CN110813357B - 高效双孔g-C3N4光催化剂的制备方法 - Google Patents
高效双孔g-C3N4光催化剂的制备方法 Download PDFInfo
- Publication number
- CN110813357B CN110813357B CN201911122002.7A CN201911122002A CN110813357B CN 110813357 B CN110813357 B CN 110813357B CN 201911122002 A CN201911122002 A CN 201911122002A CN 110813357 B CN110813357 B CN 110813357B
- Authority
- CN
- China
- Prior art keywords
- photocatalyst
- preparation
- urea
- powder
- calcination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000004202 carbamide Substances 0.000 claims abstract description 35
- 238000001354 calcination Methods 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 7
- 230000003389 potentiating effect Effects 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 17
- 230000015556 catabolic process Effects 0.000 abstract description 15
- 238000006731 degradation reaction Methods 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 8
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 abstract description 8
- 229940043267 rhodamine b Drugs 0.000 abstract description 8
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 5
- 238000003892 spreading Methods 0.000 abstract description 5
- 230000007480 spreading Effects 0.000 abstract description 5
- 238000013033 photocatalytic degradation reaction Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 29
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 26
- 239000003054 catalyst Substances 0.000 description 25
- 239000011148 porous material Substances 0.000 description 17
- 229920000877 Melamine resin Polymers 0.000 description 16
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 16
- 230000001699 photocatalysis Effects 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000007146 photocatalysis Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0605—Binary compounds of nitrogen with carbon
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开了高效双孔g‑C3N4光催化剂的制备方法。该方法包括:将经过40~200目筛的尿素粉末平铺于容器中,在空气环境下,保持450~600℃煅烧2~4h,冷却得到淡黄色的固体粉末双孔g‑C3N4光催化剂;其中,平铺厚度为1~5mm,在保持450~600℃煅烧前升温速率为1~10℃/min。本发明的制备方法简单,不需要对尿素过多的前期处理,直接一次煅烧即可,且光催化降解有机污染物的活性高,对罗丹明B降解速度快,降解率高。
Description
技术领域
本发明涉及光催化剂技术领域,具体涉及高效双孔g-C3N4光催化剂的制备方法。
背景技术
