锂溶液,然后将化合物C加入到制备好的过量的烯基氧锂溶液中,再加入1.5-2倍的正丁基锂溶液,搅拌,该过程使得n-BuLi与化合物C发生锂卤交换,与烯基氧锂发生环化,得到化合物D;
(4)分别向充氮气的干燥烧瓶中加入过量的草酰氯和DMSO的DCM溶液,然后滴加溶于DCM的化合物D溶液,反应0.5-1.5小时,加入三乙胺,升至室温,即经过Swern氧化将羟基氧化成羰基即得到化合物E;
(5)向化合物E的HAc溶液中加入过量的HBr/HAc溶液,搅拌脱去酯基侧链,得到化合物F,即所需的N杂原子多取代苯并四元环酮;
具体反应过程如下:
Figure FDA0003070211320000011
2.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(1)和步骤(2)中,分别在-78℃条件下,加入等量的LDA。
3.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(3)中,在-78℃条件下,将化合物C加入到制备好的过量的烯基氧锂溶液中,再加入正丁基锂溶液,搅拌0.5小时。
4.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(4)中,在-78℃条件下,分别向充氮气的干燥烧瓶中加入过量的草酰氯和DMSO的DCM溶液。
5.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(5)中,在40℃条件下,向化合物E的HAc溶液中加入过量的HBr/HAc溶液,搅拌两天,脱去酯基侧链。
6.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(1)和步骤(3)中,反应完成后用NH4Cl水溶液淬灭,用乙酸乙酯萃取,用盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,得到化合物B或化合物D。
7.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(2)中,反应完成后,用NH4Cl水溶液淬灭,用EA萃取,盐水洗涤,MgSO4干燥,浓缩并用硅胶色谱纯化,得到化合物C。
8.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(4)中,反应完成后,通过加入H2O淬灭,用乙酸乙酯萃取,将合并的有机层用盐水洗涤并用MgSO4干燥,将有机层减压浓缩并通过硅胶柱色谱纯化,得到黄色化合物E。
9.根据权利要求1所述的一种N杂原子多取代苯并四元环酮的合成方法,其特征在于,所述步骤(5)中,反应完成后,将溶液用NaHCO3溶液调节pH至碱性,倒入冰水中并用DCM萃取,用盐水洗涤,用MgSO4干燥,浓缩并用硅胶层析纯化,得到化合物F。
CN201810957541.1A 2018-08-22 2018-08-22 一种n杂原子多取代苯并四元环酮的合成方法及应用 Active CN110857275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810957541.1A CN110857275B (zh) 2018-08-22 2018-08-22 一种n杂原子多取代苯并四元环酮的合成方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810957541.1A CN110857275B (zh) 2018-08-22 2018-08-22 一种n杂原子多取代苯并四元环酮的合成方法及应用

Publications (2)

Publication Number Publication Date
CN110857275A CN110857275A (zh) 2020-03-03
CN110857275B true CN110857275B (zh) 2021-09-24

Family

ID=69634853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810957541.1A Active CN110857275B (zh) 2018-08-22 2018-08-22 一种n杂原子多取代苯并四元环酮的合成方法及应用

Country Status (1)

Country Link
CN (1) CN110857275B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105775A (zh) * 2021-11-30 2022-03-01 武汉工程大学 一种带有末端双键的取代碘苯的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869693A (en) * 1995-12-21 1999-02-09 Carleton University Benzocyclobutenones and polymers derived therefrom
US6593490B1 (en) * 2000-04-12 2003-07-15 Avery Dennison Corporation Benzocyclobutenone-containing monomers
CN102718643A (zh) * 2012-04-11 2012-10-10 安徽师范大学 一种苯并环丁酮衍生物及其合成方法
WO2013096223A1 (en) * 2011-12-19 2013-06-27 Abbvie Inc. Trpv1 antagonists

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869693A (en) * 1995-12-21 1999-02-09 Carleton University Benzocyclobutenones and polymers derived therefrom
US6593490B1 (en) * 2000-04-12 2003-07-15 Avery Dennison Corporation Benzocyclobutenone-containing monomers
WO2013096223A1 (en) * 2011-12-19 2013-06-27 Abbvie Inc. Trpv1 antagonists
CN102718643A (zh) * 2012-04-11 2012-10-10 安徽师范大学 一种苯并环丁酮衍生物及其合成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Concise Synthesis of (-)-Cycloclavine and (-)-5-epi-Cycloclavine via Asymmetric C-C Activation;Lin Deng etal;《Journal of the American Chemical Society》;20180706;全文 *
Facile access to versatile polyaromatic building blocks: selectively protected benzocyclobutenedione derivatives via regioselective [2 + 2] cycloaddition of α-alkoxybenzyne and ketene silyl acetal;Hamura, Toshiyuki etal;《Helvetica Chimica Acta》;20021231;全文 *
New Route to Incorporation of [60]Fullerene into Polymers via the Benzocyclobutenone Group;Wang, Zhi Yuan etal;《Macromolecules 》;19981231;全文 *
Rhodium-Catalyzed Ring Opening of Benzocyclobutenols with Site-Selectivity Complementary to Thermal Ring Opening;Ishida, Naoki etal;《 Journal of the American Chemical Society》;20121231;全文 *
Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C-C bonds: Entry to type II polyketides;Bender et al;《Science》;20170825;第S3页 *
Synthesis of benzocyclobutenone containing polymers for UV curable pressure sensitive adhesive applications;Iyer, Pradeep etal;《 ARKIVOC (Gainesville, FL, United States) 》;20051231;全文 *

Also Published As

Publication number Publication date
CN110857275A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
CN108727244B (zh) 一种1,6-烯炔硝化环化反应制备2-吡咯烷酮类化合物的方法
CN108912171B (zh) 4-二甲氨基苯甲酰基二苯氧膦或者4-二正己基氨基苯甲酰基二苯氧膦的合成方法
Li et al. Remarkable rate acceleration of water-promoted nucleophilic substitution of Baylis–Hillman acetate: a facile and highly efficient synthesis of N-substituted imidazole
US5840961A (en) Asymmetric synthesis of chiral beta-amiNo acids
CN110857275B (zh) 一种n杂原子多取代苯并四元环酮的合成方法及应用
Casaschi et al. Palladium catalysed tandem cyclisation–anion capture. Part 7: Synthesis of derivatives of α-amino esters, nitrogen heterocycles and β-aryl/heteroaryl ethylamines via in situ generated vinylstannanes
Sun et al. Synthesis of (−)-(5R, 6S)-6-acetoxyhexadecan-5-olide by l-proline-catalyzed asymmetric aldol reactions
CN111116497B (zh) 一种3-甲基喹喔啉-2-(1h)-酮衍生物的制备方法
CN115197153B (zh) 一种1,4-二氮杂环烷类化合物的制备方法
KR101623810B1 (ko) 아세토아세틱 에스테르를 이용한 퓨란, 티오펜, 피롤의 합성방법
Kałuża et al. Synthesis of enantiopure 1, 2-dihydroxyhexahydropyrroloisoquinolines as potential tools for asymmetric catalysis
JPWO2005085204A1 (ja) 含窒素5員環化合物の製造方法
CN109721523B (zh) 一种二氢吲哚衍生物及其制备方法
CN108484602B (zh) 一种多取代氮杂三环嗪衍生物的制备方法
JPH05148293A (ja) 新規カプラマイシン誘導体およびその製造方法
CN104860864B (zh) 2‑羰基‑5‑炔基吡咯化合物的合成方法
CN110156681B (zh) 一种2-酯基喹啉的合成方法
CN110194760B (zh) 制备3-亚苄基-2-(7’-喹啉)-2,3-二氢-异吲哚-1-酮类化合物的方法
CN113004321B (zh) 3-取代环丁酮去对称化的方法、环丁烯类化合物及其用途
CN113150008B (zh) Dbu催化下多取代2-氧杂双环[2,2,2]辛烷-3-亚胺衍生物的合成方法
CN111574393B (zh) 一种3,4-二芳基丁酰胺类化合物的合成方法
Yao et al. Two-Directional Synthesis of (+)-Ancepsenolide
CN111499654B (zh) 一种合成3-氯-噻吩[2,3,-b]吡啶衍生物的方法
JP4759722B2 (ja) 置換基を有する芳香族カルボン酸エステルの製造方法
CN116199698A (zh) 功能化d-葡萄烯糖化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant