CN110812530B - 一种phbv提高plla的形状记忆和促成骨效应的方法 - Google Patents

一种phbv提高plla的形状记忆和促成骨效应的方法 Download PDF

Info

Publication number
CN110812530B
CN110812530B CN201911175784.0A CN201911175784A CN110812530B CN 110812530 B CN110812530 B CN 110812530B CN 201911175784 A CN201911175784 A CN 201911175784A CN 110812530 B CN110812530 B CN 110812530B
Authority
CN
China
Prior art keywords
plla
phbv
shape memory
fiber
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911175784.0A
Other languages
English (en)
Other versions
CN110812530A (zh
Inventor
张彦中
王先流
易兵成
沈炎冰
唐寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201911175784.0A priority Critical patent/CN110812530B/zh
Publication of CN110812530A publication Critical patent/CN110812530A/zh
Application granted granted Critical
Publication of CN110812530B publication Critical patent/CN110812530B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种PHBV提高PLLA的形状记忆和促成骨效应的方法。该方法通过在左旋聚乳酸PLLA纤维中引入β‑羟基丁酸与戊酸酯共聚物PHBV。该方法操作简单,成本低,能有效提高PLLA形状记忆效率和成骨促进作用,为推动和增强PLLA基骨组织工程产品的应用转化与临床功效提供了可能,具有较好的市场应用前景。