石墨相的氮化碳(g-C3N4)由于其较强的可见光吸收能力和较窄的带隙(2.7eV),具有石墨烯般柔性分层的结构拥有良好的分解水制氢以及降解有机污染物的催化活性。此外,不同于金属催化剂,g-C3N4具有热稳定性高、无毒环保、制备成本低等优越特性,有望在能源和环境领域得到实际应用。Cheng-Qun Xu等人(Xu,Li et al.2017)以乙酸处理三聚氰胺为前驱体,通过热缩聚反应合成了氮缺乏的石墨氮化碳(CN-HAc比表面积为15.9m2/g),利用氮空位促进电子-空穴对的分离的作用,阻碍了光生载流子的复合从而提高了光催化活性。但是制备方法复杂,催化剂比表面积低,光催化时间太长(需要6h才能将5mg/L罗丹明B降解完全)。
针对上述问题,现有技术1的公开号为CN 109331857 A,发明名称为一种多孔富碳g-C3N4光催化剂的制备方法和应用,其通过活性炭粉改性三聚氰胺的方法得到多孔富碳g-C3N4,这种方法得到的多孔富碳g-C3N4增大了比表面积(106.049m2/g)、高孔隙率和高碳氮比,因此能为催化反应提供了更多的活性位,提高了在可见光下的光催化活性。
现有技术2的公开号为CN 106006580 A,发明名称为一种薄层g-C3N4的制备方法,其通过将尿素在去离子水中做复杂的前期处理后,进行两次焙烧,使其单体本身体现出较好的光催化活性。
虽然现有技术1和现有技术2的制备方法都记载了提高g-C3N4的光催化活性,但是他们的制备方法步骤多、耗时长、耗能多,而且光催化活性有待提高。现有技术1需要对三聚氰胺、活性炭粉和无水乙醇(原料复杂)搅拌2h,超声30min,烘干,焙烧以及退火的总时长不低于7个小时。现有技术2需要对尿素和去离子水搅拌溶解,冷冻干燥,加上两次焙烧的总时长不低于5个小时。
因此,对于g-C3N4的比表面积小、光生电子-空穴对易复合、传质作用较差,导致其光催化活性不高的特点,研究一种简单、节能环保获得比表面积大、高光催化活性的g-C3N4的方法,是其实用性的关键。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种高效双孔g-C3N4光催化剂的制备方法,使制备得到的g-C3N4具有片层堆积的双孔结构,能够增大g-C3N4光催化剂的比表面积(134.1m2/g)和活性位点,有利于促进光生电子-空穴的分离,从而提高其光催化降解有机污染物的活性,对罗丹明B降解速度快,降解率高。
为了实现根据本发明的这些目的和其它优点,提供了一种高效双孔g-C3N4光催化剂的制备方法,包括:将经过40~200目筛的尿素粉末平铺于容器中,在空气环境下,保持450~600℃煅烧2~4h,冷却得到淡黄色的固体粉末双孔g-C3N4光催化剂;其中,平铺厚度为1~5mm,在保持450~600℃煅烧前升温速率为1~10℃/min。
优选的是,在保持450~600℃煅烧前升温速率1~10℃/min具体为:从室温开始,按1~10℃/min的速度升温到450~600℃的煅烧温度。
优选的是,目筛为120目。
优选的是,平铺厚度为3mm。
优选的是,保持煅烧温度为550℃,煅烧温度为3h。
优选的是,所述升温速率为5℃/min。
优选的是,所述冷却为自然冷却。
优选的是,所述尿素粉末为将尿素置于破碎机中破碎得到,破碎机的转速为10000~26000r/min。
优选的是,所述容器为方形坩埚。
本发明至少包括以下有益效果:
本发明的制备方法简单,不需要对原料经过过多的处理,直接煅烧即可。并且通过选择适中的尿素粉末细度和煅烧平铺的厚度,有利于氮化碳在生成过程中片层堆积的双孔结构形成,再经过煅烧温度和时间的控制以及煅烧时的升温速率的选择,使制备得到的g-C3N4具有片层堆积的双孔结构,能够增大g-C3N4光催化剂的比表面积(134.1m2/g)和活性位点,有利于促进光生电子-空穴的分离,从而提高其光催化降解有机污染物的活性。虽然现有技术1(公开号为CN 109331857 A)得到的多孔结构也能增大g-C3N4光催化剂的比表面积和活性位点,但是现有技术1得到的多孔结构是氮化碳表面粗糙带有蜂窝状的多孔结构,比表面积为106.049m2/g,显然小于本发明的片层堆积的双孔结构的比表面积,因此,本发明的双孔g-C3N4光催化剂能体现出更高的光催化活性。
本发明通过选择过筛120目的尿素粉末平铺成3mm厚度,在空气环境下,按5℃/min的速度升温到550℃的煅烧温度,保持550℃煅烧3h,自然冷却得到双孔g-C3N4光催化剂,用0.05g的双孔g-C3N4光催化剂对100mL浓度为20mg/L的罗丹明B在可见光下降解,10分钟降解率能达到99%。
附图说明
图1是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的孔径分布图;
图2是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4降解RhB的性能曲线图;
图3是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的XRD图;
图4是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的XPS图;
图5是实施例11(尿素)制得的g-C3N4的SEM图。
具体实施方式
下面结合实例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1:
称取50g尿素置于破碎机中,以10000r/min的转速进行破碎成粉末,经过40目筛的尿素粉末平铺于方形坩埚中,平铺厚度为1mm,将坩埚放入马弗炉中,从室温开始,按1℃/min的速度升温到450℃,即升温速率为1℃/min,保持450℃煅烧1h,自然冷却,即可得到淡黄色固体粉末g-C3N4,记为CN-1。
实施例2:
本实施例制备方法同实施例1,不同的是将实施例1中破碎机的转速改为26000r/min,所制得的催化剂记为CN-2。
实施例3:
本实施例制备方法同实施例1,不同的是将实施例1的过筛改为120目,所制得的催化剂记为CN-3。
实施例4:
本实施例制备方法同实施例1,不同的是将实施例1中的过筛改为200目。所制得的催化剂记为CN-4。
实施例5:
本实施例制备方法同实施例3,不同的是将实施例3中的平铺在方形坩埚中的厚度改为3mm。所制得的催化剂记为CN-5。
实施例6:
本实施例制备方法同实施例3,不同的是将实施例3中的平铺在方形坩埚中的厚度改为5mm。所制得的催化剂记为CN-6。
实施例7:
本实施例制备方法同实施例5,不同的是将实施例5煅烧温度改为550℃。所制得的催化剂记为CN-7。
实施例8:
本实施例制备方法同实施例5,不同的是将实施例5的煅烧温度改为600℃。所制得的催化剂记为CN-8。
实施例9:
本实施例制备方法同实施例7,不同的是将实施例7中的煅烧时间改为3h,所制得的催化剂记为CN-9。
实施例10:
本实施例制备方法同实施例7,不同的是将实施例7中的煅烧时间改为4h,所制得的催化剂记为CN-10。
实施例11:
本实施例制备方法同实施例9,不同的是将实施例9中的煅烧的升温速率改为5℃/min,所制得的催化剂记为CN-11。
实施例12:
本实施例制备方法同实施例9,不同的是将实施例9中的煅烧的升温速率改为10℃/min,所制得的催化剂记为CN-12。
对比例1:
称取50g三聚氰胺置于破碎机中,以10000r/min的转速进行破碎,然后过120目筛,然后将粉末平铺于方形坩埚中,厚度为3mm,将坩埚放入马弗炉中,在550℃下煅烧3h,升温速率为5℃/min,自然冷却,即可得到淡黄色固体粉末g-C3N4,记为D1。
对比例2:
称取50g硫脲置于破碎机中,以10000r/min的转速进行破碎,然后过120目筛,然后将粉末平铺于方形坩埚中,厚度为3mm,将坩埚放入马弗炉中,在550℃下煅烧3h,升温速率为5℃/min,自然冷却,即可得到淡黄色固体粉末g-C3N4,记为D2。
将实施例1-12以及对比例1-2制备得到的g-C3N4催化剂按以下测定方法1测定其催化性能,结果如表1所示。
测定方法1(光催化性能):
在石英反应器中,加入100mL,20mg/L的RhB,0.05g光催化剂,在黑暗条件下磁力搅拌30min(达到吸附平衡)后,打开300W氙灯光照,光电流调节到20mA处,在可见光(λ>420nm)下,在石英反应器外侧通入25℃的循环水条件下进行降解,以保证在整个光照过程中排除热能带来的影响,每隔5min取6mL混合液,4500r/min离心,取出上清液,用岛津UV-2600测其吸光度,依据朗伯比尔定律计算溶液浓度,进一步计算降解率。罗丹明B的降解率η=(c0-c)/c0=(A0-A)/A0。
表1:
从表1看出催化剂制备的最佳路线为实施例11,即称取50g尿素置于破碎机中,以10000r/min的转速进行破碎,然后过120目筛,然后将粉末平铺于方形坩埚中,厚度为3mm,将坩埚放入马弗炉中,升温速率为5℃/min,保持550℃煅烧3h,自然冷却,即可得到淡黄色固体粉末g-C3N4。并且其中实施例11的催化剂的光催化降解罗丹明B的活性最高,在10min内即可将20mg/L,100mL的罗丹明B降解完全。
对实施例1-12以及对比例1-2制备得到的g-C3N4催化剂通过如下测定方法2测定其比表面积以及孔直径结果如表2所示,其中实施例11、对比例1和对比例2制得的g-C3N4催化剂的孔径分布如图1所示。
测定方法2(氮气物理吸附脱附):
采用N2吸附比表面仪进行测试,分析催化剂g-C3N4的比表面积、孔容和孔径。测试过程先经历脱气进行预处理,再进行N2物理吸附-脱附测试、比表面积及孔容、孔径的测定。过程主要是对催化剂g-C3N4表面上气体单分子层的吸附量进行测定。
表2:
从表2中可以看出,对比例1和2仅仅是单孔结构,实施例1-12的催化剂都具有双孔结构,有助于增大g-C3N4光催化剂的比表面积和活性位点,表2的数据也明显看出实施例1-12制得的催化剂的比表面积明显高于对比例1和2,特别是实施例11制得的催化剂的比表面积高达134.1m2/g,具有更高的光催化活性。
图1是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的孔径分布图;从图1中看出,当前驱体为硫脲和三聚氰胺时,得到的g-C3N4不具有双孔结构,而当前驱体为尿素时,煅烧得到的g-C3N4具有双孔片成结构。
图2是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4降解RhB的性能曲线图;图2中标记的“尿素”和“尿素-Black”的样品都是实施例11制备得到的g-C3N4光催化剂,图中标记的“硫脲”的样品是指对比例2制备得到的g-C3N4光催化剂,图中标记的“三聚氰胺”的样品是指对比例1制备得到的g-C3N4光催化剂,将上述样品分别按照测定方法1(光催化性能)测定,结果如图2所示。“尿素-Black”是指整个降解实验室在黑暗条件下进行的,目的是证明该催化剂是光催化的作用而不是黑暗吸附作用。“尿素”即实施例11制备得到的g-C3N4光催化剂,图2结果表明,实施例11的g-C3N4光催化剂的光降解活性明显高于对比例1和对比例2的光催化剂,本发明的g-C3N4光催化剂降解速度更快,降解效率更高。
图3是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的XRD图;从图3可见,由尿素制得的g-C3N4的结晶度高于由三聚氰胺或硫脲制得的g-C3N4,它们的XRD特征峰相似,在13.1和27.8度两个峰分别对应的是g-C3N4的(002)和(100)晶面,都没有影响g-C3N4的石墨层的形成。
图4是采用不同原料的实施例11(尿素)、对比例1(三聚氰胺)和对比例2(硫脲)制得的g-C3N4的XPS图;由图4可见,实施例11、对比例1和对比例2的g-C3N4光催化剂的主要由C、N两种元素组成,此外还有少量的O元素。N1S的结合能位于399eV附近,相对应SP3和SP2杂化的C-N和N-O中的N原子。
图5是实施例11(尿素)制得的g-C3N4的SEM图。由图5可以看出,本发明的g-C3N4有明显的孔道结构,以及许多的空隙,这与BET测定结果比表面积较大一致对应,有利于催化剂的反应;且呈现明显的层状结构。
综上,本发明的制备方法简单,不需要对尿素过多的前期处理,直接一次煅烧即可。通过选择适中的尿素粉末细度和煅烧平铺的厚度,有利于氮化碳在生成过程中片层堆积的双孔结构形成,使煅烧制备得到的g-C3N4具有片层堆积的双孔结构,能够增大g-C3N4光催化剂的比表面积(134.1m2/g)和活性位点,有利于促进光生电子-空穴的分离,从而提高其光催化降解有机污染物的活性,对罗丹明B降解速度快,降解率高。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。
Claims (3)
1.高效双孔g-C3N4光催化剂的制备方法,其特征在于,将经过120目筛的尿素粉末平铺成3mm厚度于容器中,在空气环境下,从室温开始,按5℃/min的速度升温到550℃的煅烧温度,保持550℃煅烧3h,自然冷却得到淡黄色固体粉末双孔g-C3N4光催化剂。
2.如权利要求1 所述的高效双孔g-C3N4光催化剂的制备方法,其特征在于,所述尿素粉末为将尿素置于破碎机中破碎得到,破碎机的转速为10000~26000 r/min。
3.如权利要求1 所述的高效双孔g-C3N4光催化剂的制备方法,其特征在于,所述容器为方形坩埚。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911122002.7A CN110813357B (zh) | 2019-11-15 | 2019-11-15 | 高效双孔g-C3N4光催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911122002.7A CN110813357B (zh) | 2019-11-15 | 2019-11-15 | 高效双孔g-C3N4光催化剂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110813357A CN110813357A (zh) | 2020-02-21 |
CN110813357B true CN110813357B (zh) | 2023-02-28 |
Family
ID=69556138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911122002.7A Active CN110813357B (zh) | 2019-11-15 | 2019-11-15 | 高效双孔g-C3N4光催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110813357B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114618591A (zh) * | 2022-03-17 | 2022-06-14 | 上海工程技术大学 | g-C3N4@ZIF-8复合光催化剂及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103240121A (zh) * | 2013-05-27 | 2013-08-14 | 清华大学 | 一种多孔g-C3N4光催化剂及其制备方法 |
CN106622331A (zh) * | 2017-01-06 | 2017-05-10 | 广西民族大学 | 一种高比表面积石墨相氮化碳光催化剂的制备方法 |
CN106799251A (zh) * | 2017-03-03 | 2017-06-06 | 盐城工学院 | 一种复合光催化剂及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108543544B (zh) * | 2018-04-28 | 2021-01-01 | 苏州大学 | 蜂窝状同型异质结氮化碳复合材料及其制备方法与在废气催化处理中的应用 |
-
2019
- 2019-11-15 CN CN201911122002.7A patent/CN110813357B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103240121A (zh) * | 2013-05-27 | 2013-08-14 | 清华大学 | 一种多孔g-C3N4光催化剂及其制备方法 |
CN106622331A (zh) * | 2017-01-06 | 2017-05-10 | 广西民族大学 | 一种高比表面积石墨相氮化碳光催化剂的制备方法 |
CN106799251A (zh) * | 2017-03-03 | 2017-06-06 | 盐城工学院 | 一种复合光催化剂及其制备方法 |
Non-Patent Citations (4)
Title |
---|
"g-C3N4的制备及其对不同染料光催化降解性能研究";李荣荣等;《应用化工》;应用化工;20160930;第45卷(第9期);全文 * |
"g-C3N4的制备及可见光催化性能研究";刘红艳等;《功能材料》;功能材料;20151231;第46卷(第22期);全文 * |
"g-C3N4的制备及对罗丹明B模拟废水的吸附性能研究";谢巧等;《云南化工》;云南化工;20180831;第45卷(第8期);第30页左栏第2段,第1.3节,2.2节,图2-3,表1 * |
"类石墨相氮化碳的制备及可见光催化性质研究";王鹏等;《长春工业大学学报》;长春工业大学学报;20160831;第37卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110813357A (zh) | 2020-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity | |
Kianfar et al. | Recent advances in properties and applications of nanoporous materials and porous carbons | |
CN109647474B (zh) | 一种氮掺杂碳材料、其制备和应用 | |
Hu et al. | Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride | |
CN108855150B (zh) | 一种光催化降解苯酚的复合光催化剂的制备方法 | |
CN109999830A (zh) | 负载CoCr(Mn/Al)FeNi高熵合金的纳米颗粒催化剂及其制备方法和应用 | |
CN110548487B (zh) | 一种水热炭基复合材料、其制备和应用 | |
CN109876845B (zh) | M-g-C3N4/rGOA复合吸附可见光催化材料的制备方法及应用 | |
CN105148964B (zh) | 一种三维还原氧化石墨烯‑Mn3O4/MnCO3纳米复合材料及其制备方法 | |
Skubiszewska-Zięba et al. | Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits | |
Shu et al. | Nanoporous g-C3N4 nanosheets: facile synthesis and excellent visible-light photocatalytic H2 evolution performance | |
CN110876953A (zh) | 一种p,s共掺杂氮化碳同型异质结复合光催化剂 | |
CN110813357B (zh) | 高效双孔g-C3N4光催化剂的制备方法 | |
CN113145134B (zh) | 一种基于矿物复合材料的可见光催化剂及其制备方法 | |
CN105664988B (zh) | 一种(BiO)2CO3/C复合光催化剂及其应用 | |
CN114797942A (zh) | 一种多孔金属(铁、镍、钴)掺杂石墨相氮化碳光催化剂及其制备方法和应用 | |
Hou et al. | Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst | |
WO2023010175A1 (en) | Carbon nitrides with highly crystalline framework and process for producing same | |
De los Santos et al. | Optimized preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for acetone total combustion | |
CN110201718B (zh) | 一种红磷/铁基金属有机骨架复合材料的制备及应用 | |
CN114289063A (zh) | 碳量子点和高结晶性聚庚嗪酰亚胺复合物及其制备方法 | |
Guo et al. | 3D homogeneous porous copper-ceria catalyst for solar light driven photothermal CO-PROX in H2-rich gas: enhanced light absorption and abundant oxygen vacancy | |
CN114505071A (zh) | MnTi-MOFs衍生脱硝催化剂的制备方法及应用 | |
CN114192102A (zh) | 一种一步制备多酸改性的石墨相氮化碳材料及其应用 | |
CN113117672A (zh) | 一种支链烷烃重整光热催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |