CN110808208A - 一种t型纳米栅的制备方法 - Google Patents

一种t型纳米栅的制备方法 Download PDF

Info

Publication number
CN110808208A
CN110808208A CN201911109145.4A CN201911109145A CN110808208A CN 110808208 A CN110808208 A CN 110808208A CN 201911109145 A CN201911109145 A CN 201911109145A CN 110808208 A CN110808208 A CN 110808208A
Authority
CN
China
Prior art keywords
gate
silicon dioxide
silicon nitride
shaped
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911109145.4A
Other languages
English (en)
Other versions
CN110808208B (zh
Inventor
顾国栋
吕元杰
敦少博
梁士雄
冯志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201911109145.4A priority Critical patent/CN110808208B/zh
Publication of CN110808208A publication Critical patent/CN110808208A/zh
Application granted granted Critical
Publication of CN110808208B publication Critical patent/CN110808208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及微电子器件技术领域,具体公开一种T型纳米栅的制备方法。所述制备方法包括:在基片的上表面生长氮化硅层和二氧化硅层;在二氧化硅层上涂胶,曝光,显影,将光刻图形的窗口下方的二氧化硅层刻蚀干净,直至露出氮化硅层,形成条形栅槽;利用硅化合物的腐蚀液对形成了条形栅槽的二氧化硅层和氮化硅层进行腐蚀,得到栅电极窗口;蒸发栅金属并剥离,得到T型纳米栅。本发明采用单层电子束曝光和湿法腐蚀、干法刻蚀等工艺相结合的方法,仅通过合理设置光刻图形的曝光剂量和湿法腐蚀时间即可制作出理想形貌的T型栅,实现了100nm以下小栅长T型纳米栅的制备,且工艺简单易行,提高了纳米T型栅的机械强度和器件成品率,降低了生产成本。

Description

一种T型纳米栅的制备方法
技术领域
本发明涉及微电子器件技术领域,尤其涉及一种T型纳米栅的制备方法。
背景技术
高电子迁移率晶体管(HEMT)器件的性能与器件的加工工艺紧密相关,尤其栅线条的制作对器件起决定性作用。栅长越小,器件的电流截止频率(fT)越高,器件的噪声系数也越小,人们通过不断减小HEMT器件的栅长来得到更好特性的器件。目前国内外先进GaAs、InP、GaN器件的栅长已经缩小到100nm以内的水平,但是,随着栅长缩短,栅电阻增加,栅电阻的增加成为制约小尺寸器件性能提升的重要因素之一。为了解决栅电阻增加的问题,通常在栅金属的顶部制作一个尺寸大一些的金属截面,从而形成T型栅。T型栅可以有效地降低栅长和栅电阻,提高截止频率和抗噪能力。
为实现T型栅的小栅长,通常采用电子束曝光工艺。电子束曝光是纳米电子器件制作的一个主要工艺手段,是目前国际上公认的高分辨率图像制作技术。使用电子束曝光制备T型栅的常规方法有双层胶工艺和三层胶工艺。但是但是双层胶或者三层胶工艺复杂,且由于胶层较厚不能得到较高的分辨率。
发明内容
针对现有制备小栅长T型纳米栅工艺复杂且不能得到较高分辨率的问题,本发明提供一种T型纳米栅的制备方法。
为解决上述技术问题,本发明提供的技术方案是:
一种T型纳米栅的制备方法,包括以下步骤:
步骤a,在基片的上表面自下而上依次生长氮化硅层和二氧化硅层;
步骤b,在所述二氧化硅层上涂布电子束光刻胶,曝光,显影,得到光刻图形;
步骤c,刻蚀光刻图形的窗口下方的二氧化硅层,直至露出氮化硅层,形成条形栅槽;
步骤d,利用硅化合物腐蚀液对形成了条形栅槽的二氧化硅层和氮化硅层的条形栅槽进行腐蚀,得到栅电极窗口;其中,所述硅化合物的腐蚀液对二氧化硅和氮化硅的腐蚀速率的比值大于预设值;
步骤e,蒸发栅金属并剥离,得到T型纳米栅。
可选的,所述氮化硅层的厚度为30-100nm。
可选的,所述氮化硅层的厚度大于预设的T型栅的栅根高度。
可选的,所述二氧化硅层的厚度为50-500nm。
可选的,所述二氧化硅层的厚度大于预设的T型纳米栅的栅帽高度。
可选的,所述二氧化硅层的厚度为预设的T型纳米栅的栅帽高度的1.2-1.5倍。
可选的,步骤d中,所述预设值为3:1。
可选的,步骤c中,在刻蚀停止后,所述氮化硅层被刻蚀的深度为预设深度。
可选的,步骤c中,在刻蚀停止后,所述氮化硅层被刻蚀的深度为0-5nm。
可选的,所述电子束光刻胶的厚度为50-500nm。
可选的,所述电子束光刻胶的厚度为50-200nm。
可选的,所述电子束光刻胶为PMMA或ZEP520。
可选的,当电子束光刻胶为ZEP520时,曝光剂量为100-400μc/cm2
可选的,当电子束光刻胶为PMMA时,曝光剂量为400-1000μc/cm2
可选的,当所述基片为外延片时,所述外延片的材料为掺杂Si、掺杂SiC、金刚石、金刚石、Ga2O3、GaAs、InP、GaN、AlN、石墨烯、MOS2、AlGaN/GaN、InAlN/GaN、AlN/GaN、AlGaN/GaAs或InGaAs/InP。
可选的,所述栅金属为能与半导体形成肖特基接触的金属组合物。
可选的,所述栅金属为Ni/Au、Ti/Pt/Au或Ti/Au。
可选的,所述氮化硅层通过PECVD、LPCVD或ALD技术制备得到,所述二氧化硅层通过CVD技术制备得到。
采用上述技术方案所产生的有益效果在于:本发明提供的T型纳米栅的制备方法,采用单层电子束曝光工艺,显著提高了光刻图形的分辨率,更容易制作细栅线条;同时,由于湿法腐蚀过程中SiN的腐蚀速率远低于SiO2,因此,更容易得到较小的栅根。本发明提供的制备方法采用单层电子束曝光和湿法腐蚀、干法刻蚀等工艺相结合的方法,在制作小线宽栅极的同时大幅简化了T型栅的制备工艺,仅通过合理设置光刻图形的曝光剂量和湿法腐蚀时间即可制作出理想形貌的T型栅,实现了100nm以下小栅长T型纳米栅的制备,尤其适用于制备50nm以下的小栅长的T型纳米栅,且工艺简单易行,提高了纳米T型栅的机械强度和器件成品率,降低了生产成本。
附图说明
图1为本发明实施例中经过步骤1处理后的器件的结构示意图;
图2为本发明实施例中经过步骤2处理后的器件的结构示意图;
图3为本发明实施例中经过步骤3处理后的器件的结构示意图;
图4为本发明实施例中经过步骤4处理后的器件的结构示意图;
图5为本发明实施例中经过步骤5处理后的器件的结构示意图;
图6为本发明实施例中经过步骤6处理后的器件的结构示意图;
图7为本发明实施例中经过步骤7处理后的器件的结构示意图;
图8为本发明实施例中经过步骤8处理后的器件的结构示意图;
其中,101、半导体晶圆;102、氮化硅层;103、二氧化硅层;104、电子束光刻胶;105、光刻图形窗口;106、条形栅槽;107、栅电极窗口;108、金属样品;109、T型纳米栅。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
请参阅图1至图8所示,本发明实施例提供一种T型纳米栅的制备方法,包括以下步骤:
步骤1,参见图1,在生长结构完好的半导体晶圆101的上表面生长氮化硅层102;
步骤2,参见图2,在氮化硅层102表面生长二氧化硅层103;
步骤3,参见图3,在所述二氧化硅层103上涂布电子束光刻胶104;
步骤4,参见图4,按照设计的栅根宽度和曝光剂量对所述电子束光刻104进行曝光,对曝光后的光刻胶进行显影,得到光刻图形窗口105;
步骤5,参见图5,刻蚀光刻图形窗口105下方的二氧化硅层103,直至露出氮化硅层102,形成条形栅槽106;
步骤6,参见图6,利用硅化合物腐蚀液对形成了条形栅槽106的二氧化硅层103和氮化硅层102进行腐蚀,得到栅电极窗口107;其中,所述硅化合物的腐蚀液对二氧化硅和氮化硅的腐蚀速率的比值大于预设值;
步骤7,参见图7,采用电子束蒸发工艺将栅电极材料蒸发到栅电极窗107,得到蒸发好的金属样品108;
步骤8,参见图8,采用通用的剥离技术对蒸发好的金属样品108进行剥离,并去掉残余的电子束光刻胶,得到T型纳米栅109。
本实施例中半导体圆晶101的材料可为掺杂Si、掺杂SiC、金刚石、Ga2O3、GaAs、InP、GaN、AlN、石墨烯或MOS2等常见的半导体材料,也可以是AlGaN/GaN、InAlN/GaN、AlN/GaN、AlGaN/GaAs或InGaAs/InP等HEMT结构材料,对此不予限制。
本实施例中,光刻胶可以是本领域常规的抗刻蚀的电子束光刻胶,如PMMA系列或ZEP520系列,对此不予限制。
本实施例中,栅金属为能与半导体形成肖特基接触的金属组合物,如Ni/Au、Ti/Pt/Au、Ti/Au等,对此不予限制。
一个实施例中,氮化硅层102的厚度为30-100nm,实际应用时可根据预设T型纳米栅的栅长的宽度进行选择。氮化硅层102厚度选择应大于预设的T型纳米栅的栅根高度,为BOE腐蚀提供腐蚀余量。
一个实施例中,二氧化硅层103的厚度为50-500nm,二氧化硅层103厚度选择应大于预设的T型纳米栅的栅帽高度。
一个实施例中,二氧化硅层103的厚度为预设的T型纳米栅的栅帽高度的1.2-1.5倍,其作用是提供栅帽所需空间。
一个实施例中,所述硅化合物的腐蚀液对二氧化硅和氮化硅的腐蚀速率的比值大于3:1。
一个实施例中,所述硅化合物腐蚀液为BOE腐蚀液。
所述硅化合物的腐蚀液对二氧化硅和氮化硅的腐蚀速率的比值大于3:1,可提供栅根和栅帽所需的空间,便于形成理想形貌的T型栅。
步骤6中腐蚀时间的选择依据BOE对氮化硅和二氧化硅的腐蚀速率的比值,以及刻蚀后氮化硅的厚度进行确定。根据SiN的腐蚀速率远低于SiO2,更容易得到较小的栅根。
试验数据表明,对于按照常规工艺生长的氮化硅和二氧化硅,BOE对二氧化硅的腐蚀速率为500-600nm/min,对氮化硅的腐蚀速率为50-60nm/min,因此,对二氧化硅和氮化硅的腐蚀速率的比值约为10:1。选择腐蚀速率预设值为10,可缩短腐蚀时间,并且有利于获得更小尺寸的T型栅。
实际操作时,在采用RIE干法刻蚀工艺过刻蚀氮化硅层102时,在氮化硅层102旁边放置陪片,从而便于确定过刻蚀后剩余氮化硅层的厚度,根据剩余氮化硅层的厚度以及氮化硅的腐蚀速率,确定腐蚀时间。
一个实施例中,先湿法腐蚀部分二氧化硅层103,然后利用RIE干法刻蚀工艺将光刻图形窗口下方的二氧化硅层103刻蚀干净,直至露出氮化硅层102。
先湿法腐蚀部分二氧化硅层,再利用RIE干法刻蚀剩余的二氧化硅层103,可尽量减少光刻胶被刻蚀。
一个实施例中,在刻蚀停止后,所述氮化硅层102被刻蚀的深度为预设深度。
一个实施例中,在刻蚀停止后,所述氮化硅层102被刻蚀的深度为0-5nm。
上述预设深度是通过计算刻蚀时间计算出来的。将氮化硅层刻蚀至预设深度,有利于后续BOE腐蚀液对氮化硅层进行腐蚀,缩短腐蚀时间,提高生产效率。
一个实施例中,氮化硅层102可通过PECVD、LPCVD以及ALD技术获得。
一个实施例中,二氧化硅层103可通过PECVD、LPCVD以及ALD技术获得。
一个实施例中,电子束光刻胶104的厚度为50-500nm。电子束光刻胶104的厚度选择可根据实际栅根的预设厚度进行确定。
一个实施例中,电子束光刻胶104的厚度为50-200nm。
一个实施例中,电子束光刻胶采用旋涂方法,旋涂转速为3000-5000rpm,旋涂后用160-190℃热板烘胶2-5min。
一个实施例中,电子束光刻胶104为ZEP-520,曝光剂量为100-400μc/cm2,束流小于等于2nA。曝光后采用乙酸正戊酯显影2-5min,然后采用IPA定影1-2min,氮气吹干,得到光刻图形。
另外一个实施中,电子束光刻胶104为PMMA系列的C4或A4,曝光剂量为400-1000μc/cm2,束流小于等于2nA。曝光后采用显影液(MIBK:IPA=1:3)显影2-5min,然后采用IPA定影1-2min,氮气吹干,得到光刻图形。
一个实施例中,采用蓝膜、丙酮或NMP等剥离液对圆晶进行剥离去胶。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种T型纳米栅的制备方法,其特征在于,包括如下步骤:
步骤a,在基片的上表面自下而上依次生长氮化硅层和二氧化硅层;
步骤b,在所述二氧化硅层上涂布电子束光刻胶,曝光,显影,得到光刻图形;
步骤c,刻蚀光刻图形的窗口下方的二氧化硅层,直至露出氮化硅层,形成条形栅槽;
步骤d,利用硅化合物的腐蚀液对形成了条形栅槽的二氧化硅层和氮化硅层进行腐蚀,得到栅电极窗口;其中,所述硅化合物的腐蚀液对二氧化硅和氮化硅的腐蚀速率的比值大于预设值;
步骤e,蒸发栅金属并剥离,得到T型纳米栅。
2.如权利要求1所述的T型纳米栅的制备方法,其特征在于,所述氮化硅层的厚度为30-100nm;或所述二氧化硅层的厚度为50-500nm。
3.如权利要求1所述的T型纳米栅的制备方法,其特征在于,所述氮化硅层的厚度大于预设的T型纳米栅的栅根高度。
4.如权利要求1所述的T型纳米栅的制备方法,其特征在于,所述二氧化硅层的厚度大于预设的T型纳米栅的栅帽高度。
5.如权利要求4所述的T型纳米栅的制备方法,其特征在于,所述二氧化硅层的厚度为预设的T型纳米栅的栅帽高度的1.2-1.5倍。
6.如权利要求1所述的T型纳米栅的制备方法,其特征在于,步骤d中,所述预设值为3:1。
7.如权利要求1所述的T型纳米栅的制备方法,其特征在于,步骤c中,在刻蚀停止后,所述氮化硅层被刻蚀的深度为预设深度。
8.如权利要求1所述的T型纳米栅的制备方法,其特征在于,步骤c中,在刻蚀停止后,所述氮化硅层被刻蚀的深度为0-5nm。
9.如权利要求1所述的T型纳米栅的制备方法,其特征在于,所述电子束光刻胶的厚度为50-500nm。
10.如权利要求1所述的小栅长T型纳米栅的制备方法,其特征在于,所述电子束光刻胶的厚度为50-200nm。
CN201911109145.4A 2019-11-13 2019-11-13 一种t型纳米栅的制备方法 Active CN110808208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911109145.4A CN110808208B (zh) 2019-11-13 2019-11-13 一种t型纳米栅的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911109145.4A CN110808208B (zh) 2019-11-13 2019-11-13 一种t型纳米栅的制备方法

Publications (2)

Publication Number Publication Date
CN110808208A true CN110808208A (zh) 2020-02-18
CN110808208B CN110808208B (zh) 2022-03-29

Family

ID=69502417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911109145.4A Active CN110808208B (zh) 2019-11-13 2019-11-13 一种t型纳米栅的制备方法

Country Status (1)

Country Link
CN (1) CN110808208B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038227A (zh) * 2020-08-12 2020-12-04 深圳市汇芯通信技术有限公司 栅极无损伤制备方法及基于该制备方法的hemt
CN113948381A (zh) * 2020-07-17 2022-01-18 中国科学院物理研究所 一种纳米栅的制备方法、纳米栅及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688704A (en) * 1995-11-30 1997-11-18 Lucent Technologies Inc. Integrated circuit fabrication
CN101276750A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 一种晶体管t型纳米栅的制作方法
CN101423188A (zh) * 2007-10-31 2009-05-06 中国科学院半导体研究所 一种纳米尺寸空气槽的制作方法
CN103632948A (zh) * 2013-12-25 2014-03-12 苏州晶湛半导体有限公司 一种半导体器件及其制造方法
CN104952788A (zh) * 2014-03-27 2015-09-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种斜孔刻蚀方法
CN105097488A (zh) * 2014-05-16 2015-11-25 北京北方微电子基地设备工艺研究中心有限责任公司 硅片刻蚀方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688704A (en) * 1995-11-30 1997-11-18 Lucent Technologies Inc. Integrated circuit fabrication
CN101276750A (zh) * 2007-03-28 2008-10-01 中国科学院微电子研究所 一种晶体管t型纳米栅的制作方法
CN101423188A (zh) * 2007-10-31 2009-05-06 中国科学院半导体研究所 一种纳米尺寸空气槽的制作方法
CN103632948A (zh) * 2013-12-25 2014-03-12 苏州晶湛半导体有限公司 一种半导体器件及其制造方法
CN104952788A (zh) * 2014-03-27 2015-09-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种斜孔刻蚀方法
CN105097488A (zh) * 2014-05-16 2015-11-25 北京北方微电子基地设备工艺研究中心有限责任公司 硅片刻蚀方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石庚辰等: "《微机电系统技术基础》", 31 August 2006 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948381A (zh) * 2020-07-17 2022-01-18 中国科学院物理研究所 一种纳米栅的制备方法、纳米栅及应用
CN113948381B (zh) * 2020-07-17 2024-05-28 中国科学院物理研究所 一种纳米栅的制备方法、纳米栅及应用
CN112038227A (zh) * 2020-08-12 2020-12-04 深圳市汇芯通信技术有限公司 栅极无损伤制备方法及基于该制备方法的hemt

Also Published As

Publication number Publication date
CN110808208B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN107210323A (zh) 常关型iii族氮化物晶体管
CN104282542B (zh) 解决超级结产品保护环场氧侧壁多晶硅残留的方法
CN110808208B (zh) 一种t型纳米栅的制备方法
CN110808207B (zh) 一种t型纳米栅及其制备方法
CN109390212A (zh) 氮化物半导体器件的形成工艺
CN105118860A (zh) 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN109728086A (zh) 侧墙栅高迁移率晶体管的制备方法
CN110707150B (zh) 一种双t型纳米栅及其制备方法
CN112086362A (zh) 一种氮化镓增强型hemt器件及其制备方法
CN109727853A (zh) 一种高迁移率晶体管的制备方法
CN111192827B (zh) 增强型高电子迁移率晶体管的p-GaN帽层的制备方法
CN105977147B (zh) 一种用于纳米栅制备的无损伤自终止刻蚀方法
CN107293482B (zh) 一种氮化镓高电子迁移率晶体管栅电极的制作方法
CN106783570B (zh) 一种高电子迁移率晶体管t型栅的制作方法
CN105428236A (zh) GaN HEMT射频器件及其栅极自对准制备方法
KR20120066362A (ko) 반도체 소자 및 이의 제조방법
CN105679679B (zh) 一种GaN基凹槽栅MISFET的制备方法
CN211125660U (zh) 用于制造高电子迁移率晶体管器件的中间结构
CN219832664U (zh) 一种基于氧处理的高性能p-GaN栅增强型晶体管
WO2022204913A1 (en) Iii nitride semiconductor devices on patterned substrates
CN115347044A (zh) 一种高频高线性GaN HEMT器件及制备方法
CN111952175B (zh) 晶体管的凹槽制作方法及晶体管
CN114447113A (zh) 基于栅下图形化的新型Fin结构GaN HEMT器件及其制备方法
JP2009010216A (ja) Iii族窒化物系半導体トランジスタおよびiii族窒化物半導体積層ウエハ
CN109326522B (zh) 一种金刚石异质结二极管器件的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant