CN110800080A - X射线管绝缘体 - Google Patents

X射线管绝缘体 Download PDF

Info

Publication number
CN110800080A
CN110800080A CN201880042074.8A CN201880042074A CN110800080A CN 110800080 A CN110800080 A CN 110800080A CN 201880042074 A CN201880042074 A CN 201880042074A CN 110800080 A CN110800080 A CN 110800080A
Authority
CN
China
Prior art keywords
insulator
interface
vacuum
ray tube
asymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880042074.8A
Other languages
English (en)
Inventor
R·K·O·贝林
T·施伦克
T·雷佩宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN110800080A publication Critical patent/CN110800080A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/165Vessels; Containers; Shields associated therewith joining connectors to the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements
    • H01J2235/023Connecting of signals or tensions to or through the vessel
    • H01J2235/0233High tension
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/54Protecting or lifetime prediction

Landscapes

  • X-Ray Techniques (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本发明提出了一种处于X射线管内的绝缘体,所述绝缘体具有真空侧和环境侧以及馈通,所述馈通基本上与所述真空侧的对称轴和所述环境侧的对称轴一致。所述真空侧的所述对称轴和所述环境侧的所述对称轴相对于彼此具有至少5°,优选90°的角度。还提出了一种包括这种绝缘体的X射线源,并且本发明还扩展到一种用于使用具有这种绝缘体的X射线源来生成患者的X射线图像的医学成像装置。在实施例中,提供了一种X射线源,其中,所述绝缘体在环境表面处被插入电连接器。

Description

X射线管绝缘体
技术领域
总体上,本发明涉及用于生成X射线辐射的X射线源和/或X射线生成器的领域。具体而言,本发明涉及一种非对称X射线管绝缘体、一种用于生成X射线的X射线源以及一种用于生成患者的图像的医学成像装置。
背景技术
用于X射线管的高压陶瓷绝缘体将高电位与接地电位隔离开并通过用于例如控制电压、电流、传感器信号、热量的馈通实现电力供应。
优选轴对称设计,以简化制造并最小化热变形或电变形。这些绝缘体可以是圆柱形、圆锥形或基本平的,也被技术人员称为“薄饼”绝缘体。它们通常被结构化,例如以即使在真空侧(例如,如电荷载体、UV或X射线等的游离剂的影响)以及在油或柔性大体积绝缘体(橡胶、硅树脂片、塑料等)下的环境侧的不利条件下,也能屏蔽三相点并起作用。
高压陶瓷绝缘体通常是在真空与环境油、橡胶、硅或塑料绝缘之间的界面。
US 4811375A描述了一种X射线管,其包括大体圆柱形的真空金属管封套,该金属管封套具有可旋转地安装在其中的阳极。靠近阳极的管封套内部设置有陶瓷绝缘,以防止飞弧。阳极由外部变速DC驱动电动机旋转,该电动机通过管封套壁磁性耦合至旋转的阳极组件。管封套壁包括含铁段,其最小化磁耦合中的间隙,同时允许厚而坚固的管封套壁。可以采用变速DC电动机或变速气动电动机来驱动阳极。在优选的实施例中,阳极驱动单元机电地紧固到阳极,由此可以使驱动单元达到期望的阳极速度,然后紧固到阳极,该驱动单元用作飞轮以使阳极快速达到速度。还采用了用作离合器的电磁体。另外,阳极驱动单元可以以适合于放射照相的高速操作,并且电磁离合器单元可以间歇地操作以在荧光检查期间维持阳极旋转。当在荧光检查中间需要放射照相时,电磁离合器被致动以使阳极达到其全速。备选的驱动单元包括在管封套外部的DC定子,该DC定子作用于被安装为与阳极一起旋转的内部转子上。X射线管还包括可旋转地安装在管封套中并包含多个阴极灯丝的阴极。提供阴极旋转驱动单元,用于使阴极旋转以选择期望的灯丝。阴极驱动单元优选地通过管壁磁性耦合,以便使阴极旋转。DC驱动电动机包括在管封套外部的DC定子以及AC定子,该DC定子在具有包封的稀土磁体的转子上操作,该AC定子通过层叠的分段管壁在鼠笼式转子上操作。提供了风扇用于管封套的空气冷却。
发明内容
本发明的发明人发现,由于真空界面通常在允许的最大电场强度方面最弱,因此在两个界面之间可能存在所需尺寸的不匹配。迄今为止,现有技术中使用的同轴设计可能变得笨重。
因此,可能需要一种改进的方式来将接地电位与X射线管中使用的绝缘体的馈通的电位隔离。
这通过独立权利要求的主题来实现,其中在从属权利要求和以下描述中并入了进一步的实施例。
根据本发明的第一方面,提出了一种用于提供接地电位与馈通的电位之间的隔离的非对称X射线管绝缘体。所述非对称X射线管绝缘体包括:用于与X射线管的真空区接触的真空界面,以及用于与所述X射线管的环境接触的环境界面。此外,所述绝缘体包括所述绝缘体内部的馈通通道,其用于接收所述馈通以将所述馈通的所述电位从所述环境界面引导至所述真空界面。此外,所述馈通通道在所述绝缘体内部从所述真空界面延伸到所述环境界面。所述绝缘体的所述真空界面和所述环境界面相对于彼此成角度。
换句话说,非对称X射线管绝缘体(以下称为“绝缘体”)具有通常彼此不平行的真空界面和环境界面。相反,所述界面垂直于各自的对称轴延伸,但是两个对称轴不是相同的,而是相对于彼此成角度。从若干不同的实施例中,这将变得显而易见,并在下文中得以阐述。这与轴对称的现有技术的绝缘体相反,在轴对称的现有技术的绝缘体中,真空界面和环境界面两者都分别垂直于平行或相同的对称轴延伸。因此,可以将本发明的非对称绝缘体看作是提供待使用在X射线管中的绝缘体的非同轴设计。技术人员应当理解,真空界面和环境界面的成角度的配置涉及真空界面的主表面和环境界面的主表面。例如,技术人员在确定真空界面和环境界面之间的成角度配置时考虑垂直于馈通延伸穿过真空界面所沿的方向延伸的真空界面的表面部分。以相同的方式,在该示例性示例中,垂直于馈通延伸穿过环境表面或环境界面所沿的方向延伸的环境界面的表面部分用于确定非对称绝缘体的成角度的配置。成角度的界面的这种构思在若干不同的实施例的上下文中进行说明并加以阐明,并且可以从例如图2的实施例中清楚地得到。
换句话说,绝缘体的非对称形状允许馈通通道从环境界面沿第一方向延伸到绝缘体中,并且馈通通道从真空界面沿另一方向延伸到绝缘体中,其中第一方向和第二方向彼此不平行。绝缘体的该几何方面将在下文中在若干不同的实施例的上下文中进行说明并加以阐明。
本发明的发明人在他们对X射线管的研究过程中发现,对于X射线管的未来应用,应该减小绝缘体的水平宽度,即轴向厚度。绝缘体的这种水平宽度可以例如从图2中看到,其中水平宽度由真空界面201与图2右侧的长的导电外表面(沿从图2的顶部到底部的方向延伸)之间的距离给出,其中两个附图标记208和214都在此终止。由于成角度的非同轴配置,即由于绝缘体200的非对称形状,绝缘体的该水平宽度得以最小化。总体上,本发明的非对称绝缘体(其包括相对于彼此成角度的真空界面和环境界面)提供了这样的减小的水平宽度。这种非对称的形状显著减小了绝缘体的水平宽度,由此允许将绝缘体应用在可能限制该空间的未来X射线管中。同时,绝缘体的非对称形状允许考虑真空界面和环境界面必须满足的不同电气条件。在真空界面处,由于电荷载流子可能会引起问题,并且需要考虑放电问题。本发明的绝缘体的非对称几何结构允许提供大的真空界面,同时能够显著减小环境界面的直径。这仍然匹配两个表面的电气需求。
从下面的说明中将显而易见的是,本发明的绝缘体涉及固态物质绝缘体,其中可以使用不同的材料。在下文中将给出材料选择的不同实施例。
绝缘体可以包括一个馈通通道,该馈通通道具有延伸域其中的馈通,但是当然也可以包括两个、三个、四个或更多个馈通通道,其具有延伸于其中的对应的馈通通道。在优选实施例中,绝缘体可以提供具有相应馈通的两个、四个或六个馈通通道。
此外,本发明的绝缘体被配置用于将接地电位与延伸通过该绝缘体的一个或多个馈通的电位隔离。对于医学成像应用,例如,当在医学成像设备的X射线管中使用非对称X射线管绝缘体时,典型电压的范围可能为20kV至150kV。
然而,本发明的绝缘体的应用领域超出医学成像领域。例如,在非破坏性材料测试领域中,可以使用本发明的绝缘体。在该领域中,可以应用高达600kV的电压,并且该实施例的绝缘体被配置为提供对应的隔离。本发明的绝缘体的另一应用领域是衍射仪领域和分析化合物的荧光分析领域。在这样的技术领域中,可以仅施加10kV的电压,并且本发明的绝缘体当然也可以为这种应用提供对应的隔离。
因此,根据本发明的示例性实施例,提出了一种具有包括非对称X射线管绝缘体的X射线管的医学成像装置。在备选实施例中,提出了一种用于非破坏性材料测试的设备,该设备包括具有本发明的非对称X射线管绝缘体的X射线管。在另一示例性实施例中,提出了一种用于衍射测量或用于荧光分析的设备,该设备具有X射线管和非对称X射线管绝缘体。
如技术人员所清楚的,当将绝缘体施加到或安装在X射线管本身上时,绝缘体的真空界面与X射线管的真空区接触。此外,在这种安装配置中,绝缘体的环境界面与X射线管的环境接触。
通过使用不同的选项,可以将馈通与馈通通道接触。根据示例性实施例,在绝缘体的制造过程中,绝缘体在绝缘体内提供一个或多个馈通通道作为空心通道,在该空心通道中钎焊馈通的导电材料。因此,通过将电馈通钎焊到馈通通道中,能够实现在导电馈通与绝缘体周围的固态物质之间没有气隙被封闭。在备选的生产方法中,通过使用粉末烧结法使馈通沿馈通通道与绝缘体接触。通常,在该烧结过程中,使用高于1900℃的温度。在烧结后,陶瓷体通常在机械界面的区域中被金属化,并用金属屏蔽和支撑结构进行钎焊。
根据另一示例性实施例,绝缘体包括用于承载接地电位的导电外表面,其中,所述导电外表面从所述真空界面延伸到所述环境界面。
导电外表面例如可以被实现为绝缘体的外表面上的金属层。然而,根据另一示例性实施例,并非绝缘体的整个外表面都是导电的,而是外表面的仅仅部分区段是导电的。根据另一示例性实施例,使用半导体外表面。
根据本发明的另一示例性实施例,绝缘体的真空界面和环境界面以以下方式相对于彼此成角度:使得馈通通道从真空界面沿第一方向延伸到绝缘体中,并且馈通通道从环境界面沿第二方向延伸到绝缘体中。在该实施例中,第一方向和第二方向相对于彼此具有至少5°,优选为90°的角度。
如例如可以从图2的示例性实施例中得到的,两个方向可以相对于彼此垂直取向。在图2的实施例中,第一方向和第二方向等于两个对称轴205、206,因为图2的实施例包括相对于轴207显示出旋转对称性的环境界面202,而真空界面201相对于对称轴205显示出旋转对称性。然而,除了垂直配置之外,其他成角度的配置也是落入本发明的范围内的实施例。
根据本发明的另一示例性实施例,真空界面的直径超过环境界面的直径至少2倍。
如可以例如从图2所示的实施例中得到的,与真空界面201的直径相比,环境界面202的直径显著较小。在图2所示的横截面视图中比较了两个界面的直径。
根据本发明的另一示例性实施例,绝缘体由各向同性材料的均质体形成。在优选实施方案中,使用氧化铝。
由于使用了各向同性材料,因此确保了绝缘体内的不同材料之间不会发生电气效应,因为通过该实施例避免了边界层。
根据另一优选实施例,绝缘体被实现为单件式部件。
在该实施例中,还确保在绝缘体的不同部件之间不包括会在绝缘体内引起负面电气效应的气隙。特别地,这种绝缘体避免了不想要的放电过程的任何缺点。对于技术人员而言当然清楚的是,上文所提及的各向同性特征仅涉及绝缘体本身,而馈通材料将是不同的,因为它被认为是非绝缘的但承载馈通电压。
根据本发明的另一示例性实施例,非对称绝缘体包括具有圆形对称轴的真空界面,并且该真空界面被实现为薄饼型绝缘体界面,其基本上是平的并且具有结构化表面。此外,在该实施例中,环境界面具有虚拟的圆形对称轴或具有虚拟的离散旋转对称轴,并且两个对称轴彼此成角度。
这样的结构化表面可以例如从图2中得到,其中在真空界面201的表面中包括馈通207上方和下方的两个凹处。然而,由于其直径与厚度之比,技术人员将这种界面理解为薄饼型绝缘体界面。
必须注意的是,术语“薄饼型绝缘体界面”是技术人员通常使用并清楚理解的。特别地,技术人员将薄饼型绝缘体界面理解为具有界面的直径除以界面的深度的高比率的界面。这种薄饼型绝缘体界面在图2中由真空界面201表示。
正如本领域技术人员通常使用的,除了圆锥形绝缘体,薄饼绝缘体/薄饼绝缘体界面的轴向厚度通常短于其直径。薄饼绝缘体至少在环境侧看起来基本上是平盘。这种短设计的缺点是减小了漏电路径,漏电路径被理解为跨绝缘体的从高压端子到地的路径长度。即使在不利条件下,例如真空中的自由电荷载流子、高残留气压、真空UV照射、松散颗粒的冲击等,表面和块状材料的适当结构化也是实现必要的高压稳定性所必不可少的。
根据本发明的另一示例性实施例,非对称X射线管绝缘体具有真空界面,该真空界面具有虚拟的圆形对称轴,并且该真空界面被实现为基本上平的且具有结构化表面的薄饼型绝缘体界面。
与先前的实施例相反,绝缘体在环境界面处具有圆锥形状,这通常简化了实现足够大的漏电路径。根据本发明的另一示例性实施例,绝缘体在真空界面处具有圆锥形状,并且环境界面具有虚拟的圆形对称轴,并且被实现为基本上平的且具有结构化表面的薄饼型绝缘体。
根据本发明的另一示例性实施例,真空界面的对称轴平行于馈通通道从真空界面延伸到绝缘体中所沿的方向延伸。此外,环境界面的对称轴平行于馈通通道从环境界面延伸到绝缘体中所沿的方向延伸。在图2的非限制性示例中示出了这样的实施例,其中两个界面的两个虚拟对称轴都平行于离开两个界面的方向。根据本发明的另一示例性实施例,绝缘体内部的馈通通道在绝缘体内是弯曲的和/或成角度的。
馈通通道的这种弯曲和/或成角度的路径特征当然可以应用于若干通道,在包含若干馈通的实施例中,该通道由绝缘体包括。
根据本发明的另一示例性实施例,导电外表面从真空界面垂直地朝向绝缘体的成角度区段延伸。此外,绝缘体的导电外表面从环境界面垂直地朝向绝缘体的所述成角度区段延伸。
如从图2可以得到的,沿绝缘体的圆周引导的接地电位,绝缘体200的两端垂直地远离各自的界面延伸,然后在绝缘体的外表面成角度的区段相会。例如,在图2的非限制性实施例中,两个界面之间的内部的短机械连接上包括垂直区段。这种内部的短机械连接在图2左侧示出。与此相反,在图2的右手侧所示的两个界面之间的较长机械连接包括两个成角度区段,其中每个区段成45°角。根据本公开,技术人员清楚的是,基于根据本发明的不同实施例提供的不同几何结构,也可以使用若干不同的角度。
根据本发明的另一示例性实施例,导电外表面周向地包围真空界面和环境界面。
根据本发明的另一方面,提出了一种用于生成X射线的X射线源。X射线源包括根据本文提到的实施例或方面中的任何一个的绝缘体。绝缘体经由真空界面与X射线源的真空区接触,并且绝缘体经由环境界面与X射线源的环境接触。
这样的X射线源可以应用于若干不同的技术领域。例如,这样的X射线源可以被应用在用于医学目的的X射线成像设备内,或者可以用于非破坏性材料测试设备内,或者可以用于衍射仪或荧光分析设备内。
在实施例中,提供了一种X射线源,其中,绝缘体在环境表面处被插入电连接器。
根据本发明的另一示例性实施例,提出了一种用于生成患者的X射线图像的医学成像装置,其中,该装置包括具有根据本文中提及的实施例和方面中的任一个的绝缘体的X射线源。
参考下文描述的实施例,本发明的这些和其他方面将变得显而易见并得到阐明。
附图说明
下面将参考附图中示出的示例性实施例更详细地解释本发明的主题,其中
图1示出了贯穿在X射线源中通常使用的现有技术的绝缘体的横截面视图;
图2示意性地示出了贯穿根据本发明的示例性实施例的非对称绝缘体的横截面;并且
图3示意性地示出了根据本发明的另一示例性实施例的包括X射线源和X射线源绝缘体的医学成像系统。
具体实施方式
图1示意性地示出了贯穿包括现有技术的X射线源绝缘体的X射线源的横截面。示出了X射线源100,其具有含有氧化铝部分102的真空区101。在图1中,真空界面由附图标记106表示。此外,还包括硅平板103,该硅平板是电稳定的界面,其中小直径就足够了。此外,在图1所示的设置中包括塑料绝缘体104。X射线源100还包括油或线缆界面105,其是与环境的界面。从图1可以看出,现有技术利用轴对称设计,因为它们简化了制造并且最小化热变形或电变形。迄今为止,技术人员认为这样的轴对称和/或同心X射线绝缘体是有益且足够的,因为它们即使在真空侧(例如,如电荷载体、UV或X射线等的游离剂的影响)以及在油或柔性大体积绝缘体下的环境侧的不利条件下,也能成功进行屏蔽。
然而,本发明的发明人在他们的研究过程中发现,绝缘体的不同几何结构对于将来X射线源的若干不同应用是有益的。在实施例中,本发明的发明人建议使用成角度的各向同性绝缘体,例如成角度的氧化铝陶瓷绝缘体,其代表了真空与环境之间的界面。这可以适用于X射线管和其他真空电子设备。
作为非限制性示例,图2示出了用于提供接地电位208与馈通的电位207之间的隔离的非对称X射线管绝缘体200的横截面。绝缘体包括用于与X射线管的真空区211接触的真空界面201。此外,环境界面202被配置用于与X射线管的环境212接触。馈通通道213在绝缘体内部延伸,并被配置为用于接收馈通以将馈通的电位从环境界面引导至真空界面。然后可以将电连接器和线缆施加到真空侧的绝缘体的一个或多个馈通,以便将电力带到若干不同的设备,例如控制设备、传感器或加热设备。如从图2可以看出,馈通通道213在绝缘体200内部从真空界面201延伸到环境界面202。真空界面201和环境界面202相对于彼此成角度。因此,提供了非同轴且非轴对称的设计和几何结构。考虑到两个界面之间所需尺寸的不匹配,该实施例的绝缘体200沿真空界面201的对称轴205是极其平的。换句话说,绝缘体200的水平宽度(即轴向厚度)在所示的横截面视图中通过非对称的几何结构得以减小。
绝缘体200还包括用于承载接地电位208的导电外表面214。导电外表面214从真空界面201延伸到环境界面202。两个界面201、202的成角度的配置的特征在于,馈通通道213沿与馈通通道从环境界面202延伸到绝缘体200中所沿的第二方向成角度的第一方向从201延伸到绝缘体200中。图2的示例性实施例的角度为90°。然而,减小绝缘体沿真空界面的对称轴的厚度的技术优势已经可以利用至少5°的角度来实现。因此,根据其他示例性实施例,可以使用10°、15°、20°、30°、45°、50°、60°、70°、80°或85°的角度来实现该技术效果。
从图2还可以看出,真空界面201具有虚拟对称轴205,并且环境界面202具有虚拟对称轴206。在图2的实施例中,两个对称轴之间的角度是90°。图2还示出了两个顶视图203和204。顶视图203示出了环境界面202的顶视图,而顶视图204示出了真空界面201。沿馈通通道213延伸的导电馈通207可以在图2右侧的横截面视图中看到,并且也可以在顶视图204中看到。因此,当将绝缘体应用于X射线管时,真空区211与真空界面201接触,而环境界面202则与环境212接触。图2中的设置的90°角在图2中利用附图标记210描绘。绝缘体200的主体209可以由各向同性的材料制成,例如由氧化铝制成。
在实施例中,提供了一种X射线源,其中,绝缘体200在环境表面处被插入电连接器。
根据本发明的另一示例性实施例,图3示出了用于生成患者的X射线图像的医学成像设备300。技术人员清楚的是,这是示意的简化图。医学成像装置300包括具有非对称X射线源/X射线管绝缘体307的X射线源302,其仅示意性地示出并且仅用于说明性目的。该C形臂301还包括X射线探测器303和患者台304。图3中示出的医学成像系统300还包括显示器305和待由医学从业者使用的控制单元306。本发明的实施例的任何先前提到的非对称绝缘体都可以在图3所示的医学成像系统300内应用和使用。
在医学成像设备300中,可以使用绝缘体307的以下示例性实施例。例如,整个绝缘体307(包括真空和环境绝缘体界面)可以由各向同性材料(例如氧化铝)的单个均质块组成。所述块可以由多个元件制造,所述多个元件例如通过烧结或胶粘或其他技术在以后被接合。绝缘体或其一部分可以通过3D打印来制造。在一个实施例中,真空侧的薄饼型绝缘体界面(基本上是平的、结构化的、圆形对称的)将伴随有具有不同对称轴(圆形对称或离散旋转对称)的环境的另一绝缘体界面,其中两个轴相对于彼此成角度。
备选地,医学成像设备300包括真空侧的薄饼绝缘体界面伴随有环境侧的成角度的圆锥形绝缘体结构,反之亦然。
在医学成像设备300的另一实施例中,真空侧的薄饼绝缘体伴随环境侧的基本上不同的薄饼绝缘体结构,反之亦然。
可以认为,本发明的要点在于,绝缘体具有真空侧和环境侧,并且馈通基本上与真空侧的对称轴和环境侧的对称轴一致,其中,真空侧的对称轴和环境侧的对称轴相对于彼此具有至少5°,优选90°的角度。

Claims (15)

1.一种用于提供接地电位(208)与馈通的电位(207)之间的隔离的非对称X射线管绝缘体(200),所述绝缘体包括:
用于与X射线管的真空区(211)接触的真空界面(201),
用于与所述X射线管的环境(212)接触的环境界面(202),
所述绝缘体内部的馈通通道(213),其用于接收所述馈通以将所述馈通的电位从所述环境界面引导至所述真空界面,
其中,所述馈通通道在所述绝缘体内部从所述真空界面延伸到所述环境界面,
其中,所述真空界面和所述环境界面相对于彼此成角度,
其中,垂直于所述真空界面的第一轴与垂直于所述环境界面的第二轴成至少5°,优选90°的角度,
其中,所述真空界面具有直径,并且其中,所述环境界面具有直径,以及
其中,所述真空界面的所述直径超过所述环境界面的所述直径至少2倍。
2.根据权利要求1所述的非对称X射线管绝缘体,还包括:
导电外表面(214),其用于承载所述接地电位,并且
其中,所述导电外表面从所述真空界面延伸到所述环境界面。
3.根据权利要求1或2所述的非对称X射线管绝缘体,
其中,所述真空界面和所述环境界面相对于彼此成角度的特征在于,
所述馈通通道(213)从所述真空界面(201)沿第一方向延伸到所述绝缘体(200)中,
其中,所述馈通通道(213)从所述环境界面(202)沿第二方向延伸到所述绝缘体中,并且
其中,所述第一方向和第二方向相对于彼此具有至少5°,优选90°的角度。
4.根据权利要求3所述的非对称X射线管绝缘体,其中,所述第一方向平行于所述第一轴,并且其中,所述第二方向平行于所述第二轴。
5.根据前述权利要求中的任一项所述的非对称X射线管绝缘体,
其中,垂直于所述真空界面(201)的所述第一轴是虚拟对称轴(205),并且垂直于所述环境界面(202)的所述第二轴是虚拟对称轴(206)。
6.根据前述权利要求中的任一项所述的非对称X射线管绝缘体,
其中,所述绝缘体由各向同性材料的均质体形成,优选由氧化铝形成。
7.根据前述权利要求中的任一项所述的非对称X射线管绝缘体,
其中,所述真空界面具有虚拟的圆形对称轴,
其中,所述真空界面被实现为基本上平的且具有结构化表面的薄饼型绝缘体界面,
其中,所述环境界面具有虚拟的圆形对称轴或具有虚拟的离散旋转对称轴,并且
其中,两个对称轴相对于彼此成角度。
8.根据权利要求1至6中的任一项所述的非对称X射线管绝缘体,
其中,所述真空界面具有虚拟的圆形对称轴,
其中,所述真空界面被实现为基本上平的且具有结构化表面的薄饼型绝缘体界面,其中,所述虚拟的圆形对称轴的厚度短于所述真空界面的直径,并且
其中,所述绝缘体在所述环境界面处具有圆锥形状。
9.根据权利要求1至6中的任一项所述的非对称X射线管绝缘体,
其中,所述绝缘体在所述真空界面处具有圆锥形状,
其中,所述环境界面具有虚拟的圆形对称轴,
其中,所述环境界面被实现为基本上平的且具有结构化表面的薄饼型绝缘体界面。
10.根据权利要求7、8或9中的一项所述的非对称X射线管绝缘体,
其中,所述真空界面的所述对称轴平行于所述馈通通道从所述真空界面延伸到所述绝缘体中所沿的方向延伸,
其中,所述环境界面的所述对称轴平行于所述馈通通道从所述环境界面延伸到所述绝缘体中所沿的方向延伸。
11.根据前述权利要求中的任一项所述的非对称X射线管绝缘体,
其中,所述绝缘体内部的所述馈通通道在所述绝缘体内是弯曲的和/或成角度的。
12.根据权利要求2-11中的任一项所述的非对称X射线管绝缘体,
其中,所述导电外表面从所述真空界面垂直地朝向所述绝缘体的成角度区段延伸,并且
其中,所述导电外表面从所述环境界面垂直地朝向所述绝缘体的所述成角度区段延伸。
13.根据权利要求2-12中的任一项所述的非对称X射线管绝缘体,
其中,所述导电外表面周向地包围所述真空界面,并且
其中,所述导电外表面周向地包围所述环境界面。
14.一种用于生成X射线的X射线源(302),所述源包括根据权利要求1至13中的任一项所述的绝缘体(307),
其中,所述绝缘体经由所述真空界面与所述X射线源的真空区接触;并且
其中,所述绝缘体经由所述环境界面与所述X射线源的环境接触。
15.一种用于生成患者的X射线图像的医学成像装置(300),所述医学成像装置包括:
具有根据权利要求1至13中的任一项所述的绝缘体(307)的X射线源。
CN201880042074.8A 2017-06-23 2018-06-15 X射线管绝缘体 Pending CN110800080A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17177556.2 2017-06-23
EP17177556.2A EP3419042A1 (en) 2017-06-23 2017-06-23 X-ray tube insulator
PCT/EP2018/065925 WO2018234172A1 (en) 2017-06-23 2018-06-15 X-RAY TUBE INSULATOR

Publications (1)

Publication Number Publication Date
CN110800080A true CN110800080A (zh) 2020-02-14

Family

ID=59152754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880042074.8A Pending CN110800080A (zh) 2017-06-23 2018-06-15 X射线管绝缘体

Country Status (5)

Country Link
US (1) US11164714B2 (zh)
EP (2) EP3419042A1 (zh)
JP (1) JP2020524878A (zh)
CN (1) CN110800080A (zh)
WO (1) WO2018234172A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811375A (en) * 1981-12-02 1989-03-07 Medical Electronic Imaging Corporation X-ray tubes
US4964148A (en) * 1987-11-30 1990-10-16 Meicor, Inc. Air cooled metal ceramic x-ray tube construction
CN103578897A (zh) * 2012-07-26 2014-02-12 安捷伦科技有限公司 用于高通量x射线源的梯度真空
US20160209288A1 (en) * 2015-01-15 2016-07-21 Mks Instruments, Inc. Polymer Composite Vacuum Components
CN106024559A (zh) * 2015-03-27 2016-10-12 东芝电子管器件株式会社 X射线管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901138A (nl) 1989-05-03 1990-12-03 Nkf Kabel Bv Insteekverbinding voor hoogspanningskunststofkabels.
JP4266258B2 (ja) * 1999-10-29 2009-05-20 浜松ホトニクス株式会社 開放型x線発生装置
US6556654B1 (en) 2001-11-09 2003-04-29 Varian Medical Systems, Inc. High voltage cable and clamp system for an X-ray tube
US6816574B2 (en) * 2002-08-06 2004-11-09 Varian Medical Systems, Inc. X-ray tube high voltage connector
US7458850B1 (en) 2007-05-23 2008-12-02 Corning Gilbert Inc. Right-angled coaxial cable connector
JP2009068973A (ja) * 2007-09-12 2009-04-02 Hamamatsu Photonics Kk 電子線照射装置
US7702077B2 (en) 2008-05-19 2010-04-20 General Electric Company Apparatus for a compact HV insulator for x-ray and vacuum tube and method of assembling same
JP6202995B2 (ja) 2013-11-05 2017-09-27 東芝電子管デバイス株式会社 回転陽極型x線管装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811375A (en) * 1981-12-02 1989-03-07 Medical Electronic Imaging Corporation X-ray tubes
US4964148A (en) * 1987-11-30 1990-10-16 Meicor, Inc. Air cooled metal ceramic x-ray tube construction
CN103578897A (zh) * 2012-07-26 2014-02-12 安捷伦科技有限公司 用于高通量x射线源的梯度真空
US20160209288A1 (en) * 2015-01-15 2016-07-21 Mks Instruments, Inc. Polymer Composite Vacuum Components
CN106024559A (zh) * 2015-03-27 2016-10-12 东芝电子管器件株式会社 X射线管

Also Published As

Publication number Publication date
US20210151275A1 (en) 2021-05-20
JP2020524878A (ja) 2020-08-20
WO2018234172A1 (en) 2018-12-27
US11164714B2 (en) 2021-11-02
EP3419042A1 (en) 2018-12-26
EP3642862A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
EP2547177B1 (en) Radiation generating apparatus and radiation imaging apparatus
JP5713832B2 (ja) 放射線発生装置及びそれを用いた放射線撮影装置
US11043351B2 (en) X-ray source and method for manufacturing an X-ray source
EP2649634B1 (en) Radiation generating apparatus and radiation imaging apparatus
CN103620727B (zh) x射线管中的陶瓷金属化
CN103733734A (zh) 放射线发生装置和放射线成像装置
CA1043844A (en) Rotary-anode x-ray tube with grounded rotor
JP2013020792A (ja) 放射線発生装置及びそれを用いた放射線撮影装置
TW201909226A (zh) 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
US20090285360A1 (en) Apparatus for a compact hv insulator for x-ray and vacuum tube and method of assembling same
JP4400781B2 (ja) 単極ct管用の高電圧システム
CN110800080A (zh) X射线管绝缘体
US6901136B1 (en) X-ray tube system and apparatus with conductive proximity between cathode and electromagnetic shield
US7197114B2 (en) X-rays emitter and X-ray apparatus and method of manufacturing an X-ray emitter
TW201909227A (zh) 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
EP0515198A1 (en) Casing with a resistive coating for high-frequency electromagnetic shielding
US6542577B1 (en) Hermetically sealed stator cord for x-ray tube applications
US20200105493A1 (en) Vacuum penetration for magnetic assist bearing
TW200829942A (en) Magnetic analyzer apparatus and method for ion implantation
TW201909228A (zh) 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
JP5278895B2 (ja) 陽極接地型x線管装置
JP2004063171A (ja) 回転陽極x線管装置
JPS625546A (ja) 回転陽極型x線管装置
JPH04355037A (ja) 回転陰極x線管装置
JP2002148397A (ja) 回転陰極型電子線照射装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200214

WD01 Invention patent application deemed withdrawn after publication