Description

一种PHBV提高PLLA的形状记忆和促成骨效应的方法
技术领域
本发明属于功能化生物医用纤维的制备领域,特别涉及一种PHBV提高PLLA的形状记忆和促成骨效应的方法。
背景技术
左旋聚乳酸(PLLA),因其具有良好的生物相容性、可加工、高强度和高模量等特点,已被广泛地用于骨组织工程支架的制备,作为工程化组织替代物修复受损组织。除此之外,PLLA还是一种形状记忆材料,并应用于血管支架(Stent)的制备。尽管PLLA具有良好的生物相容性、生物可吸收性及形状记忆特点,其形状转变温度较高(约为60℃),不适合在人体体温条件下回复,并且纯的左旋聚乳酸的形状回复效率(如:形状固定率Rf和形状回复率Rr)较低、也无生物活性位点成骨效应差等是一些共性问题需要通过合适的方法来改进。
通常而言,采用其它单体与PLLA共聚,如聚乙醇酸(PGA)、聚氧乙烷(PEO)、聚乙二醇(PEG)、三亚甲基碳酸酯(TMC)等聚合物可以嵌段共聚得到形状记忆聚合物材料,实现聚合物材料的玻璃化转变温度(Tg)可调(即形状变形温度区间可调)、降解速度可调的目的。但这种软、硬链段共聚的改进方式,所制备的共聚物力学强度偏低。另外,使用无机纳米粒子,如羟基磷灰石(HAp)、四氧化三铁(Fe3O4)共混到PLLA材料中,也能提高PLLA的形状记忆效率、力学强度和生物活性。但这种方式会大大提高PLLA的玻璃化转变温度,使激活形状记忆效应的温度提高。因此,如何在降低PLLA的Tg、提高形状记忆性能的情况下而不降低材料的力学性能,是急需解决的一个问题。
β-羟基丁酸与戊酸酯共聚物(PHBV)是一种以淀粉为原料,运用发酵工程技术即可生产出的生物可降解聚合物材料,能被细菌消化,在土壤或堆肥化条件下完全分解为二氧化碳、水和生物质,又被称之为“绿色塑料”。因为其Tg低,将PLLA与PHBV复合,将能够有效降低PLLA体系的Tg。另外,PLLA-PHBV又被称之为“生物合金”(bio-alloy),力学性能优良,因此通过将PLLA和PHBV复合,将能够有效降低PLLA的Tg,改善PLLA的力学性能、形状记忆效率和成骨活性,对于提高PLLA基组织工程产品的骨再生应用具有重要意义。
发明内容
本发明所要解决的技术问题是提供一种PHBV提高PLLA的形状记忆和促成骨效应的方法,以克服现有技术中PLLA的形状记忆效应和成骨效应比较差的缺陷。
本发明提供一种PHBV提高PLLA的形状记忆和促成骨效应的方法,通过在左旋聚乳酸PLLA纤维中引入β-羟基丁酸与戊酸酯共聚物PHBV。
通过电纺丝在PLLA纤维中引入PHBV。
将PLLA和PHBV溶于溶剂中得到纺丝液,然后电纺丝,得到PLLA-PHBV超细纤维。
所述PLLA和PHBV的质量比为9:1~5:5。
所述纺丝液中PLLA和PHBV的浓度为8%~15%w/v。
所述溶剂种类不限,优选地,溶剂包括DMF与TCM的混合液或/和HFIP。
所述电纺丝的工艺参数不限,优选地,电纺丝的工艺参数为:注射速率为0.1~3mL/h,电压为1-20kV,接收距离为0.02~0.2m,环境温度为20~60℃,环境相对湿度为20~80%。
所述PLLA-PHBV超细纤维直径为500nm~3000nm。
所述PLLA-PHBV超细纤维的形状转变温度范围为40℃~60℃。
所述PLLA-PHBV超细纤维的形状固定率(Rf)和形状回复率(Rr)≥99%。
所述PLLA-PHBV超细纤维用于研发和生产骨组织工程产品。
针对PLLA的形状记忆效应和成骨效应比较差的问题,本发明提出将PLLA和PHBV的优势结合起来,使用电纺丝技术,一步法制备出全新的Tg降低、力学性能增强、形状记忆效率提高和成骨性能极佳的超细纤维薄膜,可仿天然细胞外基质的纳微米纤维结构,能为细胞提供生长、增殖以及成骨分化的理想微环境。
有益效果
(1)本发明将仿生技术和形状记忆聚合物(SMPs)的优势结合起来,制备出一种具有仿天然细胞外基质的形状记忆纤维支架,可为细胞提供生长、增殖以及分化的理想微环境;
(2)本发明将形状记忆超细纤维薄膜应用于骨组织工程时,可以实现支架的微创植入(通过合理地预设其临时形状和永久形状,使其易于植入,之后在体温作用或者外界热源的作用下回复至其永久形状)、生物降解、成骨活性等能力,并能持续提供生物力学刺激,解决应力遮挡的难题;
(3)本发明通过一步法能快速、大量、高效地制备具有纤维结构的PLLA-PHBV形状记忆材料,方法工艺简单、效率高,能有效降低PLLA的Tg,降低PLLA的脆性,提高PLLA的形状记忆效率和成骨性能,为推动和增强PLLA基骨组织工程产品的应用转化与临床功效提供了可能,具有较好的市场应用前景。
附图说明
图1为实施例1中具有纤维结构的PLLA-PHBV(9:1)形状记忆材料的扫描电镜图片;
图2为实施例2中具有纤维结构的PLLA-PHBV(8:2)形状记忆材料的扫描电镜图片;
图3为实施例3中具有纤维结构的PLLA-PHBV(7:3)形状记忆材料的扫描电镜图片;
图4为实施例4中具有纤维结构的PLLA-PHBV(6:4)形状记忆材料的扫描电镜图片;
图5为实施例1-4中具有纤维结构的PLLA-PHBV形状记忆材料的形状转变温度汇总图;
图6为实施例1中具有纤维结构的PLLA-PHBV(9:1)形状记忆材料的形状记忆测试结果;
图7为实施例2中具有纤维结构的PLLA-PHBV(8:2)形状记忆材料的形状记忆测试结果;
图8为实施例3中具有纤维结构的PLLA-PHBV(7:3)形状记忆材料的形状记忆测试结果;
图9为实施例4中具有纤维结构的PLLA-PHBV(6:4)形状记忆材料的形状记忆测试结果;
图10为实施例3中骨髓间充质干细胞(BMSCs)在具有纤维结构的PLLA-PHBV(7:3)形状记忆材料上14天后碱性磷酸酶(ALP)染色图;
图11为实施例3中骨髓间充质干细胞(BMSCs)在具有纤维结构的PLLA-PHBV(7:3)形状记忆材料上14天后茜素红(ARS)染色图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)用电子分析天平称取0.1g的PHBV溶于9mL的三氯甲烷(TCM)(国药集团)中,加热到65℃溶解5min;搅拌2h后再用电子分析天平称取0.9g的PLLA溶于其中,添加1mL的N,N-二甲基甲酰胺(DMF)(国药集团),搅拌至溶解完全,得到PLLA-PHBV(9:1)终浓度为10%(w/v)的PLLA-PHBV/TCM-DMF纺丝液。
(2)选用10mL的注射器,20G的针头,抽取PLLA-PHBV/TCM-DMF纺丝液,固定在电纺丝装置上进行纺丝,参数为:纺丝液注射速率为2mL/h,电压为15kV,接收距离为15cm,环境温度为23℃,环境相对湿度为40%。采用铝箔为接收装置,纺丝2小时,将收集到的纤维膜放入真空干燥箱中干燥24小时,得到具有纤维结构的PLLA-PHBV(9:1)形状记忆纤维膜。
本实施例的具有纤维结构的PLLA-PHBV(9:1)形状记忆纤维的扫描电镜照片如图1所示,纤维的平均直径为2200nm。利用差示扫描量热法分析得到该形状记忆纤维膜的形状转变温度为51.4℃(如图5所示),利用动态热机械性能分析法测试分析得到该形状记忆纤维膜的形状固定率为99.67%,形状回复率为99.28%(如图6所示)。
实施例2
根据实施例1,将实施例1中PHBV质量改为0.2g,PLLA质量改为0.8g,其余均与实施例1相同,得到具有纤维结构的PLLA-PHBV(8:2)形状记忆纤维膜。
本实施例的具有纤维结构的PLLA-PHBV(8:2)形状记忆纤维的扫描电镜照片如图2所示,纤维的平均直径为2500nm。利用差示扫描量热法分析得到该形状记忆纤维膜的形状转变温度为50.2℃(如图5所示),利用动态热机械性能分析法测试分析得到该形状记忆纤维膜的形状固定率为99.39%,形状回复率为99.87%(如图7所示)。
实施例3
根据实施例1,将实施例1中PHBV质量改为0.3g,PLLA质量改为0.7g,其余均与实施例1相同,得到具有纤维结构的PLLA-PHBV(7:3)形状记忆纤维膜。
本发明的具有纤维结构的PLLA-PHBV(7:3)形状记忆纤维的扫描电镜照片如图3所示,纤维的平均直径为2900nm。利用差示扫描量热法分析得到该形状记忆纤维膜的形状转变温度为47.8℃(如图5所示),利用动态热机械性能分析法测试分析得到该形状记忆纤维膜的形状固定率为99.09%,形状回复率为98.76%(如图8所示)。其成骨相关的碱性磷酸酶(ALP)染色和茜素红染色(ARS)结果分别如图10和图11所示,表明BMSCs在PLLA-PHBV(7:3)形状记忆纤维膜上分泌了大量ALP,沉积了大量钙离子(Ca2+)。
实施例4
根据实施例1,将实施例1中PHBV质量改为0.4g,PLLA质量改为0.6g,其余均与实施例1相同,得到具有纤维结构的PLLA-PHBV(6:4)形状记忆纤维膜。
本实施例的具有纤维结构的PLLA-PHBV(6:4)形状记忆纤维的扫描电镜照片如图4所示,纤维的平均直径为2900nm。利用差示扫描量热法分析得到该形状记忆纤维膜的形状转变温度为45.9℃(如图5所示),利用动态热机械性能分析法测试分析得到该形状记忆纤维膜的形状固定率为98.83%,形状回复率为96.08%(如图9所示)。

Claims (4)

1.一种PHBV提高PLLA的形状记忆和促成骨效应的方法,其特征在于,通过在左旋聚乳酸PLLA纤维中引入β-羟基丁酸与戊酸酯共聚物PHBV;通过电纺丝在PLLA纤维中引入PHBV;将PLLA和PHBV溶于溶剂中得到纺丝液,然后电纺丝,得到PLLA-PHBV超细纤维;其中PLLA和PHBV的质量比为9:1、8:2、7:3或6:4;溶剂为DMF与TCM的混合液;电纺丝的工艺参数为:注射速率为2mL/h,电压为15kV,接收距离为0.15m,环境温度为23℃,环境相对湿度为40%。
2.根据权利要求1所述方法,其特征在于,所述纺丝液中PLLA和PHBV的浓度为8%~15%w/v。
3.根据权利要求1所述方法,其特征在于,所述PLLA-PHBV超细纤维直径为500nm~3000nm。
4.根据权利要求1所述方法,其特征在于,所述PLLA-PHBV超细纤维用于研发和生产骨组织工程产品。
CN201911175784.0A 2019-11-26 2019-11-26 一种phbv提高plla的形状记忆和促成骨效应的方法 Active CN110812530B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911175784.0A CN110812530B (zh) 2019-11-26 2019-11-26 一种phbv提高plla的形状记忆和促成骨效应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911175784.0A CN110812530B (zh) 2019-11-26 2019-11-26 一种phbv提高plla的形状记忆和促成骨效应的方法

Publications (2)

Publication Number Publication Date
CN110812530A CN110812530A (zh) 2020-02-21
CN110812530B true CN110812530B (zh) 2021-11-02

Family

ID=69559516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911175784.0A Active CN110812530B (zh) 2019-11-26 2019-11-26 一种phbv提高plla的形状记忆和促成骨效应的方法

Country Status (1)

Country Link
CN (1) CN110812530B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826805B (zh) * 2020-03-18 2021-03-12 同济大学 一种纳米纤维膜状高效水体固相反硝化碳源的合成方法
CN114848910A (zh) * 2022-04-12 2022-08-05 中怡(深圳)医疗科技集团有限公司 一种压电高分子材料的制备方法
CN116139343A (zh) * 2022-09-07 2023-05-23 东华大学 一种力学活性骨组织工程支架的制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569253A (zh) * 2004-04-23 2005-01-26 清华大学 一种组织器官修复材料的制备方法
CN101260220A (zh) * 2008-04-10 2008-09-10 复旦大学 一种共混聚合物形状记忆材料及其制备方法
ES2579161B2 (es) * 2016-03-08 2017-03-28 Universidad De Las Palmas De Gran Canaria Nanofibras híbridas de aloe vera
GB201622340D0 (en) * 2016-12-28 2017-02-08 Auckland Uniservices Ltd Product and Method

Also Published As

Publication number Publication date
CN110812530A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110812530B (zh) 一种phbv提高plla的形状记忆和促成骨效应的方法
Kaniuk et al. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications
Shishatskaya et al. Degradation of P (3HB) and P (3HB-co-3HV) in biological media
Gupta et al. Poly (lactic acid) fiber: An overview
Deng et al. Poly (L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning
Gritsch et al. Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules
Balu et al. Electrospun Polycaprolactone/Poly (1, 4-butylene adipate-co-polycaprolactam) blends: Potential biodegradable scaffold for bone tissue regeneration
CN102242463B (zh) 一种静电纺制备明胶/聚己内酯复合纳米纤维膜的方法
US20150073444A1 (en) Polyhydroxyalkanoate Medical Textiles and Fibers
Bhattacharjee et al. Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering
CN101502671A (zh) 丝素蛋白/p(lla-cl)复合纳米纤维组织修复支架的制备方法
CN105457096A (zh) 一种生物相容性好、可降解的柞蚕丝素蛋白组织工程支架材料的制备方法
Sarrami et al. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications
CN101780292A (zh) 以纤维蛋白原为基础的三维多孔纳米支架及其制备方法
CN106310370A (zh) 一种弹性可降解生物医用材料的制备方法
CN102908667B (zh) 部分可吸收的纤维膜疝气补片的制备方法
Wang et al. Shape memory and osteogenesis capabilities of the electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) modified poly (l-lactide) fibrous mats
Fu et al. Enhancing the osteogenic differentiation of aligned electrospun poly (L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires
US8242073B2 (en) Biodegradable and bioabsorbable biomaterials and keratin fibrous articles for medical applications
CN106853264A (zh) 超顺磁性纳米纤维膜支架材料、制备方法和应用
CN102926027A (zh) 静电纺丝制备改性魔芋葡甘露聚糖/生物降解聚酯共混纤维的方法
CN110699850B (zh) 聚羟基脂肪酸酯/聚吡咯复合电纺丝膜的制备方法及电纺丝膜
CN103397477B (zh) 一种聚乳酸-三亚甲基碳酸酯纳米纤维薄膜的制备方法
CN116139344A (zh) 一种促进成骨细胞生成的骨修复材料及其制备方法
CN101864153B (zh) 一种生物可降解材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant