CN110835695A - 一种基于镍基滤材的气相镁纯化的方法与装置 - Google Patents

一种基于镍基滤材的气相镁纯化的方法与装置 Download PDF

Info

Publication number
CN110835695A
CN110835695A CN201911178342.1A CN201911178342A CN110835695A CN 110835695 A CN110835695 A CN 110835695A CN 201911178342 A CN201911178342 A CN 201911178342A CN 110835695 A CN110835695 A CN 110835695A
Authority
CN
China
Prior art keywords
nickel
magnesium
crucible
filter material
based filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911178342.1A
Other languages
English (en)
Other versions
CN110835695B (zh
Inventor
单智伟
杨博
刘博宇
王安
毛路遥
李姣
刘飞
畅治民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoke Magnesium Technology Henan Co Ltd
Original Assignee
Guoke Magnesium Technology Henan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoke Magnesium Technology Henan Co Ltd filed Critical Guoke Magnesium Technology Henan Co Ltd
Priority to CN201911178342.1A priority Critical patent/CN110835695B/zh
Publication of CN110835695A publication Critical patent/CN110835695A/zh
Application granted granted Critical
Publication of CN110835695B publication Critical patent/CN110835695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种基于镍基滤材的气相镁纯化的方法,所述方法采用镍基滤材对镁蒸气进行过滤,在一定的温度、真空度下,镍材一方面不与镁蒸气反应,不会给体系带来新的杂质;另一方面,镍材与镁蒸气中的杂质Al、Mn具有特殊的亲和性,能够形成稳定的固溶体;同时镍材还能够作为镁蒸气中某些杂质形核的位点,降低形核能垒,使某些杂质提前沉积,实现脱除。本发明提供的方法能够应用于工业化大批量的气相镁纯化中,成数量级的提高生产效率的同时使镁中Mn含量下降至10ppm以下,Al含量下降至10ppm以下,Si含量20ppm以下,同时可去除F、Cl、S等非金属杂质元素,提高产品纯度,得到的镁的纯度在99.99%以上。

Description

一种基于镍基滤材的气相镁纯化的方法与装置
技术领域
本发明属于金属镁纯化技术领域,具体涉及一种基于镍基滤材的气相镁纯 化的方法与装置。
背景技术
镁合金具有密度低、阻尼减震性强、电磁屏蔽性能优异和回收成本相对低 廉等优点,因此被视为“21世纪绿色环保工程结构材料”及重要战略物资。目前 镁纯化领域存在产品整体纯度低(仅为99.90%),杂质元素种类多(主要含有 Mn、Al、Ca、Si、Fe、Ni等)、含量波动大等痼疾。这些痼疾使镁合金的性 能严重劣化,进而导致其实际应用远逊于预期。
目前常用的金属镁纯化方法有两种:熔剂精炼法和真空蒸馏法。前者的优 点是可以实现原镁的大批量纯化,是目前工业粗镁纯化的主要方法。熔剂精炼 法使用的主体熔剂只能是部分碱金属和碱土金属的卤化物,工厂最常用的熔剂 的主要成分为MgCl2、KCl、CaF2等。精炼剂的除杂机理包括两方面:一是利 用精炼剂对氧化物夹杂(MgO、SiO2等)的良好润湿和吸附能力,通过静置沉 淀实现氧化物夹杂与镁熔体分离;二是在熔体中,利用活泼金属杂质,如K、 Na,与MgCl2的生置换反应而去除比镁更活泼的金属杂质。但由于目前最普遍使用的熔剂不与还原镁锭的Mn、Al、Fe和Ni等杂质元素反应,因此很难生产 纯度大于99.95%,特别是国标Mg9995A标准及以上的镁。除此以外,精炼熔 剂常常引入F、Cl、S等非金属杂质元素,这些杂质元素含量超过一定阈值之后, 也会影响原镁的性能。
真空蒸馏法具有悠久的历史,其原理为利用Mg和大部分杂质元素饱和蒸 气压差别大的特点,在合适温度和压强下使Mg蒸发,而主要杂质留在熔体中, 实现镁与杂质分离。真空蒸馏法的优点是可以制备出纯度高达99.9999%(不计 入Zn含量)超高纯镁。但是为了获得较高的纯度,蒸馏法一般在真空条件、 接近Mg熔点(650-700℃)的蒸发温度下进行,因此其制备效率低;不同温区 的结晶镁纯度不同,一般只有合适温度下的结晶镁才是高纯镁,因此其高纯镁 收得率较低;为了获得超高纯镁(99.999%-99.9999%),需要多次蒸馏,因此 成本很高。基于上述原因,真空蒸馏法不能满足工业化大规模生产的需求。
此外,现有技术中纯化镁的方法也有采用滤材辅助除杂的气相沉积的方法, 但是一般滤材采用不锈钢纤维或者是不锈钢纤维结合铜纤维的方法,不锈钢不 适用于镁蒸气压过高的工况,适用于加热温度较低—低温升华的工况,因此镁 纯化的效率低,高纯镁的产量极低。
发明内容
为了解决以上的技术问题,本发明提供一种基于镍基滤材的气相镁纯化方 法与装置,所述方法以含微量杂质的镁为处理对象,通过将镁气化为镁蒸气, 然后通过镍基滤材的方式,脱除镁蒸气中的杂质。
本发明的目的是提供一种基于镍基滤材的气相镁纯化的方法。
本发明的另一目的是一种实现上述镁纯化方法的装置。
本发明提供的基于镍基滤材的气相镁纯化的方法,包括以下步骤:
(1)将镁原料放置于密封的坩埚中的反应区,对坩埚内部进行抽真空处理;
(2)采用加热机构加热镁原料至镁气化,使镁蒸气通过镍基滤材,在坩埚 远离反应区的结晶器上冷凝得到高纯镁。
微量杂质元素对镁及镁合金的性能影响极大,特别是耐蚀性能。镍(Ni) 元素在纯镁中的腐蚀容限小于10ppm,即纯镁中的Ni元素质量分数超过10ppm, 腐蚀速率便会成数量级地上升,只有Ni含量小于10ppm时,镁才会呈现良好 的耐蚀性。正因为如此,在纯镁生产过程中,传统的理念是尽量避免镁与高镍 含量容器介质接触,以免造成污染,恶化其耐蚀性。与金属镁冶炼工艺尽量避 免接触镍元素的传统思维不同,本发明根据热力学计算发现,相对镁而言,镍 的蒸气压极低,因此在真空条件下,温度达到使镁气化为镁蒸气的条件下,镁 蒸气通过镍基滤材时,镍基滤材与镁不发生反应,在热力学上镍与镁不形成更 稳定的物质,因此几乎没有镍蒸气进入到镁蒸气体系中,而镁蒸气中含有的杂 质,如Mn、Al、Ca、F、Cl等,一方面在镍基滤材中的化学势低于在镁蒸气中 的化学势,而倾向于形成中间合金从而脱离气相体系,另一方面可借助镍基滤 材提供的附着位点冷凝富集脱离气相体系。由于本发明提供的基于镍基滤材的 气相镁纯化的方法体系中的蒸发温度高,使得镁原料能够快速变成镁蒸气,通 过一次的气化-过滤-冷凝过程就能够得到纯度高于99.99%的镁,因此纯化镁的 效率高,适用于大规模的工业生产。
本发明提供的方法中采用的镍基滤材能够在镁的纯化过程中,不引入镍污 染的前提下,充分利用了镍基滤材优异的耐高温性能,滤材的使用寿命长。
优选地,步骤(1)中,坩埚内的真空度在30Pa以下。
本发明提供的坩埚中的真空度在30Pa以下,能够保证提高纯化镁的效率。
优选地,步骤(2)中,所述加热的温度为586-1300℃。
包含有微量杂质的镁原料的熔程为650-700℃,本发明在30Pa以下的真空 度下,设置坩埚中的温度为586-1300℃,包含杂质的镁原料能够变成镁蒸气, 而镍作为滤材不会进入到镁蒸气体系,镁经过镍基滤材之后,镁蒸气中的杂质 能够与镍基滤材之间形成良好的结合,杂质在镍基滤材上能够得到相应的附着 点,杂质被留在镍基滤材中,镁蒸气进一步的上升至结晶区,在结晶器上进行 冷凝,得到高纯镁。
进一步优选地,步骤(2)中,所述加热分为三段进行,其中第一段对坩埚 设置有镁原料的反应区进行加热,温度为700-1300℃;第二段和第三段依次对 坩埚中设置有镍基滤材的杂质冷凝区进行加热,第二段的温度为700-1300℃, 第三段的温度为586-800℃。
本发明提供方法中,加热分为三段进行,第一段主要目的是加热镁原料, 产生镁蒸气,第二段和第三段的目的一方面是对保持镁的蒸气状态,另一方面 是加热镍基滤材,使得镍基滤材保证最佳的工作温度,有利于镁蒸气中杂质的 去除。为了保证加热达到镁气化的目的,本发明设置第一段和第二段的加热温 度为700-1300℃,第三段的加热温度为586-950℃。而第一段和第二段在合适 的范围内加热温度越高,镁气化的速率越快,气相纯化镁的效率越高。
进一步优选地,步骤(2)中,所述加热分为三段进行,其中第一段对坩埚 设置有镁原料的反应区进行加热,温度为1200-1300℃;第二段和第三段依次 对坩埚中设置有镍基滤材的杂质冷凝区进行加热,第二段的温度为 1200-1300℃,第三段的温度为586-950℃。本发明采用的方法,一方面,能够 以还原料球为镁源物料,也能够以纯度达不到99.99%的金属镁作为镁源物料。 当以还原料球为镁源物料时,镁源物料需要进行化学反应,因此对镁源物料进 行加热的温度需要达到1200℃以上,真空度在10Pa以下,在此温度和真空度下,还原料球能够发生反应,并且得到镁蒸气。
优选地,步骤(2)中,所述加热的温度为586-1050℃。进一步优选地, 其中第一段对坩埚设置有镁原料的反应区进行加热,温度为700-1050℃;第二 段和第三段依次对坩埚中设置有镍基滤材的杂质冷凝区进行加热,第二段的温 度为700-1050℃,第三段的温度为586-800℃。
本发明提供的镁源物料除了上述的还原料球还可以是纯度低于99.99%,含 有杂质的金属镁,当以金属镁为镁源物料时,由于镁的熔点是649.84℃,沸点 为1094.54℃,采用常规的真空蒸馏法一般在真空度为10Pa以下,750℃以下进 行蒸发,而本发明可以对金属镁源物料的加热可以在750℃以上,1050℃以下, 从而大大提高镁蒸发的速率,大大提高气相镁纯化的效率。
优选地,步骤(2)中,所述镍基滤材设置于第二段和结晶区之间,镍基滤 材的工作温度为586-950℃。
进一步优选地,步骤(2)中,所述镍基滤材的工作温度为700-950℃。
由于原料镁中的杂质种类较多,Ca、F、Al杂质遍布冷凝区的各个温度, 且常相伴出现,765-832℃及更低温度下Mn冷凝物出现。在586-950℃下,镁 中的大部分杂质能够在镍基滤材上得到有效的脱除。
利用镍材对某些杂质元素特殊的亲和性而将其脱除的原理可以由简化的热 力学计算来说明。通过假设初始化混合蒸汽入参为:Mg 98.6mol,Al 0.1mol, Mn 0.1mol,Ca0.1mol,Zn 0.1mol。在体系中设置足量的固体Ni(1mol)为 滤材,分别在1000℃,900℃,800℃,700℃等温度下利用吉布斯自由能最低 原理确定其平衡态组成。如图1所示,在1000℃、900℃、800℃下,镍能够与 镁蒸气含有的杂质Mn、Al形成更加稳定的固溶体,根据计算,冷凝的物质均 为FCC-A1#1(;#2)结构的固溶体;700℃下为C36#1(;#2)结构,但此时已经有一部分Mg冷凝了。其中FCC-A1#1(;#2)、C36#1(;#2)均为Strukturbericht命名规 则下的晶体结构类型。这说明镁蒸气中的杂质Mn、Al能够在586-950℃的温度 范围冷凝,但是在700℃以下,镁也会出现一部分的冷凝行为,因此,为了提 高镁的得率,镍基滤材的最佳的工作温度为700-950℃。但是无论是在586-950℃ 还是在700-950℃,本发明提供的镍基滤材都能够利用镍基滤材与镁蒸气中的 Mn、Al之间形成的更加稳定的固溶体将杂质Mn、Al脱除,并且在上述的温度 范围,镁蒸气中的剩余杂质也能够通过镍基滤材的作用得到有效的脱除,从而 保证得到的镁的纯度在99.99%以上。
优选地,步骤(2)中,所述镍基滤材的纯度为99.5%以上。滤材的纯度越 高,对镁纯化越有利,高纯度的镍材在镁纯化的过程中不会给体系带来新的杂 质,有利于得到纯度高的镁。本发明提供的镍基滤材的纯度在99.5%以上,其 中镍基滤材中不含与镁发生反应的物质,也不含在工作条件下不稳定的物质。
本发明提供一种包含镍基滤材的气相镁纯化的装置,包括电炉本体、坩埚、 加热机构、热电偶和真空机构;
所述坩埚包括依次设置的反应区、杂质冷凝区和结晶区,
所述反应区设置有料斗,
所述杂质冷凝区设置有过滤组件,
所述过滤组件中设置有滤材,所述滤材为镍,
所述结晶区设置有结晶器;
所述真空机构设置于所述电炉本体的内部,所述坩埚设置于所述真空机构 内部;
所述热电偶设置于所述坩埚的外壁;
所述加热机构设置于所述电炉本体内部对坩埚进行加热。
为了利用上述的镍基滤材的气相镁纯化的方法实现纯化镁的目的,本发明 提供一种配合上述方法使用的装置,在所述装置中的坩埚杂质冷凝区设置过滤 组件,过滤组件中设置有镍基滤材,此外还设置有实现镁气相化的加热机构, 以及热电偶,保持系统真空度的真空机构,通过上述装置,能够保证纯化镁过 程中合理的温度、真空度,能够保证纯化镁过程中,滤材对气相杂质中的脱除。
本发明提供的装置结构简单,适用于大规模的工业化生产,提高纯化镁的 效率,具有极大的经济效益。
本发明提供的装置中的过滤组件能够拆卸,通过酸洗等方式能够去除滤材 中附着的杂质,达到滤材重复多次使用的目的,降低生产的成本。
本发明提供的包含镍基滤材的气相镁纯化的装置,优选地,所述滤材为泡 沫金属镍、镍纤维或镍微球中的一种,所述滤材的纯度为99.5%以上。需要说 明的是,本发明所述的镍基滤材的纯度不考虑非金属元素的含量。
本发明提供的包含镍基滤材的气相镁纯化的装置,进一步优选地,当滤材 为泡沫金属镍时,所述泡沫金属镍的孔径在40ppi以下,当滤材为镍纤维时, 所述镍纤维的孔径为100-400目,当滤材为镍微球时,所述镍微球的粒径为 45-5000μm。
本发明提供的装置中的镍基滤材一方面是与镁蒸气中的杂质特殊的亲和 性,作为镁蒸气中杂质形核的位点,降低形核能垒,使杂质提前沉积,另一方 面是滤材本身的物理拦截作用。不论是作为杂质的形核位点还是物理拦截,镍 材都需要与镁蒸气有一个较大的接触面积才能够实现,而镍材采用泡沫金属镍、 镍纤维或者镍微球的形式,都能够有效提高滤材与镁蒸气的接触面积,提高过 滤的效率。
本发明提供的包含镍基滤材的气相镁纯化的装置,优选地,所述结晶区有 多个逐级设置的结晶器。
本发明提供的装置设置多个结晶器,多个结晶器逐级设置,在纯化镁的过 程中,镁中的大部分杂质被滞留于杂质冷凝区的镍基滤材中,但是锌并不能通 过镍基滤材脱除,经过多级结晶器的作用,有利于锌的脱除。
本发明提供的包含镍基滤材的气相镁纯化的装置,优选地,所述加热机构 包括第一加热组件、第二加热组件和第三加热组件;所述第一加热组件对坩埚 的反应区进行加热;所述第二加热组件和第三加热组件对坩埚的杂质冷凝区进 行加热。多段控温的目的在于精准控温,并延长合适滤材工作温度的长度。因 此越多段的控温,温度梯度越精准,合适脱除杂质的物理空间更长,更有利于 获得高纯镁。
本发明提供的包含镍基滤材的气相镁纯化的装置,优选地,所述真空机构 包括真空舱体、水冷法兰、端盖和抽真空组件;所述真空舱体设置于所述电炉 本体内部;所述水冷法兰设置于所述真空舱体的两端;所述端盖设置于所述水 冷法兰远离真空舱体的端部;所述抽真空组件能够对所述真空舱体内部进行抽 真空处理;所述坩埚设置于所述真空舱体内部。
本发明通过第一加热组件、第二加热组件和第三加热组件对坩埚不同段进 行加热,通过设置于坩埚外壁的热电偶对坩埚中的温度进行监控,并作为反馈 调节坩埚的温度。位于两端的水冷法兰主要降低法兰接口的温度,保护法兰胶 圈免受过热烧损,保持真空。除此以外,通过调节冷却水流量,也能间接调节 结晶器的温度。
本发明提供的包含镍基滤材的气相镁纯化的装置,优选地,所述坩埚由多 段高纯石墨管件组装而成,两段管件之间通过插入式连接。本发明中的热电偶 设置于高纯石墨管件的不同段上,对坩埚各段温度进行监控。
本发明所述的高纯石墨管件是以高纯石墨为原料制备得到,高纯石墨是指 石墨的碳含量高于99.99%。
本发明的有益效果为:
1.本发明提供的基于镍基滤材的气相镁纯化的方法,在特定的温度、真空 度下,采用镍基滤材对镁蒸气进行过滤。镍基滤材的使用打破传统镁纯化工艺 中尽量避免镍的偏见,一方面镍材不会与镁蒸气进行反应,在热力学上与镁不 形成更稳定的物质,不会给体系带来新的杂质;另一方面,镁蒸气中的一些杂 质与镍具有特殊的亲和性,能够与镍材形成更稳定的固溶体,从而实现对一些 杂质的脱除;同时镍材能够作为镁蒸气中杂质形核的位点,降低形核能垒,使 某些杂质提前沉积,从而脱除镁蒸气中的杂质。
2.本发明提供的基于镍基滤材的气相镁纯化的方法,能够显著降低镁蒸气 中的金属杂质,特别是Mn、Al、Ca等杂质的含量。本发明利提供的方法能够 应用于工业化大批量的气相镁纯化中,金属镁的蒸发速率随温度升高呈指数升 高,本发明的方法通过高温汽化镁,能够成数量级地提高生产效率。本发明利 提供的方法应用于工业化生产中能够使Mn含量下降至10ppm以下;Al含量 下降至10ppm以下;Si含量20ppm以下,同时可去除F、Cl、S等非金属杂 质元素,提高产品纯度,得到的镁的纯度在99.99%以上。
3.本发明提供的基于镍基滤材的气相镁纯化的方法,简化生产工艺流程, Mn、Al、Ca、F、Cl等杂质主要在滤材上富集,无需设置多级塔盘,高纯镁的 收得率显著提高,从而显著降低高纯镁的生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为不同温度下冷凝物质的组成与含量的热力学计算结果的示意图;
图2为实施例1提供的装置的结构示意图;
图3a为对比例1的杂质冷凝区1-8号高纯石墨管件在纯化实验前的示意图;
图3b为对比例1的杂质冷凝区1-8号高纯石墨管件在纯化实验后的示意 图;
图4为对比例1中的8号石墨管件内壁收集物的典型扫描电子显微镜 (SEM)形貌图;
图5为对比例1中的8号石墨管件内壁收集物的能量色散X射线谱(EDS) 图;
图6a为实施例4的杂质冷凝区1-8号石墨管件在纯化实验前的示意图;
图6b为实施例4的杂质冷凝区1-8号石墨管件在纯化实验后的示意图;
图7是实施例4的5-7号石墨管件内壁收集物的典型扫描电子显微镜 (SEM)形貌图;
图8是实施例4的5-7号石墨管件内壁收集物的能量色散X射线谱(EDS) 图;
图9为实施例4的8号石墨管件内壁收集物的典型扫描电子显微镜(SEM) 形貌图;
图10为实施例4的8号石墨管件内壁收集物的能量色散X射线谱(EDS) 图;
图11为实施例4的实验前镍基滤网的扫描电子显微镜(SEM)形貌图;
图12为实施例4的实验前镍基滤网的能量色散X射线谱(EDS)图;
图13为实施例4的实验后镍基滤网的中心部取样的扫描电子显微镜 (SEM)形貌图;
图14为实施例4的实验后镍基滤网的中心部取样的能量色散X射线谱 (EDS)图;
图15为实施例4实验后镍基滤网的边缘取样的扫描电子显微镜(SEM) 形貌图;
图16为实施例4实验后镍基滤网的边缘取样的能量色散X射线谱(EDS) 图;
图17为实施例4的实验后镍基滤网的取样的X射线衍射仪(XRD)结构 分析图;
图18为实施例4的收集到的高纯镁的形貌图;
图19是实施例5的7号石墨管件内壁收集物的典型扫描电子显微镜(SEM) 形貌图;
图20是实施例5的7号石墨管件内壁收集物的能量色散X射线谱(EDS) 图;
图21是实施例5的8号石墨管件内壁收集物的典型扫描电子显微镜(SEM) 形貌图;
图22是实施例5的8号石墨管件内壁收集物的能量色散X射线谱(EDS) 图;
图23是实施例6和对比例2得到的镁中杂质的含量检测结果。
图中1、电炉本体;2、坩埚;3、加热机构;4、热电偶;5、真空机构; 21、反应区;22、杂质冷凝区;23、结晶区;211、料斗;221、过滤组件;231、 结晶器;31、第一加热组件;32、第二加热组件;33、第三加热组件;51、真 空舱体;52、水冷法兰;53、端盖;54、抽真空组件。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方 案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不 是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1
如图2所示,一种包含镍基滤材的气相镁纯化的装置,包括电炉本体1、 坩埚2、加热机构3、热电偶4和真空机构5;
所述坩埚2包括依次设置的反应区21、杂质冷凝区22和结晶区23,
所述反应区21设置有料斗211,
所述杂质冷凝区22设置有过滤组件221,
所述过滤组件221中设置有滤材,所述滤材为泡沫金属镍,泡沫金属镍的 孔径为40ppi,镍的纯度为99.5%以上;
所述结晶区23设置有结晶器231;
所述加热机构3包括第一加热组件31、第二加热组件32和第三加热组件 33;所述第一加热组件31对坩埚2的反应区21进行加热;所述第二加热组件 32和第三加热组件33对坩埚2的杂质冷凝区22进行加热;
所述坩埚2由多段高纯石墨管件组装而成,两段管件之间通过插入式连接; 其中坩埚2中的杂质冷凝区22由依次连接的1-8号高纯石墨管件组成,1号高 纯石墨管件与反应区21连接,8号高纯石墨管件与结晶区23连接;所述过滤 组件221设置于4号和5号高纯石墨管件之间;
所述真空机构5包括真空舱体51、水冷法兰52、端盖53和抽真空组件54; 所述真空舱体51设置于所述电炉本体1内部;所述水冷法兰52设置于所述真 空舱体51的两端;所述端盖53设置于所述水冷法兰52远离真空舱体51的端 部;所述抽真空组件54能够对所述真空舱体51内部进行抽真空处理;所述坩 埚2设置于所述真空舱体51内部;
所述真空机构5设置于所述电炉本体1的内部;
所述热电偶4设置于所述坩埚2的外壁;所述热电偶4设置于高纯石墨管 件的不同段上,对坩埚2各段温度进行监控;
所述加热机构3设置于所述电炉本体1内部对坩埚2进行加热。
实施例2
一种包含镍基滤材的气相镁纯化的装置,与实施例1不同的是所述过滤组 件221设置于7号和8号高纯石墨管件之间。
实施例3
一种包含镍基滤材的气相镁纯化的装置,与实施例1不同的是所述泡沫金 属镍的孔径为75ppi;所述坩埚为一体式组成。
实施例4
一种利用实施例1的装置实现基于镍基滤材的气相镁纯化的方法,包括以 下步骤:
将240g工业还原料镁球放置于料斗211中,开启加热机构3,分别设置加 热机构3第一加热组件31、第二加热组件32和第三加热组件33的温度为 1300℃、1300℃,800℃,对原料进行还原,还原周期为120min,开启抽真空 组件54,保持坩埚2中的真空度为5-30Pa,此时坩埚2中杂质冷凝区22中1-8 号高纯石墨管件中,4号高纯石墨管件对应的温度为832-917℃,5号高纯石墨 管件对应的温度为765-832℃,由于泡沫金属镍放置于4号与5号高纯石墨管 件之间,因此其对应的温范围为765-917℃,经120min反应之后,收集结晶器 231上的高纯镁。
经过120min的反应周期,收集8号高纯石墨管件上方结晶器231上的高 纯镁,称量,得到的高纯镁的质量为34.99g。
实施例5
一种利用实施例2的装置实现基于镍基滤材的气相镁纯化的方法,包括以 下步骤:
将321g工业还原料镁球放置于料斗211中,开启加热机构3,分别设置加 热机构3第一加热组件31、第二加热组件32和第三加热组件33的温度为 1300℃、1300℃,800℃,对原料进行还原,还原周期为120min,开启抽真空 组件54,保持坩埚2中的真空度为7.9-16Pa,此时坩埚2中杂质冷凝区22中 1-8号高纯石墨管件中,7号高纯石墨管件对应的温度为586-683℃,8号高纯 石墨管件对应的温度为473-586℃,由于泡沫金属镍放置于7号与8号高纯石 墨管件之间,因此其对应的温范围为473-683℃,经120min反应之后,收集结 晶器231上的高纯镁。
经过120min的反应周期,收集8号高纯石墨管件上方结晶器231上的高 纯镁,称量,得到的高纯镁的质量为45.092g。
实施例6
一种利用实施例3的装置实现基于镍基滤材的气相镁纯化的方法,包括以 下步骤:
将200kg工业还原料镁球放置于料斗211中,开启加热机构3,分别设置 加热机构3的第一加热组件31、第二加热组件32和第三加热组件33的温度为 1250℃、1250℃,800℃,对原料进行还原,还原周期为11h,开启抽真空组件 54,保持坩埚2中的真空度为10Pa以下,所述过滤组件对应的温范围为 650-950℃,经11h反应之后,收集结晶器231上的高纯镁。
称量结晶器231上的高纯镁,得到的高纯镁的质量为30kg。
实施例7
一种包含镍基滤材的气相镁纯化的装置,与实施例1不同的是所述过滤组 件221中设置的滤材为镍纤维,所述镍纤维的孔径为100-400目。
实施例8
一种包含镍基滤材的气相镁纯化的装置,与实施例1不同的是所述过滤组 件221设置的滤材为镍微球,所述镍微球的粒径为45-5000μm。
对比例1
一种气相镁纯化的装置,与实施例1不同的是坩埚22中不设置滤材。
利用上述的装置进行镁纯化的方法,包括以下步骤:
将230.6g工业还原料镁球放置于料斗211中,开启加热机构3,分别设置 加热机构3的第一加热组件31、第二加热组件32和第三加热组件33的温度为 1250℃、1250℃,800℃,对原料进行还原,还原周期为120min,开启抽真空 系统,保持坩埚22中的真空度为5-30Pa,经120min反应之后,收集结晶器231 上的结晶镁。
对比例2
一种气相镁纯化的装置,与实施例3不同的是坩埚22中不设置滤材。
利用上述的装置进行镁纯化的方法与实施例6的方法相同,不同的是纯化 镁的装置中不使用滤材。得到的镁的产量为26-32kg。由于对比例2与实施例6 都是大规模的产业化生产,使用的装置除了有无滤材的差别,其他无差别。从 收集到的镁的产量上看,本发明镍基滤材的设置,并没有降低镁的产量。
试验例
1.对实验前后对比例1中的1-8号石墨管件进行观察,结果见图3a和3b, 并对8号石墨管件上冷凝杂质进行电子显微镜性形貌分析结果见图4,对8号 石墨管件上的冷凝杂质进行能量色散X射线谱(EDS)成分分析,结果见图5, 对应的元素分析见表1。
表1 8号石墨管件内壁收集物的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
O K 28.27 38.94
F K 14.05 16.3
Mg K 21.48 19.47
Al K 20.79 16.98
Cl K 1.18 0.74
Ca K 12.57 6.91
Mn K 1.66 0.66
从图3a和图3b的对比中可以看出,从高温到低温的1-8号石墨管件的内 部都已经不再是石墨的本色,说明石墨管件上已经有不同程度的杂质富集,从 SEM和EDS的结果可以看出,在8号石墨管件上有Al、Mn、Ca、F、Cl等杂 质元素富集。由于8号管件的位置紧邻结晶器的位置,而镁在结晶器上收集, 因此可以推知采用不含滤材的装置得到的结晶镁的纯度不高。
2.对实施例4中1-8号的石墨管件纯化前后进行观察,结果见图6a和6b, 并对其各石墨管件及镍基滤材上不同部位进行成分分析,结果见图7-18及表 2-6。
从图6a和图6b的结果可以看出,高温到低温的1-4号石墨管件的内部不 再是石墨本色,说明在1-4号石墨管件上发生不同程度的杂质富集,但是从泡 沫金属镍以上的5-8号石墨管件的内部均为石墨本色,这可以直观的看出石墨 极少富集。
图7为5-7号石墨管件壁收集物的SEM图,图8为5-7号石墨管件壁收集 物的EDS图,表2为对应的成分分析。
表2 5-7号石墨管件内壁收集物的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
C K 97.31 98.09
O K 2.22 1.68
Mg K 0.47 0.23
从结果可以看出,5-7号石墨管件上收集物的成分仅为C和少量的MgO, 这一结果与直观观察的结果一致,说明通过泡沫金属镍之后,镁蒸气中的杂质 基本被滞留于滤材中,达到良好的脱除效果。
图9为8号石墨管件内壁收集物的SEM图,图10为8号石墨管件内壁收 集物的EDS图,对应成分的结果为表3。
表3 8号石墨管件壁收集物的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
C K 8.04 12.28
O K 47.59 54.58
Mg K 43.23 32.63
Ca K 1.14 0.52
从图9-10以及表3的结果可以看出,8号石墨管件内壁上仅有MgO和极 少量的Ca。
图11和图12为实验前镍基滤材上的SEM图和EDS图,表4为对应的成 分分析结果。图13-17为实验后镍基滤材不同部分的SEM、EDS以及XRD图, 表5-6为对应的分析结果。
表4实验前泡沫金属镍上的EDS成分分析表
Figure BDA0002290583230000151
Figure BDA0002290583230000161
表5实验后泡沫金属镍中心部取样的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
O K 6.29 10.49
F K 33.07 46.46
Al K 8.25 8.16
CaK 52.39 34.89
表6实验后泡沫金属镍边缘取样的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
O K 3.86 8.51
F K 10.49 19.48
Mg K 1.77 2.57
Al K 22.5 29.43
Ca K 10.85 9.56
Mn K 1.87 1.2
Ni K 48.66 29.25
从实验前后的对比可以看出,过滤前后泡沫金属镍的孔径均在500μm左 右,所有的冷凝杂质均附着在滤材的骨架上,孔径没有明显的改变,过滤前, 滤材骨架较为干净,元素成分以Ni为主,含有少量非金属C、O杂质,过滤之 后,滤材的骨架上明显附着一层物质,且有开裂的痕迹。滤材中心部位附着物 的元素成分为Ca、Al、F、O。滤材边缘部位除了上述元素,还探测到少量杂 质Mn。
反应结束后,使用XRD分析表征滤材上富集杂质种类。结果表明滤材上 富集杂质有CaF2、Al2O3、Ni5Al3等。
收得的高纯镁形貌致密,有金属光泽,如图18所示。使用火花直读光谱 仪对其成分进行检测,至少检测三个点,取平均值,结果见表9。其镁含 量>99.995%,Fe、Si、Ni、Ti、Ca、Al、Cu、Pb等杂质元素均低于相应的设备 检出限。Mn为2ppm、Sn为9ppm、Zn为25ppm。总体来说,纯度远高于典型 粗镁,并基本满足国标Mg9999的水平。
3.对实施例5中的7号和8号石墨管件上的收集物进行表征,结果如图 18-22,成分结果对应表7-9所示。
表7 7号石墨管件壁收集物的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
O K 3.86 8.51
F K 10.49 19.48
Mg K 1.77 2.57
Al K 22.5 29.43
Ca K 10.85 9.56
Mn K 1.87 1.2
Ni K 48.66 29.25
表8 8号石墨管件壁收集物的EDS成分分析表
元素 重量百分比/wt.% 原子百分比/at.%
C K 15.63 22.66
OK 45.5 49.51
Mg K 38.87 27.83
表9实施例4和5得到高纯镁中的杂质含量检测结果
Figure BDA0002290583230000171
Figure BDA0002290583230000181
实施例5的滤材放置在7号和8号石墨管件之间,从表征的结果可以看出 7号石墨管件壁内壁收集物除了MgO,还有少量Si、Ca、Cl杂质元素,8号石 墨管件内壁收集物仅有MgO,这说明镁中杂质经过滤材之后,被充分的脱除, 得到的镁纯度高。
将得到的高纯镁重熔铸锭,经火花直读光谱仪测定,结晶镁纯度同样达到99.99%之上。关键杂质元素含量表9所示,其中镁含量>99.995%,Fe、Si、Ni、 Ti、Ca、Al、Cu、Pb等杂质元素均低于相应的设备检出限。Mn为3ppm、Sn 为8ppm、Zn为13ppm。总体来说,纯度远高于典型粗镁,并基本满足国标Mg9999 的水平。
4.对实施例6及对比例2得到的镁进行纯度检测,结果见图23。
实施例6是将本发明提供的装置以及方法应用于大规模的工业纯化镁,从 图23的结果可以看出,不使用滤材得到的镁中的杂质元素Al含量约为730 ppm;Mn约为110ppm;Si约为100ppm。使用本发明提供的装置以及方法之 后,即在装置中设置镍基滤材最终得到的镁中的Al、Mn、Si三种杂质元素均 降低至20ppm以下,满足国标9999对相应元素的要求标准。
从以上的结果可以充分的看出,本发明提供的装置,以及利用所述装置配 合方法进行纯化镁,能够得到纯度较高的镁,且适用于工业化的大规模生产, 能够极高的提高镁纯化的效率,降低生产成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应 以所述权利要求的保护范围为准。

Claims (10)

1.一种基于镍基滤材的气相镁纯化的方法,其特征在于,包括以下步骤:
(1)将镁原料放置于密封的坩埚中的反应区,对坩埚内部进行抽真空处理;
(2)采用加热机构加热镁原料至产生镁蒸气,使镁蒸气通过镍基滤材,在坩埚远离反应区的结晶器上冷凝得到高纯镁。
2.根据权利要求1所述的基于镍基滤材的气相镁纯化的方法,其特征在于,步骤(1)中,坩埚内的真空度在30Pa以下。
3.根据权利要求1所述的基于镍基滤材的气相镁纯化的方法,其特征在于,步骤(2)中,所述加热的温度为586-1300℃。
4.根据权利要求3所述的基于镍基滤材的气相镁纯化的方法,其特征在于,步骤(2)所述加热分为三段进行,其中第一段对坩埚设置有镁原料的反应区进行加热,温度为700-1300℃;第二段和第三段依次对坩埚中设置有镍基滤材的杂质冷凝区进行加热,第二段的设置温度为700-1300℃,第三段的设置温度为586-800℃。
5.根据权利要求4所述的基于镍基滤材的气相镁纯化的方法,其特征在于,步骤(2)中,所述镍基滤材设置于坩埚中的杂质冷凝区,镍基滤材的工作温度为586-950℃。
6.一种包含镍基滤材的气相镁纯化的装置,其特征在于,包括电炉本体、坩埚、加热机构、热电偶和真空机构;
所述坩埚包括依次设置的反应区、杂质冷凝区和结晶区,
所述反应区设置有料斗,
所述杂质冷凝区设置有过滤组件,
所述过滤组件中设置有滤材,所述滤材为镍,
所述结晶区设置有结晶器;
所述真空机构设置于所述电炉本体的内部,所述坩埚设置于所述真空机构内部;
所述热电偶设置于所述坩埚的外壁;
所述加热机构设置于所述电炉本体内部对坩埚进行加热。
7.根据权利要求6所述的包含镍基滤材的气相镁纯化的装置,其特征在于,所述滤材为泡沫金属镍、镍纤维或镍微球中的一种,所述滤材的纯度为99.5%以上。
8.根据权利要求7所述的包含镍基滤材的气相镁纯化的装置,其特征在于,当滤材为泡沫金属镍时,所述泡沫金属镍的孔径在40ppi以下,当滤材为镍纤维时,所述镍纤维的孔径为100-400目,当滤材为镍微球时,所述镍微球的粒径为45-5000μm。
9.根据权利要求6所述的包含镍基滤材的气相镁纯化的装置,其特征在于,所述加热机构包括第一加热组件、第二加热组件和第三加热组件;所述第一加热组件对坩埚的反应区进行加热;所述第二加热组件和第三加热组件对坩埚的杂质冷凝区进行加热。
10.根据权利要求6所述的包含镍基滤材的气相镁纯化的装置,其特征在于,所述真空机构包括真空舱体、水冷法兰、端盖和抽真空组件;所述真空舱体设置于所述电炉本体内部;所述水冷法兰设置于所述真空舱体的两端;所述端盖设置于所述水冷法兰远离真空舱体的端部;所述抽真空组件能够对所述真空舱体内部进行抽真空处理;所述坩埚设置于所述真空舱体内部。
CN201911178342.1A 2019-11-27 2019-11-27 一种基于镍基滤材的气相镁纯化的方法与装置 Active CN110835695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911178342.1A CN110835695B (zh) 2019-11-27 2019-11-27 一种基于镍基滤材的气相镁纯化的方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911178342.1A CN110835695B (zh) 2019-11-27 2019-11-27 一种基于镍基滤材的气相镁纯化的方法与装置

Publications (2)

Publication Number Publication Date
CN110835695A true CN110835695A (zh) 2020-02-25
CN110835695B CN110835695B (zh) 2021-11-23

Family

ID=69577381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911178342.1A Active CN110835695B (zh) 2019-11-27 2019-11-27 一种基于镍基滤材的气相镁纯化的方法与装置

Country Status (1)

Country Link
CN (1) CN110835695B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224368A (ja) * 2006-02-23 2007-09-06 Toho Titanium Co Ltd 金属の精製方法およびこれを用いた活性金属の製造方法
WO2011092909A1 (ja) * 2010-01-28 2011-08-04 国立大学法人東北大学 金属部材の製造方法および金属部材
JP2014084501A (ja) * 2012-10-24 2014-05-12 Nippon Sozai Kk マグネシウム蒸気凝縮装置
CN107841638A (zh) * 2017-11-20 2018-03-27 山西瑞格金属新材料有限公司 一种由工业纯镁生产超高纯镁的方法
CN109722551A (zh) * 2019-03-20 2019-05-07 北京欧菲金太科技有限责任公司 金属镁的连续生产设备及连续生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224368A (ja) * 2006-02-23 2007-09-06 Toho Titanium Co Ltd 金属の精製方法およびこれを用いた活性金属の製造方法
WO2011092909A1 (ja) * 2010-01-28 2011-08-04 国立大学法人東北大学 金属部材の製造方法および金属部材
JP2014084501A (ja) * 2012-10-24 2014-05-12 Nippon Sozai Kk マグネシウム蒸気凝縮装置
CN107841638A (zh) * 2017-11-20 2018-03-27 山西瑞格金属新材料有限公司 一种由工业纯镁生产超高纯镁的方法
CN109722551A (zh) * 2019-03-20 2019-05-07 北京欧菲金太科技有限责任公司 金属镁的连续生产设备及连续生产方法

Also Published As

Publication number Publication date
CN110835695B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
JP7437813B2 (ja) 真空熱還元法による高純度金属リチウムの製造法
CN102465209B (zh) 一种高纯金属钕的制备方法及其装置
CN101155759A (zh) 高纯度无水氯化铝及其制造方法
CN102808090A (zh) 一种由工业纯镁制备超高纯金属镁的装置和方法
WO2021135399A1 (zh) 一种气态共冷凝法生产镁锂合金的方法
Liang et al. One-step preparation of high purity magnesium by vacuum distillation technology
Yang et al. Magnesium vapor nucleation in phase transitions and condensation under vacuum conditions
CN110835695B (zh) 一种基于镍基滤材的气相镁纯化的方法与装置
JP5992244B2 (ja) 高純度マグネシウムの製造方法及び高純度マグネシウム
CN110835694B (zh) 一种基于单质硅滤材的气相镁纯化的方法与装置
CN110724825B (zh) 一种基于纯铁滤材的气相镁纯化的方法与装置
JPH10158753A (ja) 高純度マグネシウムの製造方法及び製造装置
CN110791665B (zh) 纯铁滤材在气相镁纯化中的应用及包含其的生产系统
CN110863118B (zh) 镍基滤材在气相镁纯化中的应用及包含其的生产系统
CN110724833B (zh) 单质硅滤材在气相镁纯化中的应用及包含其的生产系统
CN112176206B (zh) 精馏提纯装置及利用其通过氟化铍制备铍的方法
KR101155100B1 (ko) 금속전환체 잔류 용융염의 분말 회수장치
Nolting et al. Preparation and properties of high purity yttrium metal
CN107400789A (zh) 一种镁结晶过滤器及粗镁还原过滤提纯工艺
CN103114213A (zh) 蓝宝石生长炉用高纯钼制备方法
CN206538461U (zh) 用于生产金属镁的立式冷凝结晶器
CN114262805B (zh) 一种免熔炼致密金属镁锭制备装置及方法
JP6392274B2 (ja) 高純度マグネシウムの製造方法及び高純度マグネシウム
CN101135001B (zh) 一种除去金属锂中钠和钾的方法
CN117448595A (zh) 一种金属砷提纯装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant