CN110804043B - 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用 - Google Patents

部花菁-香豆素荧光团在线粒体硫化氢检测中的应用 Download PDF

Info

Publication number
CN110804043B
CN110804043B CN201810881196.8A CN201810881196A CN110804043B CN 110804043 B CN110804043 B CN 110804043B CN 201810881196 A CN201810881196 A CN 201810881196A CN 110804043 B CN110804043 B CN 110804043B
Authority
CN
China
Prior art keywords
hydrogen sulfide
probe
coumarin
imaging
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810881196.8A
Other languages
English (en)
Other versions
CN110804043A (zh
Inventor
何卫江
郭子建
方红宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810881196.8A priority Critical patent/CN110804043B/zh
Publication of CN110804043A publication Critical patent/CN110804043A/zh
Application granted granted Critical
Publication of CN110804043B publication Critical patent/CN110804043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6447Fluorescence; Phosphorescence by visual observation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了部花菁‑香豆素荧光团作为硫化氢荧光探针在线粒体硫化氢检测中的应用,所述部花菁‑香豆素荧光团结构如下式所述:
Figure DDA0001754511190000011
其中C6H13代表直链或支链的己烷基。本发明所述的部花菁‑香豆素荧光团不易受到检测环境,如探针浓度等条件的影响,不受生物硫醇的干扰,可以选择性地与硫化氢作用,具有荧光比率响应效应、选择性强、灵敏度高、响应快速等优点,实现细胞内的外源性和内源性硫化氢比率成像,另外探针可以进行线粒体定位,有望在生物科学中发挥作用,具有广阔的应用前景。

Description

部花菁-香豆素荧光团在线粒体硫化氢检测中的应用
技术领域
本发明属于生物分析检测领域,具体涉及一种部花菁-香豆素荧光团作为硫化氢荧光探针在细胞器硫化氢检测中的应用
背景技术
硫化氢是生命体中继NO与CO之后发现的第三个气体信号分子,在多种组织中作为细胞保护剂和气体递质,具有控制血管舒张和神经调节等作用。硫化氢水平异常还与阿尔兹海默氏症、唐氏综合症、糖尿病和肝硬化等疾病有关。对硫化氢生理及病理功能的研究已成为化学家与生物学家广泛关注的热点课题,而发展准确快捷的硫化氢检测方法则是这些相关研究的技术基础。荧光探针及成像因其高灵敏度的快速响应能力,成为实现生命体系中小分子的快速原位检测的重要手段。构建硫化氢荧光探针、实现硫化氢的原位实时成像已成为当前探针研究的重要方向。目前大多硫化氢探针均通过其与硫化氢的选择性化学反应实现荧光识别,但较慢的响应速度难以满足硫化氢实时跟踪的需要。如何构造快速响应的比例计量型探针,实现细胞特别是特定细胞器中硫化氢的实时准确定跟踪仍是一个挑战性的课题。而线粒体作为细胞的能量工厂,是细胞重要的细胞器,其生理功能与硫化氢密切相关。线粒体中的 3-巯基丙酮酸在3-巯基丙酮酸硫转移酶(3-mercaptopyruvate sulfurtransferase,3-MST)的作用下转化产生硫化氢。线粒体产生的内源性硫化氢是细胞内硫化氢的重要来源之一,在提高线粒体ATP酶活性和抗氧化应激等方面发挥重要作用。除此之外,外源性或其他组织产生的硫化氢也能够对线粒体的功能起到保护作用。然而细胞内硫化氢半衰期较短,大概只有几分钟,为了实时定量的检测线粒体中硫化氢量的变化对于了解某些疾病以及线粒体的损伤,因此设计快速响应和低检测限的线粒体硫化氢探针具有重大意义。
荧光检测法具有操作方便,灵敏度高,选择性强,并能实现对生物样品的实时、在线检测等特点,受到广泛关注。已报道的硫化氢探针大多是荧光“关-开”型,并且易受环境,如检测温度、探针浓度等因素的影响(参见CN 106279278 A;X.Li,S.Zhang,J.Cao,N.Xie,T.Liu,B.Yang,Q.J.He and Y.Z.Hu,An ICT-based fluorescent switch-on probe forhydrogen sulfide in living cells,Chem.Comm.,2013,49:8656-8658),并且线粒体靶向和快速响应的的硫化氢探针更少之又少(参见CN 104479669 A;Hammers Matthew D.,Taormina Michael J., Cerda Matthew M.,Montoya Leticia A.,Seidenkranz DanielT.,Parthasarathy Raghuveer,Pluth Michael D.,A Bright Fluorescent Probe forH2S Enables Analyte-Responsive,3D Imaging in Live Zebrafish Using Light SheetFluorescence Microscopy,J.Am.Chem.Soc.,2015,32:10216- 10223),文献《基于香豆素荧光团的比率荧光探针的设计、合成与应用研究》(冯笑,山东大学硕士学位论文)设计合成了一个基于香豆素-部花菁的硫化氢探针CPC,探针以香豆素为能量供体,部花菁为能量受体。虽然该探针具有高的灵敏性(检测限40nM)和良好的选择性但是其响应时间过长(7min),无法满足实际需要。
发明内容
本发明针对现有技术不足,通过对一系列部花菁-香豆素荧光团的筛选,确定了一种理想的比率计量型硫化氢荧光探针,响应迅速,灵敏度高,选择性好,同时能够实现线粒体靶向定位。
本发明具体技术方案如下:
部花菁-香豆素荧光团作为硫化氢荧光探针在线粒体硫化氢检测中的应用,所述部花菁- 香豆素荧光团结构如下式所述:
Figure RE-GDA0001838235400000021
其中C6H13代表直链或支链的己烷基,所述部花菁-香豆素荧光团可以与阴离子结合,所述阴离子选自Cl-、Br-,I-,NO3 -或PF4 -
上述部花菁-香豆素荧光团为比例计量型硫化氢荧光探针。
本发明所述的应用,所述部花菁-香豆素荧光团作为硫化氢荧光探针,对硫化氢的检测限为0.49μM,响应时间为40s。
本发明所述应用包括细胞比例成像、生物标记和传感领域,进一步包括活体的外源性硫化氢的成像、活细胞线粒体的标记、活细胞线粒体内硫化氢检测。
本发明利用亲核反应机理通过改变部花菁/香豆素杂合荧光分子的吲哚-N取代基研究了探针对硫化氢的响应速度和亚细胞的分布情况,致力于找出响应速度快、灵敏度高且具有细胞器靶向的比例计量型硫化氢荧光探针。本发明对不同吲哚N取代基的部花菁/香豆素杂合荧光分子进行了筛选,结果表明本发明所述部花菁-香豆素荧光团可实现对硫化氢的荧光比例识别响应,不受生命体系中其他阴离子和亲核分子的干扰,在40秒内即可完成响应。此外,共聚焦成像实验证实了本发明所述部花菁-香豆素荧光团对线粒体外源硫化氢的快速双通道比例跟踪成像,双通比例的增加可达到五倍左右。并且实现了小鼠外源性硫化氢的响应。
有益效果:
(1)本发明所述的部花菁-香豆素荧光团自身发红色荧光,溶液呈蓝紫色,当硫化氢存在时,探针与其发生亲核加成反应,吲哚盐结构中C原子由sp2杂化变为sp3杂化,分子内大的共轭体系被破坏,吸收波长及发射波长都发生显著蓝移,从而可以对硫化氢实现比例计量检测,并且能通过肉眼观察到较明显的颜色变化,如说明书图5,6所示。
(2)本发明所述的部花菁-香豆素荧光团不易受到检测环境,如探针浓度等条件的影响,不受生物硫醇的干扰,可以选择性地与硫化氢作用,具有荧光比率响应效应、选择性强、灵敏度高、响应快速等优点,实现细胞内的外源性和内源性硫化氢比率成像,另外探针可以进行线粒体定位,有望在生物科学中发挥作用,具有广阔的应用前景。
附图说明
图1.实施例3中探针CM-NC6加入20当量NaHS后随时间的荧光光谱变化情况及荧光变化速率曲线(F0-Ft)/F0
图2.实施例4中探针CM-NC6加入不同浓度NaHS后荧光谱图的变化情况及强度比值F 493/F645随NaHS浓度变化及线性拟合。
图3.实施例5中探针CM-NC6对不同离子和分子的选择性荧光比值柱状图。
图4.实施例6中探针CM-NC6随pH的荧光比值变化(F493/F645)。
图5.探针CM-NC6溶液在NaHS加入前后溶液颜色的变化。
图6.探针CM-NC6溶液在NaHS加入前后溶液用紫外灯照射后荧光颜色的变化。
图7.实施例7中探针CM-NC1与商用线粒体染料Mito-marker Deep Red在MCF-7细胞中共孵育的荧光共聚焦成像图:(a)激发波长为488nm,发射波长范围为660-750nm的探针CM-NC1通道收集的共聚焦成像图,(b)激发波长为633nm,发射波长范围为665-750nm 的Mito-marker Deep Red 633通道收集的共聚焦成像图,(c)图a与图b的叠加图;(d) MCF-7细胞明场图;(e)图(a-c)白线上探针与Mito-marker Deep Red 633的荧光强度;(f) 探针与Mito-marker Deep Red 633荧光强度的相关图。
图8.实施例7中探针CM-NC6与商用线粒体染料Mito-marker Deep Red在MCF-7细胞中共孵育的荧光共聚焦成像图:(a)激发波长为488nm,发射波长范围为660-750nm的探针CM-NC6通道收集的共聚焦成像图,(b)激发波长为633nm,发射波长范围为665-750nm的Mito-marker Deep Red 633通道收集的共聚焦成像图,(c)图a与图b的叠加图;(d)MCF-7细胞明场图;(e)图(a-c)白线上探针与Mito-marker Deep Red 633的荧光强度;(f)探针与Mito-marker Deep Red 633荧光强度的相关图。
图9.实施例8中探针CM-NC6在MCF-7细胞内不加入和加入NaHS时的共聚焦荧光成像图:(a-c)MCF-7细胞与5μM荧光探针CM-NC6孵化15min后的共聚焦成像图;(d-f) MCF-7细胞与5μM荧光探针CM-NC6孵化15min后,再用200μM NaHS孵化30min后的共聚焦成像图,激发波长,488nm:(a,d)绿色通道:500-580nm,(b,e)红色通道:632- 750nm,(c,f)绿色通道与红色通道荧光强度的比值图;(g)MCF-7细胞明场图;(h)图(c)和 (f)中细胞荧光强度比值(Fgreen/Fred)的平均值。
图10.实施例9中探针CM-NC6对小鼠皮下注射PBS和注射NaHS后的活体荧光成像。a)仅注射了CM-NC6(20μM,25μL);(b)随后皮下注射PBS(左腿,20mM,50μL)和 NaHS(右腿,1mM,50μL);(c)从图a和b的腿部区域对荧光发射强度进行量化图。激发 570nm,接收波长:670nm。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实例。
Figure RE-GDA0001838235400000041
实施例1:香豆素醛衍生物的制备
化合物2的制备:将3.88g 4-N,N二乙基水杨醛,6.0mL丙二酸二乙酯和2mL六氢吡啶溶于无水乙醇65mL中,加热回流6h。旋干溶剂,在茄形瓶内加入40mL浓盐酸与40 mL冰醋酸,回流六小时。冷却至室温,将反应液倒入200mL冰水中,在冰浴中搅拌下滴加40%NaOH至pH≈5,得到大量黄色沉淀。抽滤,大量冰水洗涤滤饼。真空干燥,得到3.66g产物,产率83.9%。
化合物Cou的合成:在30℃时N2保护下,将6mL无水DMF缓慢滴入6mL POCl3中,搅拌30min后得到红棕色溶液。将4.56g化合物2溶于30mL无水DMF中,缓慢加入反应体系,使两者混合。在60℃下搅拌过夜。反应结束后将反应混合液倒入300mL冰水,在冰浴中滴加40%NaOH至pH≈5,产生大量沉淀。抽滤,用大量水洗,真空干燥。得到2.81g粗品。粗产品使用柱层析分离(洗脱剂:CH2Cl2),得到2.35g产品,产率45.6%。1H NMR(300MHz,Chloroform-d)δ10.13(s,1H),8.26(s,1H),7.41(d,J=9.0Hz,1H),6.64(dd, J=9.0,2.5Hz,1H),6.49(d,J=2.3Hz,1H),3.48(q,J=7.1Hz,4H),1.26(t,J=7.1Hz,6H)。
实施例2:CMC系列探针的制备
将按文献(Pardal A.C.,Ramos S.S.,Santos P.F.,Reis L.V.,Almeida P.,Synthesis and Spectroscopic Characterisation of N-Alkyl Quaternary AmmoniumSalts Typical Precursors of Cyanines,Molecules,2002,3:320-330)合成的吲哚盐衍生物(MR)1.0mmol与香豆素醛衍生物1.0mmol溶于20mL乙醇溶液中。加热回流12h,反应完成后在减压条件下将溶剂旋干。所得残留物经柱层析分离(CH2Cl2:CH3OH,20:1至10:1),得到相应的CMC系列产物。
CM-NC1,产率:56%。1H NMR(300MHz,Chloroform-d)δ10.05(s,1H),8.59(d,J=15.9 Hz,1H),8.11(d,J=9.1Hz,1H),8.01(d,J=15.9Hz,1H),7.69–7.37(m,4H),6.71(dd,J=9.1, 2.4Hz,1H),6.47(d,J=2.2Hz,1H),4.31(s,3H),3.52(q,J=7.1Hz,4H),1.84(s,7H),1.29(t,J =7.1Hz,6H).13C NMR(75MHz,Chloroform-d)δ181.17,160.99,158.75,154.48,150.66,149.39, 142.64,141.50,134.38,129.25,128.63,122.49,113.26,112.48,110.96,108.92,96.77,77.37,76.95, 76.52,51.58,45.58,35.94,27.41,12.53.HRMS(positive mode,m/z):Calcd.401.2224,found 401. 2226for[M]+
CM-NC6,产率:42.1%。1H NMR(300MHz,Chloroform-d)δ10.10(s,1H),8.63(d,J=15.8Hz,1H),8.20–8.01(m,2H),7.65–7.48(m,3H),7.47–7.35(m,1H)6.69(dd,J=9.1,2.2Hz,1H),6.45(d,J=2.2Hz,1H),3.52(q,J=7.1Hz,4H),2.06–1.90(m,2H),1.88(s,6H),1.61– 1.48(m,2H),1.38–1.20(m,10H),0.86(t,J=6.9Hz,3H).13C NMR(75MHz,Chloroform-d)δ 180.94,160.96,158.64,154.45,151.17,150.50,143.21,140.78,134.36,129.15,128.55,122.70, 113.32,112.53,110.92,110.83,108.95,96.62,77.40,77.18,76.97,76.55,51.65,47.17,45.52, 31.27,28.43,27.63,26.32,22.26,13.87,12.52.HRMS(positive mode,m/z):Calcd.471.3006,found 471.3008for[M]+
实施例3:探针CM-NC6对硫化氢响应速度的荧光光谱
本发明采用的荧光光谱测试浓度为10μM,溶剂为混有2%DMSO的20mM,pH=7.4的PBS溶液,测发射光谱时,激发波长为475nm。采用NaHS作为硫化氢供体。将荧光探针加入到PBS溶液中,加入20当量NaHS混合均匀后,每隔一定时间进行相应的荧光光谱测试。如图1所示,向10μM CM-NC6的PBS溶液中加入200μM NaHS,650nm处部花菁/香豆素杂合荧光团的发射峰随着时间的延长荧光强度显著降低,2min后接近消失。通过荧光变化速率曲线(F0-Ft)/F0可以看出,反应到40s时即接近平衡,反应程度达到95%以上。而 CM-NC1在相同条件下,16min接近平衡,反应程度达到60%左右。如前述文献《基于香豆素荧光团的比率荧光探针的设计、合成与应用研究》(冯笑,山东大学硕士学位论文)提到的基于香豆素-部花菁的硫化氢探针CPC,虽然该探针具有高的灵敏性(检测限40nM)和良好的选择性以及线粒体靶向能力但是其响应时间过长(7min),无法满足实际需要。由于硫化氢在体内的半衰期较短(数分钟),探针CM-NC6相对于文献中大多需要5-120min响应时间的探针在实时跟踪成像的应用上具有明显的优势。
实施例4:探针CM-NC6的荧光滴定和检测限的测定
配制3mL荧光探针CM-NC6(10μΜ)的PBS缓冲液(磷酸盐缓冲溶液),随着NaHS 浓度的升高,CM-NC6位于645nm处的荧光强度逐渐降低,而493nm处的荧光强度逐渐增强,两个发射峰可分别归属为部花菁/香豆素杂合荧光团与香豆素的发射峰。当加入的NaHS 浓度达到100μM时,两个发射峰强度基本不再变化,荧光强度比值F493/F645从0.08到 2.5,增强了近30倍。结果如图2所示。检测限按照如下公式计算:
检测限=3σ/k(公式1)
其中,σ是对探针PBS溶液493nm和645nm处发射峰强度比值(F493/F645)扫描20次后计算的标准偏差,k是加入NaHS后探针两个发射峰强度比值随浓度的斜率。计算结果表明,CM-NC6的检测限为0.49μM,探针检测限较低,具有较高的灵敏度,有利于检测生物体内低浓度H2S。如文献(Chen Yuncong,Zhu Chengcheng,Yang Zhenghao,Chen Junjie,He Yafeng,Jiao Yang,He Weijiang,Qiu Lin,Cen Jiajie,Guo Zijian,A Ratiometric FluorescentProbe for Rapid Detection of Hydrogen Sulfide in Mitochondria,Angew.Chem.Int.Ed.,2013,6,1688- 1691.)报道了一例基于香豆素部花菁荧光团并实现了线粒体硫化氢的比例计量成像,但其检测限(1μM)也高于本发明的探针CM-NC6
实施例5:探针CM-NC6的选择性实验
3mL荧光探针(10μM)的PBS缓冲溶液(10mM,pH 7.40,含2%DMSO,v/v)中,分别加入不同的含阴离子(HCO3 -、Cl-、Br-、I-、CN-、HPO4 2-、P2O7 4-等,1mM)、无机硫物种 (SO4 2-、HSO4 -、HSO3 2-等,1mM)、以及生物巯基物(GSH、Cys:1mM;Hcy:200μM)的 PBS缓冲溶液,混合均匀后进行荧光光谱测试。
由图3可以看出,向探针溶液中加入1mM其他阴离子如HCO3 -、Cl-、Br-、I-、CN-、HPO4 2-、P2O7 4-等,无机硫化物如SO4 2-、HSO4 -、HSO3 2-等,引起溶液荧光强度比值的变化很小,当加入200μM HS-后溶液荧光强度比值(F493/F645)发生显著变化,增强了20倍之多。当生物体内的巯基物种如GSH、Cys和Hcy等加到探针溶液后荧光强度比值变化也很小(如图3b)。这是由于H2S的pKa1为7.04,而生物巯基物种的pKa大多高于8.5,因此,在pH 7.4的条件下,H2S主要以亲核性较强的HS-形式存在,而其他巯基物种主要以中性分子存在,亲核性较弱。另外,由图3b可以看出,这些生物巯基物种的存在不干扰探针对硫化氢的响应。这些实验结果表明,探针CM-NC6对硫化氢具有很好的选择性,并且对硫化氢的比例计量响应能力不受其他阴离子和生物巯基物种干扰。
实施例6:pH对探针CM-NC6的影响
于3mL探针溶液(10μM)的PBS溶液中,加入一定体积的HCl水溶液或者NaOH水溶液,将溶液调节至不同的pH值,稳定后进行荧光光谱测试。
如图4所示,探针CM-NC6在生理pH=4.5-8下荧光强度比值基本保持稳定不变,只有 pH大于10荧光强度比值(F493/F645)才开始显著增大,这是由于碱性条件下,溶液中的OH-浓度增大,可以发生与HS-类似的亲核进攻而破坏探针的共轭体系。该实验表明,探针在生理 pH范围内荧光强度比值变化较小,适用于生命体系中硫化氢的检测与成像。
实施例7:探针CMC的线粒体共定位成像研究
探针CMC的荧光成像研究在激光扫描共聚焦荧光显微镜(Zeiss LSM 710)中进行,以 MCF-7细胞为模型。将消化后的细胞接种在培养皿中,在37℃,5%CO2的条件下继续培养24小时使之贴壁。用PBS溶液洗去不新鲜的细胞培养液后先用1mM Mito-Tracker Deep Red633孵化15min后成像,红色通道激发波长:633nm;发射波长范围:660-750nm。 MCF-7细胞用5mM探针孵化15min后成像,蓝色通道激发波长,488nm;发射波长范围,660-750nm。如图7,8所示,探针CM-NC1的荧光图与线粒体染料Mito-marker Deep Red 633的荧光图重叠程度不高,通过软件计算得到共定位系数(Pearson’s correlation coefficient)仅有67%,并无线粒体靶向能力,而CM-NC6的荧光成像图与线粒体染料Mito- marker Deep Red 633的成像图重叠较好,通过软件计算得到共定位系数为0.91,有较好的线粒体靶向能力。与此同时,探针和线粒体染料的荧光强度在线上的分布也越相似。如最新文献(Zhang Kun,ZhangJie,Xi Zhen,Li Lu-Yuan,Gu Xiangxiang,Zhang Qiang-Zhe,Yi Long,A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2Slevel in colorectal cancer cells in mice,Chem.Sci.,2017,4,2776)报道的近红外硫化氢荧光探针检测限虽低达39.6nM,但响应时间达到30min,而且是增强型的并且无线粒体靶向能力,难以实现线粒体中硫化氢的检测。证明本发明的探针CM-NC6能够靶向活细胞线粒体,可用于活细胞线粒体标记。
实施例8:探针CM-NC6对外源硫化氢的共聚焦成像研究
具体操作步骤如下:将5μM CM-NC6荧光探针溶液加入到MCF-7细胞的培养皿中,在二氧化碳培养箱中培养15min后用PBS对细胞进行洗涤三次后,进行成像图9(a-c),向其中加入200μM NaHS,孵化30min后原位进行成像图9(d-f)。
MCF-7细胞中的外源硫化氢的比例成像研究采用单激发双发射模式,激发波长为488 nm,绿色通道发射波长范围:500-580nm,红色通道发射波长范围:632-750nm。从图9a-c可以看出,MCF-7细胞经5μM CM-NC6孵化15min后,绿色通道的荧光信号很弱,红色通道则表现出强烈的荧光,两通道的比例图比例图显示很微弱的背景色,说明MCF-7细胞中的硫化氢浓度较低。当继续用200μMNaHS(细胞中硫化氢供体)孵化30min后,绿色通道的荧光有所增强,而红色通道的荧光强度显著降低,从图9h可以看出,比例强度增强5 倍左右,表明NaHS的孵化使得MCF-7细胞内的硫化氢浓度升高,探针CM-NC6能够用于细胞内硫化氢的比例计量成像。
实施例9:探针CM-NC6对外源硫化氢的活体成像研究
本发明活体实验严格遵循实验室动物的护理和使用指南(NIH出版物第80-23号,修订 1996年),并遵守动物实验的机构伦理准则进行。本发明所用小鼠为雌性裸鼠,6-8周,由南京大学南京生物医学研究所提供。活体成像实验是用小动物活体成像系统IVISLumina K 系统(PerkinElmer)完成,激发波长:580nm,接收波长:670nm。
先在小鼠左右后腿皮下注射探针CM-NC6(20μM,25μL)10min后,进行成像,如图10a。然后在左边的后腿皮下注射PBS缓冲(20mM,50μL)作为对照组;同时右后腿被注射NaHS(1mM,50μL)作为实验组,30min后收集图像,如图10b。由图10b,c可以看出,加入NaHS后,荧光强度较加入PBS后明显降低,这说明,该探针可用于外源性硫化氢的活体成像实验。

Claims (7)

1.部花菁-香豆素荧光团在制备线粒体硫化氢检测荧光探针中的应用,其特征在于所述部花菁-香豆素荧光团结构如下式所述:
Figure DEST_PATH_IMAGE002
,其中 C6H13代表直链或支链的己烷基。
2.如权利要求 1 所述的应用,其特征在于所述部花菁-香豆素荧光团可以与阴离子结合。
3.如权利要求 2 所述的应用,其特征在于所述阴离子选自 Cl-、Br-,I-,NO3-或 PF4-
4.如权利要求 1 所述的应用,其特征在于所述部花菁-香豆素荧光团为比例计量型硫化氢荧光探针。
5.如权利要求 1 所述的应用,其特征在于所述部花菁-香豆素荧光团作为硫化氢荧光探针,对硫化氢的检测限为 0.49μM。
6.如权利要求 1 所述的应用,其特征在于所述应用包括细胞内比例成像、生物标记或传感领域。
7.如权利要求 6 所述的应用,其特征在于所述应用包括活体的外源性硫化氢的成像、活细胞线粒体的标记、活细胞线粒体内硫化氢检测。
CN201810881196.8A 2018-08-04 2018-08-04 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用 Active CN110804043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810881196.8A CN110804043B (zh) 2018-08-04 2018-08-04 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810881196.8A CN110804043B (zh) 2018-08-04 2018-08-04 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用

Publications (2)

Publication Number Publication Date
CN110804043A CN110804043A (zh) 2020-02-18
CN110804043B true CN110804043B (zh) 2022-10-18

Family

ID=69486826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810881196.8A Active CN110804043B (zh) 2018-08-04 2018-08-04 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用

Country Status (1)

Country Link
CN (1) CN110804043B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112079858B (zh) * 2020-09-24 2021-09-28 山西大学 一种香豆素衍生物Th-HM1及其合成方法和应用
CN114428050A (zh) * 2022-01-27 2022-05-03 南京大学 一种适用于荧光探针检测细胞内源性因子的流式细胞检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479669A (zh) * 2014-11-18 2015-04-01 辽宁大学 一种检测硫化氢的增强型荧光探针的制备方法及应用
CN105295899A (zh) * 2015-09-21 2016-02-03 山东大学 一种检测硫化氢的比率荧光探针及其应用
CN107870169A (zh) * 2017-10-30 2018-04-03 南京大学 一种分子调控电致化学发光光谱的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799570B2 (en) * 2007-03-29 2010-09-21 Uchicago Argonne, Llc Methods for validating the presence of and characterizing proteins deposited onto an array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479669A (zh) * 2014-11-18 2015-04-01 辽宁大学 一种检测硫化氢的增强型荧光探针的制备方法及应用
CN105295899A (zh) * 2015-09-21 2016-02-03 山东大学 一种检测硫化氢的比率荧光探针及其应用
CN107870169A (zh) * 2017-10-30 2018-04-03 南京大学 一种分子调控电致化学发光光谱的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新型的硫化氢分子荧光探针的设计、合成及性能研究;齐玥;《中国优秀博硕士学位论文全文数据库(硕士)》;20150415(第4期);B014-288 *
部花菁/香豆素杂合荧光分子的H2S响应行为与细胞成像研究;方红宝;《南京大学硕士学位论文》;20160525;42-61 *

Also Published As

Publication number Publication date
CN110804043A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
Xia et al. Ratiometric fluorescent and colorimetric BODIPY-based sensor for zinc ions in solution and living cells
Shen et al. A rhodamine B-based probe for the detection of HOCl in lysosomes
Li et al. A near-infrared fluorescent probe for Cu2+ in living cells based on coordination effect
Li et al. A near-infrared fluorescent probe for imaging of endogenous hydrogen sulfide in living cells and mice
CN109053802B (zh) 一种比率型近红外荧光探针及其合成方法与应用
US20140212359A1 (en) Photostable aie luminogens for specific mitochondrial imaging and its method of manufacturing thereof
Zhang et al. Ultra-pH-sensitive sensor for visualization of lysosomal autophagy, drug-induced pH alteration and malignant tumors microenvironment
Dong et al. Two-photon fluorescence visualization of lysosomal pH changes during mitophagy and cell apoptosis
CN103214875B (zh) 一类以荧光素类似物为母体的荧光染料的合成和应用
CN110498758B (zh) 用于识别谷胱甘肽的近红外荧光探针及其制备和应用
CN106518857A (zh) 一种线粒体靶向pH比率型荧光探针的制备方法和应用
CN110804043B (zh) 部花菁-香豆素荧光团在线粒体硫化氢检测中的应用
Wang et al. Novel turn-on fluorescence sensor for detection and imaging of endogenous H2S induced by sodium nitroprusside
Zhou et al. A new ratiometric two-photon fluorescent probe for imaging of lysosomes in living cells and tissues
Liu et al. Development of a mitochondria targetable ratiometric time-gated luminescence probe for biothiols based on lanthanide complexes
CN111116539B (zh) 一种双重响应癌细胞内溶酶体粘度和pH的荧光探针、制备方法和应用
Zhu et al. A two-photon off-on fluorescence probe for imaging thiols in live cells and tissues
Yuan et al. A novel highly selective near-infrared and naked-eye fluorescence probe for imaging peroxynitrite
Ma et al. A red mitochondria-targeted AIEgen for visualizing H 2 S in living cells and tumours
Yuan et al. An effective FRET-based two-photon ratiometric fluorescent probe with double well-resolved emission bands for lysosomal pH changes in living cells and zebrafish
Fu et al. Construction of ratiometric hydrogen sulfide probe with two reaction sites and its applications in solution and in live cells
Zhang et al. Selective detection of peroxynitrite in living cells by a near-infrared diphenyl phosphinate-based dicyanoisophorone probe
Li et al. A near-infrared phosphorescent iridium (iii) complex for fast and time-resolved detection of cysteine and homocysteine
Zhang et al. A two-photon endoplasmic reticulum-targeting fluorescent probe for the imaging of pH in living cells and zebrafish
Lu et al. Ultra-fast zinc ion detection in living cells and zebrafish by a light-up fluorescent probe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant